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Abstract. In recent years, smartphone-based colour imaging
systems are being increasingly used for Neonatal jaundice detection
applications. These systems are based on the estimation of
bilirubin concentration levels that correlates with newborns’ skin
colour images corresponding to total serum bilirubin (TSB) and
transcutaneous bilirubinometry (TcB) measurements. However, the
colour reproduction capacity of smartphone cameras are known
to be influenced by various factors including the technological
and acquisition process variabilities. To make an accurate bilirubin
estimation, irrespective of the type of smartphone and illumination
conditions used to capture the newborns’ skin images, an inclusive
and complete model, or data set, which can represent all the
possible real world acquisitions scenarios needs to be utilized. Due
to various challenges in generating such a model or a data set,
some solutions tend towards the application of reduced data set
(designed for reference conditions and devices only) and colour
correction systems (for the transformation of other smartphone
skin images to the reference space). Such approaches will make
the bilirubin estimation methods highly dependent on the accuracy
of their employed colour correction systems, and the capability of
reducing device-to-device colour reproduction variability. However,
the state-of-the-art methods with similar methodologies were
only evaluated and validated on a single smartphone camera.
The vulnerability of the systems in making an incorrect jaundice
diagnosis can only be shown with a thorough investigation of the
colour reproduction variability for extended number of smartphones
and illumination conditions. Accordingly, this work presents and
discuss the results of such broad investigation, including the
evaluation of seven smartphone cameras, ten light sources, and
three different colour correction approaches. The overall results
show statistically significant colour differences among devices, even
after colour correction applications, and that further analysis on
clinically significance of such differences is required for skin colour
based jaundice diagnosis. c© 2021 Society for Imaging Science
and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2021.65.6.060407]

1. INTRODUCTION
Advances in smartphone camera technologies has led to
smartphone-based imaging being utilized for many skin
related applications. The need for low-cost, portable and
remote medical diagnostics solutions has made smartphone
based imaging a potential alternative for skin relatedmedical
applications [1]. For example, early detection of skin based
cancers such asmelanoma can be greatly facilitated by smart-
phone cameras [2–5]. Remote screening and monitoring of
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skin lesions such as urticaria, aczema, psoriasis, infantile
hemangioma and other conditions with photographs were
also shown to provide additional information for physicians
and further reinforce their diagnosis [6].

The colour accuracy of smartphone-based imaging for
teledermoscopy systems is usually limited by illumination
condition, camera resolution, magnification or zoom, cam-
era dynamic range, and related others. To help resolve such
issues,most teledermoscopy systems additionally utilizeDer-
matoscopes: microscopic device with magnification power,
integrated LED light sources and polarizers. Dermatoscopes,
attached on top of the camera lens, have proven to enhance
the colour accuracy and visualization of skin lesions [4, 5,
7]. Computer vision techniques such as camera calibration
as well as machine learning based lesions detection and
classification are then applied to help enhance and perform
preliminary/screening diagnosis.

In addition to the skin related diseases, smartphone-
based colour imaging systems are being introduced for
neonatal jaundice detection applications. Neonatal jaundice,
with higher levels of bilirubin accumulation, is known to
cause permanent brain damage. It is also indicated as the
reason for more than 100,000 infants annual worldwide
deaths, mostly in sub-Saharan Africa and south Asia [8].
Diagnosis of neonatal jaundice is professionally done by
measuring total serum bilirubin (TSB) and transcutaneous
bilirubinometry (TcB) with specialized devices and labora-
tory equipment, which are usually expensive and require
invasive tests. To help avoid painful medical tests for the
newborns and greatly reduce the medical instrument costs,
an increasing interest towards smartphones-based solutions
is being observed.

One such jaundice detection systems was launched by
the Norwegian company, Picterus AS. Anders et al. [8]
proposed bilirubin levels estimation method for new born
babies from colour-calibrated smartphone images. Their
approach uses a mathematical skin reflectance model,
according to the bio-optics of newborns, for simulation of
various newborns’ skin reflectance. The resulted reflectance
is then used to create the system’s database of RGB colour
versus bilirubin concentration value pairs.With the database,
the Picterus smartphone-based application is applied to
capture the newborn babies’ skin colour, apply colour
correction, and estimate the corresponding bilirubin level.
More explanation on the method [8] is given in a separate
section, Bilirubin Estimation Method, below.
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As known in most colour imaging applications,
smartphone-based colour reproduction quality suffers
from many challenges that are inherent to the applied
camera technologies and acquisition processes [9]. Colour
inconstancy is one of these common challenges [9, 10].
Colour of stimuli captured with a particular camera and
illumination conditionwill not remain the same if reacquired
with another illumination condition. Smartphone cameras
also have their own distinct device spaces (with a certain
dynamic range and colour gamut), which is determined
by the sensor, colour filter array and optical component
technologies used to create the camera [11].

