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Abstract
In this work, we propose to use deep learning to segment

an image based on its color and content. We start by reviewing
previously developed content-color-dependent screening (CCDS)
presented in [1] [2]. The goal of CCDS is to apply different color
assignments for the two or more regular or irregular halftones
within the image depending on the local color and content of the
image. If the image content locally contains high variance of
color and texture, the artifacts due to halftoning will not be as
visible as the artifacts in smooth areas of the image [1]. There-
fore, the objective of CCDS was to detect the smooth areas of
the image and apply the best possible color assignments in those
areas. In order to detect smooth areas, the image segmentation
algorithm involving the retrieval of the cluster-map and the seg-
mented edge-map was proposed. The main disadvantage of the
current approach is that for any given image, the result is highly
dependent on the initial parameters, such as the number of clus-
ters, low and high thresholds for edge detection, bilateral filter
parameters and others. In this work, we propose to use the well-
known U-net architecture to detect the smooth areas of the image,
and then apply the well-known K-means algorithm to cluster the
image based on color. The U-net is a type of a convolutional
neural network (CNN) designed for quick, precise image segmen-
tation, and it is used to predict a label for every single pixel [3].
The architecture of the U-net is suitable for this work because it
consists of a contracting path to capture context and a symmetric
expanding path that enables precise localization [3]. We believe
that using the U-net to detect smooth areas of the image greatly
improves the current approach and provides better results.

Introduction
The purpose of our research is to improve print quality in

high end digital presses. In [4], we presented an HVS-based
model for the superposition of two or more clustered-dot color
halftones, which are widely used for electrophotographic printers.
The model helps us decide what are the best color assignments for
the two or more regular or irregular halftones that minimize the
perceived error [4]. After experimentation, we concluded that for
different combinations of colorant absorptance values, their cor-
responding best color assignments may also turn out to be differ-
ent. Hence, we came up with content-color-dependent screening
(CCDS), where we proposed to apply different color assignments
within the image depending on the local color and content of the
image [1].

Since the artifacts due to halftoning are more visible in
smooth areas than they are in the non-smooth areas, our goal has

been to detect the smooth areas and to apply the best color assig-
ments in those areas. In [1], we presented a method, where we
used the well-known K-means clustering algorithm along with an
edge detection algorithm in order to segment an image into clus-
ters. We then used our spatiochromatic HVS-based model for
the superposition of four halftones in order to search for the best
color assignment in a particular cluster. In [2], Yan and Allebach
refined the CCDS approach and made improvements to the ex-
isting algorithm. First, they proposed to use the elbow method
to automate the selection of number of clusters when using K-
means. Next, they used the adaptive bilateral filter, so that the
parameters do not need to be manually adjusted based on the vi-
sual output results. They also proposed to use the color-aware So-
bel edge detector, which is more sensitive to subtle color changes
than the previous method. Finally, their updated CCDS algorithm
optimized the switching between screens, so that only the most
essential switches were performed [2].

The concept of performing image segmentation based on the
content and texture of the image was investigated before. For
example, in [5], Wang et al. presented an effective method for ob-
jective fabric smoothness appearance assessment. In their work,
the researchers collected 385 fabric specimens whose smoothness
degree had been evaluated manually. They analyzed the relation-
ship between the spatial masking effect in the human visual sys-
tem (HVS) and the fabric smoothness perceived by the human.
Their method outperformed the state-of-the-art methods for fabric
smoothness assessment and a series of widely used deep learning
methods [5]. In [6], Enshaei et al. designed and implemented an
end-to-end UNet-based fully convolutional neural network for au-
tomated defect detection in industrial surfaces. The goal of their
work was to design a model to detect defective regions inside the
textured surfaces [6]. In [7], Aakroum et al. proposed another
deep learning neural network to predict the irradiance associated
with sky images. Their approach was reported to have an accuracy
of 95% [7]. The extraction of memory colors was investigated
in [8] and [9].

In this work, we propose a better and a more efficient way
to obtain the image segmentation map with smooth areas for the
content-color-dependent screening method that was presented in
[1] and [2]. The main novelty of our approach is to implement
the U-net architecture to detect smooth areas in the image and
then apply the well-known K-means algorithm to cluster the im-
age based on color. We believe that using U-net to detect smooth
areas of the image greatly improves the existing CCDS method
and provides better results compared to the existing method. The
first advantage of our proposed approach is that since the main
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objective is to detect only smooth areas, our model outputs only
smooth areas. Whereas in the existing method, we segment both
smooth and non-smooth parts of the image. The second advantage
of the proposed approach is the efficiancy in terms of run-time.
Given N images, the full run-time to output segmentation images
using the existing approach is about 25N minutes, whereas with
the proposed approach it is (23+ 0.003N) minutes. Therefore,
the run-time is greatly reduced with our proposed image segmen-
tation approach.

In the next section, we first describe our proposed method.
Then, we provide our experimental results by using a 4-fold cross
validation, and finally, we conclude the paper.