Therefore, to perform accurate skin colour andmachine
learning based bilirubin level predictions, all illumination
conditions and smartphone devices (which are going to
possibly be used in real application scenarios) must be
represented in the data set. Generating such data set will be
very challenging, considering time and storage constraints,
the amount of smartphone types and their variants, as well as
the diversity of possible acquisition conditions. The common
work around to the colour inconsistency and device-to-
device variability challenge, in most colour imaging state-
of-the-art works as well as the Picterus system, is utilizing
colour constancy and colour correction algorithms. The
Picterus system, for example, only setup the database for one
reference camera and illumination condition, and it applies
real time colour correction algorithm to calibrate the skin
colours (captured by an unknown end users’ smartphone)
to the reference space. Over the years, various colour
correction algorithms have been introduced for various
colour reproduction applications. The proposed approaches
can be classified as model based (which utilize perceptual
appearancemodels [12–14]) and empirical (which are purely
data oriented and predictive methods [8]) approaches.

The accuracy of such jaundice level prediction systems
strongly rely on their colour correction algorithms to
generate similar colours as the smartphone cameras and
illumination conditions, represented in their data set. Despite
the smartphone camera and illumination setup used for the
acquisition, the colour difference of a newborn skin colour
should remain negligible compared to its captured colours
with the reference camera and illumination condition.
A slight discrepancy of colour, in this regard, may lead
to wrong jaundice diagnosis. Consequently, a thorough
investigation of the colour inconsistency of individual
smartphone cameras (under varied illumination conditions)
as well as the device-to-device variabilities (even after colour
correction) is much needed for such applications.

In this work, we present an in-depth analysis of
smartphone-based skin colour reproduction differences for
the Picterus jaundice monitoring application. The variability
of skin colour values among various smartphone types as well
as many light sources is presented. For the colour correction
purposes, three different colour correctionmethods (selected
from both model based and empirical approaches) are
also evaluated. The results of the analysis showed the
dominant performances of empirical and machine learning

based approaches for such applications. The presence of
a statistically significant colour differences among devices,
even after the application of the best performing colour
correction algorithm, is also observed. We believe that the
overall discussions of this work can provide additional
and important insights towards the current challenges
corresponding to the process of smartphone-based skin
colour reproduction applications (in particular bilirubin
level estimation systems) and will be a valuable resource for
researchers in the field.

In the following section, the state-of-the-art colour
correction and bilirubin estimation methods will be briefly
discussed. Afterwards, the description of the analyzed
Picterus system, the evaluation methodology as well as the
evaluation results and discussions will be presented. Finally,
the limitations of our study and future work ideas will be
given in the conclusion section.

2. RELATEDWORK
As stated before, the skin colour of a newborn differs when
captured by different smartphone cameras or under different
illumination conditions. For accurate and efficient modeling
as well as accurate prediction of bilirubin concentration
from the RGB values of newborns’ skin images, the colour
consistency of the smartphone-based imaging process should
be greatly enhanced, and the device-to-device differences
need to be reduced. In this regard, many calibrations and
colour correction techniques for accurate colour constancy
and colour reproduction applications have been introduced
over the years. In this section, a summary of the state-of-the-
art techniques, which have been utilized in colour imaging
(in general) andwith respect to jaundicemonitoring systems,
is presented.

2.1 Calibration and Colour Correction Methods
The main purpose of camera calibration is to determine
the relationship between input scene radiance and camera
response [9, 15, 16]. As the ISO standards for the calibration
and characterizations of Digital Still Cameras (DSCs) [15,
16] recommend, the characterization process can be model-
based or empirical. Model based characterization requires
knowledge of the colour matching functions, correlation
statistics of scene data, device spectral sensitivities, and
related others. Due to the wide ranges of scenes which
could be encountered in real world application, different
assumptions such as themaximum ignorance assumption are
used to simplify the calibration process and the derivation
of transformation matrices. The device spectral sensitivities
are also not usually provided by the manufacturers and
have to be estimated from reference patch measurements
(as in empirical approaches) or measured with proper
monochromatic light-based laboratory setups (for model-
based cases) [9, 16].

The model-based approaches, in most practical appli-
cations, utilize a matrix-based characterization to linearly
transform the device dependent values into CIE tristimulus
or other device independent spaces. This matrix based
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calibration is based on the Luther-Ives condition which
assumes that the spectral sensitivities of all colorimetric
cameras are linearly related to the human visual system’s
Colour matching functions [14, 17, 18]. However, such
assumption may not hold for most current cameras and the
matrix-based calibration is just an approximation [14]. Also,
the resulting transformation matrix is usually optimized for
a given reference viewing condition, which further makes
the matrix to be dependent on conditions such as the
illumination and reference white.

Hence, to elevate the influences of illuminations and
reference whites on colour reproduction, most characteriza-
tion applications apply additional white balancing methods.
The white balancing process further transforms the colours,
taking the destination reference white point and illumination
into account. In most colour reproduction solutions such
as Colour appearance models, the simulation of the human
visual system’s chromatic adaptation process is used to
achieve better Colour constancy. Human visual models such
as von Kries, Bradford, Sharp - based on sharpened sensors,
CAT02 - optimized for minimizing CIELAB differences,
and related others have been applied for such chromatic
adaptation transform applications [13].

The availability of well-equipped and properly estab-
lished laboratories to measure and design accurate model-
based systems is not always guaranteed, due to financial and
infrastructural constraints. Hence, many real time applica-
tions perform colour correction and calibration with the
absence of measured camera spectral sensitivities, following
various empirical approaches. The empirical approaches
usually estimate the corresponding colours (for the desired
destination viewing conditions) based on mathematical or
machine learning models, which are trained on a data set
containing many sample colour transformation pairs [9,
19]. Regression methods such as linear least-squares and
weighted least-squares regression, generalized polynomial
transform, Thin-Plate Spline interpolation, and related
others are mostly utilized in this regard. An increasing
color constancy work is also, recently, observed using deep
learning approached for better accuracy [20, 21]. According
to past studies [8, 19], model-based techniques were often
outperformed by such empirical techniques as long as
the application is known and only intended for limited
medium and illuminants. Enough training data should also
be available for better predictive accuracy. However, the
model-based strategy, being oblivious to scene statistics, was
generally robust across different illumination conditions.

2.2 Bilirubin Estimation Methods
Smartphone-based colour imaging techniques, along with
the discussed colour correction methods, have been adopted
for creating affordable andnon-invasive jaundicemonitoring
system for newborns. One recent study on smartphone
based device independent colorimetric measurements [12]
proposed general colour constancy method, which utilizes
illumination subtraction technique using image captured
with flash and no-flash settings. To achieve device invari-

ability, the method follows the common colour management
workflow, using the CIE tristimulus XYZ colour space
as their device connection space (DCS) [22]. Even if
the method follows a model-based approach (since most
camera and viewing information remains unknown) proper
and more accurate chromatic adaptation models were not
utilized. When it comes to methods proposed for Neonatal
jaundice detection application, however, almost all of the
few smartphone-based solutions are designed with empirical
solutions [8, 23–27].

Mustafa Aydin et al. [23] used kNN (k-Nearest Neigh-
bor) and SVR (Support Vector Regression) algorithms on the
data set, containing 40 image and bilirubin data of newborns
with jaundice 40 without, to fit and predict bilirubin levels.
For generating the image data set, images of 80 newborn
babies were taken with printed 8 colour calibration card and
colour (average RGB, YCbCr and Lab values) and colour
gradient (average Sobel filter results in RGB space) features
were extracted. However, the normalization of the images
with the average RGB value will not represent a proper
white-balancing solution, as claimed by the authors. Their
results shown in the referenced paper [23] signaled the
failures of the simple normalization approach from removing
the effects of illumination, specular reflections, and shadows.
The BiliCam application [25], detailed later, enhanced
both the white balancing and regression limitations of the
Mustafa Aydin et al.’s method. The white balancing approach
was replaced by using the white calibration patch-based
normalization and the machine learning regression is
improved by increasing the number of features (by extracting
from two flash and without flash images of the same sample)
and reducing the dimensionality (with principal component
analysis - PCA). Their bilirubin level estimation process
was also made to be performed with 5 different (both from
linear and non-linear) regression algorithms and averaging
the results in such a way that their bilirubin level predictions
could avoiding false negatives and potential undetected risks.