Methods
The proposed approach of our method is described in three

parts. First, we explain how we collected the ground truth data
for this work. Second, we provide an overview of our proposed
image segmentation algorithm, and finally, we describe the details
of how we applied U-net, what updates and changes we made to
the existing approach in order to detect smooth areas in an image.

Collection of ground truth data
For our ground truth, we chose to work with original images

from the Berkeley segmentation dataset [10]. We selected this
dataset because our approach is primarily directed towards seg-
mentation of large smooth areas and this dataset contains various
images containing smooth areas with important memory colors,
such as flesh tones, sky and others. We then manually annotated
images using an image annotation tool called APEER [11]. An
example of image annotation is provided in Fig. 1. Figure 1 (a)
provides an example of an original mage from the Berkeley seg-
mentation dataset, and Fig. 1 (b) shows the two annotated smooth
areas on that image: woman’s skin and a woman’s t-shirt. Not all
images in the Berkeley segmentation dataset contained smooth
areas, therefore, out of 300 images, we annotated 128 images,
which contained smooth areas. It was decided to use 96 images
for training and 32 images for testing.

(a) (b)

Figure 1. An example of obtaining ground truth using an image annotation

tool called APEER: (a) Original image; (b) Annotated ground truth image

contating two smooth areas.

Proposed image segmentation approach
We propose a new image segmentation approach, which con-

sists of two steps. The first step of the approach is summarized in

Fig. 2. Here, we took all 128 selected images and annotated them
using APEER tool. Every image was then output as images con-
sisting of 0s for every pixel in the non-smooth region, and values
1 to n for every pixel in the smooth region. The maximum num-
ber of smooth areas was specified as n. Next, for every image, we
combined all smooth areas into one segment, so that ground truth
images only consisted of 0s for pixels belonging to a non-smooth
region, and 1s for pixels belonging to a smooth region. After that
we took 96 images from the ground truth data set and used them
to train the U-net architecture.

Figure 2. The block diagram of the first step of the proposed approach.

The second step of the approach is shown in Fig. 3. Af-
ter we trained the U-net model, we then used it to predict the
smooth regions in any image. Finally, to obtain the final image
segmentation map, we proposed to cluster smooth regions using
the well-known clustering algorithm called K-means.

Figure 3. The block diagram of the second step of the proposed approach.

Application of U-net
In this work, we propose to use the U-net architecture [3] to

detect the smooth areas of the image. We chose to work with the
U-net architecture because it was originally designed to work well
for various biomedical image segmentation applications, where
thousands of training images were usually unavailable but precise
segmentation was important [3]. The architecture of the U-net
consists of a contracting path to capture context and a symmetric
expanding path that enables precise localization [3]. The con-
tracting path is made of the repeated application of two 3x3 con-
volutions, each followed by a rectified linear unit (ReLU) and a
2x2 max pooling operation [3]. At each downsampling step the
number of feature channels is doubled [3]. The expansive path
involves upsampling of the feature map followed by a 2x2 trans-
pose convolution that halves the number of feature channels [3].
It also involves concatenation with the correspondingly cropped
feature map from the contracting path, and two 3x3 convolutions,
each followed by a ReLU [3].

In our implementation, we followed the original design of
the architecture presented in [3], but we had to make some modi-
fications to the hyperparameters in order to train the model for the
main objective of this work, which is obtaining smooth regions.
The block diagram of the network that we implemented is shown
in Fig. 4.

To implement the U-net architecture we used TensorFlow
Core Python v2.7.0 [12]. The training images and their corre-
sponding segmentation maps were used to train the network with
the adam optimization implementation of Keras [12] [13] [14].
Adam optimization is a stochastic gradient descent method that is
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Figure 4. The block diagram of the U-net architecture used in this work.

based on adaptive estimation of first-order and second-order mo-
ments [13]. We used the learning rate of 0.001, then we decreased
the learning rate by a factor of 0.8 every 20 epochs.

Due to the fact that the amount of ground truth data that we
obtained was not big, we chose to perform data augmentation.
It was decided to use random cropping and hue adjustment. For
random cropping, we set the cropping box size to be 75% of the
original image size in order to preserve the appearance of smooth
and non-smooth regions. As for hue adjustment, the image hue
was adjusted by converting the image to HSV and rotating the
hue channel (H) by δ = (−1,1).

To prevent overfitting, we applied l2 regularization with a
regularization factor of 0.001 in order to constrain neural net-
work’s connection weights. In addition, we used dropout in the
contracting path. Dropout is one of the most popular techniques
for regularization, where a neuron has a probability p of being
temporarily ”dropped out” during the current training step, but it
may be active during the next step [15] [16]. In our work, we used
the drop-out probability of 0.3.

For the loss function, we used cross-entropy loss for binary
classification. Since, for this work, the classes were imbalanced,
i.e. the portion of the non-smooth regions was usually bigger than
that of the smooth regions, we used the weighted loss by adding
class weights. In the next section, the experimental results of our
approach are presented.