Recent studies validate the correlation of skin colour
with the bilirubin levels of the newborn. A study on
healthy Caucasian newborns reported that only the green
and blue channel of the dermatoscope assisted smartphone
images were showing a significant correlation with the
bilirubin measurements [24]. According to similar study by
Swarna et al. [26] on evaluating the reliability of jaundice
estimation using the smartphone application BiliCam on 35
neonates, good correlation between the BiliCam estimation
and the serum bilirubin levels were presented, particularly
for the chest area images. Correlation of skin colour with
bilirubin levels has also been corroborated by similar studies
performed by Picterus [8, 28]. An in-depth description of the
Picterus system is provided in a later section.

Most of the studies conducted for designing efficient
jaundice monitoring system were only using and validating
their proposed applications on one or two smartphone.
The number of light sources used in each study were also
very limited. However, as stated before, the smartphones’
technological differences as well as the acquisition condition
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variations create colour inconstancy and device-to-device
variability. Such variations, unless fully represented in the
data set, are likely to lead to misdiagnosis. Therefore,
to perform accurate predictions at all times (despite the
device, illumination, and human skin colour variations),
more complex modeling or generating an inclusive data
set becomes necessary. Some solutions, such as the one
proposed by Picterus system, introduced alternative ap-
proach that allows prediction systems to use reduced data set
representing only reference camera and viewing conditions
(to which all the other unknown camera captures can be
transformed to). Such methods require additional colour
correction transformationwhich further strengthen the need
for verification on various smartphones and illumination
conditions. Accordingly, this work performs a thorough
evaluation of colour reproduction differences for seven
smartphone camera types together with ten different light
sources. The goal of the study is to find out if the colour
differences of the various skin images of the evaluated
cameras (captured under the evaluated illuminations and
colour corrected by various colour correction algorithms)
will be negligible as anticipated.

3. PICTERUS BILIRUBIN ESTIMATIONMETHOD
Like previously discussed smartphone-based solutions [25],
Anders et al. proposed smartphone images and colour cor-
rection solutions based, bilirubin levels estimation method
for newborns. Their approach uses a mathematical skin
reflectance model and calculates a level of bilirubin concen-
tration based on an optical diffusionmodel of skin, orMonte
Carlo simulations of skin optics [8, 28]. Therefore, to useRGB
sensor values of smartphone cameras for the estimation of
the bilirubin levels, one must find the appropriate mapping
to the corresponding numerical skin parameters which will
result in similar skin colour. Such mapping can be achieved
through regression or lookup table-based approaches [28].
Currently, for computational efficiency purposes and re-
duced data set, a lookup table is only created for Nikon
camera and a halogen-based illuminant data. Hence, the
Nikon camera spectral sensitivities (Nikon Ref., shown in
Figure 5) and spectral power distribution of the halogen
illuminant (Picterus Ref. A, shown in Figure 2)will be used as
a reference for the calibration of other smartphone data. For
stronger colour correction accuracy, the authors recommend
to use their own spectrally printed calibration card (which
includes around 24 reflectances of the numerically simulated
skins and grey patches) to calibrate skin colours captured
with other smartphone cameras. The measured reflectance
of the calibration card patches are later used with reference
camera sensitivities (Nikon Ref.) and illumination (Picterus
Ref. A) to empirically correct the captured skin colour using a
Gaussian process regression method and the corresponding
bilirubin concentration is retrieved from the numerical
model lookup table. The overall workflow of the Picterus
system is illustrated in Figure 1.

The Picterus bilirubin level estimation system is previ-
ously evaluated through cross-sectional prospective study,

Figure 1. General workflow of Picterus bilirubin estimation system (Taken
from [8]). a) Raw image of the newborn skin or sclera with the calibration
card is taken. b) The colour of the calibration card with the reference
conditions will be used to calibrate the skin or sclera colour. c) The
corresponding/closer colour to the calibrated colour is selected from the
simulation data base. d) The bilirubin concentration of the selected pair is
display as the final estimation.

conducted at two different Norwegian hospitals [8]. The
study was performed on 302 newborn infants (from which
76 of them had severe jaundice) and the correlation between
image estimations and the results of TSB and TcB was
investigated. According to the results, the image-based
system had a good correlation (Pearson′sr > 0.83) to the
TSB and TcB for all Caucasian cases and significantly
lower correlation (Pearson′sr < 0.75) for non-Caucasian
cases. However, the only smartphone used in the study was
Samsung Galaxy S7. Similarly, the images were acquired
under illumination conditions with only 46-watt halogen
lamps and under the room ambient lighting conditions.

As discussed in the earlier sections, the colour re-
production quality of smartphone cameras differs and
depends on various factors. Therefore, the accuracy of
the Picterus bilirubin estimation system depends on the
colour constancy as well as device-to-device variability of
the calibration system used to adapt smartphones’ data to
the references. As a result, the analysis and evaluation of
different smartphone cameras’ performances under wider
types of illumination conditions becomes highly relevant.
Accordingly, in this work, we intend to evaluate the colour
correction (colour consistency) variability among different
smartphone cameras (including Samsung Galaxy S7); with
a consideration that lower variability will lead to similar
bilirubin estimation accuracy. In addition to the Gaussian
process regression method used by the Picterus system, the
performance of other selected calibration methods (both
empirical and model based) will also be assessed in terms of
increasing colour constancy and reducing device-to-device
variability of skin colour reproduction.

4. EVALUATIONMETHODOLOGY
For the intended study of device-to-device skin colour
reproduction variability, a total of six smartphone cameras
(listed in Table I) two studio light sources, which are available
at our colour laboratory (colourlab - CL studio A and D50)

J. Imaging Sci. Technol. 060407-4 Nov.-Dec. 2021
IS&T International Symposium on Electronic Imaging 2022 Color Imaging XXVII: Displaying, Processing, Hardcopy, and Applications



Abebe, Hardeberg, and Vartdal: Smartphones’ skin colour reproduction analysis for neonatal jaundice detection

Figure 2. Spectral power distributions of the evaluated light sources. ‘‘CL studio A’’ and ‘‘CL studio D50’’ are the light sources used to capture the colour
targets in colourlab’s studio, and hence used in our captured sensor values based evaluation. ‘‘Picterus Ref. A’’ is the reference light source used to generate
the Picterus’s RGB versus bilirubin concentration pairs data set. All the other light sources are used for our simulation-based evaluations.

Table I. Evaluated Smartphone Cameras and the corresponding ISO settings used for
camera raw captures. Various ranges of shutter speeds were used, for each camera, to
capture different exposure RGB values. However, all the camera sensor values used to
generate the results of this work are acquired using auto shutter speed setting. Note:
the ID provided in this table will be the ones used when referring to the corresponding
phones in the rest of this document.

ID Phone Lens ISO

H1 Huawei P30 Pro 5.6 mm 100
H2 Huawei P20 Pro 5.6 mm 100
S1 Samsung Galaxy S7 4.2 mm 100
S2 Samsung Galaxy S10+ 4.3 mm 50
R1 Redmi Note 9 Pro Micro 1.9 mm 100
R2 Redmi Note 9 Pro Wide 5.4 mm 100
A1 Apple iPhone SE 4 mm 100

and around eight other measured light sources (given in
Fig. 2) are utilized. Also, for calibration, colour correction,
and evaluation purposes, the RGB captured values as well as
spectral reflectance of all the patches of the three different
colour targets (shown in Figure 6) were collected. In order to
illustrate the workflow of our evaluation process, a flow chart
is generated and shown in Figure 3.

As shown at the right end side of the work flow, Fig. 3,
the proposed study will compare colour corrected RGB
values of the captured skin colour test patches (with the
seven smartphone cameras) as well as their simulated RGB
values (using the patches’ measured spectral reflectance and
the cameras’ calibrated spectral sensitivities) with respect
to their corresponding RGB values computed with the
reference condition and reference camera. The process of
model-based camera sensor RGB simulation, the studio
acquisition process of the raw RGB values, as well as the
generation of the Picterus reference RGB values are briefly
explained in the following subsections. As depicted in the

flow chart, Fig. 3, the simulated and measured RGB values
of the test skin patches will be first colour corrected to the
Picterus reference device space, prior to their comparison
to the Picterus reference RGB values. Accordingly, a total of
three colour correction methods (discussed in the Evaluated
colour Correction Methods section) were investigated for
this purpose.