Experimental results
We evaluate our model by using cross-validation. The K-

fold cross-validation involves splitting the data set into K folds,
and obtaining predictions on each fold using a model trained on
the remaining folds [17]. For this work, we use a 4-fold cross-
validation. In each fold, 96 images were used for training, and 32
images were used for testing. Table 1 summarizes the results that
we obtained for 4 folds as well as their average values.

Experimental results: 4-fold validation

Fold Training / R P S F1
Testing accuracy Score

1st 0.83/0.84 0.87 0.76 0.83 0.81
2nd 0.88/0.88 0.80 0.83 0.92 0.82
3rd 0.88/0.85 0.84 0.76 0.86 0.80
4th 0.89/0.87 0.76 0.80 0.92 0.78

Average 0.87/0.86 0.82 0.79 0.89 0.80

In the table, training and testing accuracies were obtained by
using the categorical accuracy, which calculates how often pre-

dictions match ground truth labels. On average, the training ac-
curacy is 0.87, and the testing accuracy is 0.86. Next, we com-
puted the confusion matrices for each fold and obtained Recall
(R), Precision (P), Specificity (S), and F1 Score values. Recall is
the ratio of positive instances that are correctly detected by the
classifier [17]. In case of our experiments, on average, recall is
0.82, which means that 82% of all smooth regions were correctly
detected by our model. Specificity shows how good a model is
at avoiding false alarms [17]. We computed the average speci-
ficity to be 0.89. Precision is the accuracy of the positive predic-
tions [17]. For our work, precision turned out to be 0.79, which
means that 79% of all positive predictions were in fact smooth
regions. Finally, the metric that combines both recall and preci-
sion is called F1-score, and it was computed to be 80% for our
experiments.

In order to visualize our experimental results, it was decided
to show three examples shown in Figs. 5, 6, 7. Figure 5 (a) shows
an original image of a house with stairs and sky on the back-
ground. The ground truth image in (b) shows the smooth area
colored in white and the non-smooth area colored in black. The
smooth area consists of the walls of the house and the sky on the
backgound, whereas the non-smooth area is the rest of the image.
The predicted image in (c) looks similar to the ground truth im-
age, however, there is one additional detected smooth area in the
bottom right corner. By looking at the original image in (a), we
can see that there is in fact a smooth black region in the bottom
right corner, which means that the predicted image looks correct
with respect to the original image. Finally, Fig. 5 (d) contains
the final segmentation map after we apply the clustering K-means
algorithm for smooth area. We can conclude that the two main
smooth areas were clustered correctly. In the second example
provided in Fig. 6, it can be seen that the smooth background
was detected and clustered correctly and the smooth area predic-
tion result in (c) is very close to the ground truth image in (b).
In the third example in Fig. 7, we present an image, which has
a lot of smooth areas, such as the building itself, its red roof and
the background sky. The ground truth image in (b) demonstrates
that we selected all of the mentioned smooth areas except for the
edges. The predicted image in (c) differs from the ground truth
image in (b) by not including the left tower, which does include
some detail and can be considered both smooth and not smooth.
In the future work, we plan to add a specific measure as to what
we consider to be smooth in order to avoid such errors. Finally,
the final segmentation image in (d) was clustered correctly with
K-means.

In the most recent version of CCDS that was presented in [2],
the run-time to output a segmentation map for a single image was
about 25 minutes. Using our proposed method, the run-time for
training 96 images is about 23 minutes for 100 epochs. After
the model is trained, the run-time to predict an output for a sin-
gle image was about 0.003 minutes. Hence, given N images, the
full run-time to output segmentation images using the existing ap-
proach is about 25N minutes, whereas with the proposed approach
it is (23+0.003N) minutes. Therefore, the run-time is greatly re-
duced with our proposed image segmentation approach using the
U-net architecture.
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Conclusion
In conclusion, we propose a new and a more efficient ap-

proach to obtain the image segmentation with smooth areas for the
content-color-dependent screening (CCDS) method, which can be
used to improve print quality in high end digital presses. The main
novelty of our approach is to implement the U-net architecture to
detect smooth areas in an image and then apply the well-known
K-means algorithm to cluster the image based on color. In this
work, we showed how we collected the ground truth data, and de-
scribed the details and updates of the implementation of the U-net
architecture. The final F1 score value is 80%, which can be im-
proved by adding more ground truth data in the future. Finally, we
provide experimental results and examples, and we conclude that
the proposed method of detecting smooth areas is more efficient
in terms of run-time than the current existing method.
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(a) Original image (b) Ground truth image (c) Predicted image (d) Final segmentation
image

Figure 5. Example 1 of obtaining the final image segmentation.

(a) Original image (b) Ground truth image (c) Predicted image (d) Final segmentation image
Figure 6. Example 2 of obtaining the final image segmentation.

(a) Original image (b) Ground truth image (c) Predicted image (d) Final segmentation image
Figure 7. Example 3 of obtaining the final image segmentation.
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