4.1 Studio Acquisition and Preprocessing
The captured raw RGB values of all the seven smartphone
cameras used in the evaluation are acquired by capturing
three colour targets, shown in Fig. 6, in camera raw mode.
All smartphones (listed in Table I) provide camera raw RGB
values in Digital Negative (DNG) file format [29]. Therefore,
from the DNG files of all our captures, the demosaiced
linear and 16-bits RGB values were extracted (no white
balancing applied) with the help of the Libraw image decoder
library and the python wraper API, rawpy [30, 31]. As
shown in the Table I, the acquisition were performed with
fixed ISO setting (mostly at 100) and using auto shutter
speed settings. The linearity of the cameras, in raw mode,
is also verified by examining the opto-electronic conversion
functions (OECFs) of the cameras according to the ISO
standard guidelines [15].

However, during our acquisition processes, we have
noticed illumination non-uniformity from our studio light
sources (used from the Judge II Gretagmacbeth colour
booth). Such non-uniformity is very common in most light
sources if an appropriate diffuser is not used [32]. Therefore,
after 16-bits images are extracted, we have applied a spatial
non-uniformity correction based on uniform white colour
target and dark image captures of all evaluated phones under
the same exposure settings. Based on other related works [33,
34], given the raw RGB values of the white DW and black
DB images’ pixels and their averages over the whole images’
area (DW andDB), theRGB values of the colour target images
(DI ) can be corrected according to Eq. (1). Sample results of
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Figure 3. The work flow illustration of the process that we have followed to generate our evaluation data. The RGB values of the captured as well as
simulated colour target patches will be first extracted or generated. The extracted values are then calibrated to the reference conditions and evaluated
against the reference RGB values.

Figure 4. X-Rite white balance uniform grey (a) and colour checker digital
SG (c) semi-gloss colour targets. The images in the left column are the raw
images captured with the Samsung S7 (S1) camera on auto-exposure
setting and under illuminant ‘‘CL studio A’’. The corresponding right column
images are the results of the spatial illumination uniformity correction. The
raw images were read in 16-bits linear DNG format but a normalization
to 8-bit and gamma of 2.2 is applied here, for visualization purposes. It
should be noted that no white balancing is applied to these images.

this spatial uniformity correction are presented in Figure 4.
The corrected 16-bits images (D′I ) will then be used to extract
the average RGB values of individual colour patches of each
captured colour targets:

D
′

I =
(DW −DB)(DI −DB)

DW −DB
. (1)

4.2 Camera Characterization and Capturing Simulation
In addition to real sensor value acquisitions, our study also
assessed simulated camera sensor values of colour targets,

for all smartphone cameras and ten light sources described
earlier. The camera raw response, DSi , model for linear
DSCs, in the ith spectral channel, ismathematically expressed
with Eq. (2), where Ci, Pr and L represent the spectral
sensor sensitivity of the DSC, the spectral reflectance of
the colour target patches and the spectral incident radiance
power measurements of the light sources in the sensitive
spectral region of the device([λmin, λmax]) [33, 35–37]. In our
application, for smartphone cameras, i ranges from 1 to 3
representing the RGB colour channels. The constant K can
be computed according to the exposure time used during the
acquisition or can be empirically computed from estimated
and real captured RGB sensor values of some grey patches.
In our prior experimentationwithmultiple exposure data, we
were able to observe that the K value for accurate simulation
of real sensor values varies greatly with exposure time and it
should be computed accordingly:

DSi =K
∫ λmax

λmin

Ci(λ)Pr (λ)L(λ)1λ. (2)

Since none of the manufacturers of the evaluated
smartphones provided their corresponding camera response
functions and spectral sensitivities, we needed to characterize
each phone camera in our laboratory. To measure the
spectral sensor sensitivities of the smartphone cameras, we
have performed colour characterization following the ISO
standard, ISO-17321 [16]. Following the recommendations
from the standard, we used a Bentam TCM300 monochro-
mator (capable of producing monochromatic lights in wider
spectral range: 200 nm–3 µm) as a source of narrow
band illuminations. To achieve narrower bandwidth and
stronger radiance power, we replaced the Bentham QTH
light source with COB LED based light source. This light
source is assembled by colour lab colleague using 30W
LED with 5000 K colour temperature and wavelength range
from 380 nm to 800 nm (of which majority radiance is
concentrated in the visible range: 400 nm–720 nm). The
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Figure 5. Final camera spectral sensitivities of all characterized smartphone cameras.

Figure 6. Colour targets used for calibration, colour correction and test skin patches. Fig. (a) is a section of the Colour checker digital SG target containing
only the patches with in raw 2−8 and column E to J . Fig. (b) is a calibration card prepared by Pictures with reflectance selected from their simulated
skin data set. Note that the black background is not the part of the calibration card. Fig. (c), on the other hand, is a collection of test skin colour patches
generated with simulation of various levels of bilirubin concentrations.

resulted spectral sensor sensitivities of all characterized
cameras are shown in Fig. 5.

Conversely, the reflectance of the colour target patches,
the studio light source spectral radiance powers and the
monochromator spectral radiances are all measured using
Konika Minolta Spectroradiometer, model CS-2000. The
measured reflectance of the patches of the three colour
targets are shown in Figure 7.

According to Andrew et al. [14], the actual raw values
obtained in practice are quantized values, modeled by taking
the integer part of Eq. (2), and it is useful to subsequently
normalize the simulated DS and captured DI values to the
range [0, 1] by dividing themwith the raw clipping point (216
in 16-bits). With this normalization it can be considered that
the reference white of the camera raw space is unity vector,
Eq. (3). As it can be seen from the plots, Fig. 2, the spectral
power of the light sources is also normalized to 1 for more
comparable results:DSR

DSG
DSB

=
DIR
DIG
DIB

=
1

1
1

 . (3)

4.3 Evaluated Colour Correction Methods
As explained previously, the bilirubin estimation of the
Picterus system is performed based on their data set of
RGB versus bilirubin concentration pairs. These paired RGB
values are created based on their skin simulation spectra,
reference camera spectral sensor sensitivity (given as ‘‘Nikon
Ref.’’ in Fig. 5), and illuminant A (given as ‘‘Picterus Ref.
A’’ in Fig. 2), according to Eq. (2). Therefore, for the
accurate bilirubin estimation of skin colours captured by
other smartphone cameras, the captured RGB values must
be appropriately colour corrected and transformed to the
reference device space. In this regard, we have decided to try
and assess the colour reproduction differences among three
selected and state-of-the-art colour correction methods. The
selected methods include a perceptual model based chro-
matic adaptation transform, CAT02, and two other empirical
(machine learning based) colour correction approaches,
Root Polynomial and Gaussian Process Regressions. A brief
description of the methods are provided as follows.
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Figure 7. The measured spectral reflectance of the colour target patches, shown in Fig. 6. All the measurements are performed using Konika Minolta
Spectroradiometer, model CS-2000.

4.3.1 Chromatic Adaptation Transforms
Chromatic adaptation refers to the capability of the human
visual system to adjust the responsivity of its colour
mechanisms and preserve the appearance of a given stimuli,
which is presented under varying illumination conditions.
Chromatic adaptation models are perceptual models which
are designed to predict corresponding colour (for a given
viewing condition) of a particular stimuli colour, which is
observed under another viewing condition [38]. As given in
Eq. (4), to accurately model the physiological mechanisms
of chromatic adaptation, most chromatic adaptation models
works in the cone excitation LMS space. The models predict
the adjusted cone signals LaMaSa from a given initial
cone signal LiMiSi and that of the adapting white stimulus
LwhiteMwhiteSwhite, according to some function f :

LaMaSa = f (LiMiSi, LwhiteMwhiteSwhite, . . .). (4)

Cone excitation LMS values are usually approximated by a
3 × 3 matrix linear transformations of the corresponding
CIE tristimulus XYZ values. This chromatic adaptation can
then be inverted to compute the corresponding colour in
another adapting viewing condition. The combined process
of such forward and inverse transformation is generally
referred as chromatic adaptation transform (CAT) [38]. Over
the years, several types of chromatic adaptation transforms
have been introduced [39, 40]. Among them, we have chosen
the most commonly used CAT02 as a representative for the
perceptual model-based colour correction approaches.

CAT02: After extensive experimental evaluation of
various linear CATs , the CIE TC 8-01 recommendedCAT02,
which is based on a matrix optimized to a wide variety
of corresponding colours [38]. To transform the RGB test
colours to that of the reference RGB space, CAT02 is utilized

as in Eq. (5):Rref
Gref

Bref

=M−1
xyzrefM

−1
CAT02AWMCAT02Mxyztest

Rtest
Gtest

Btest

 , (5)

where,

MCAT02 =

 0.4002 0.7076 0.0808
−0.2263 1.1653 0.0457

0.0 0.0 0.9182

 (6)

and

AW =


Lwhiteref
Lwhitetest

0.0 0.0

0.0
Mwhiteref
Mwhitetest

0.0

0.0 0.0
Swhiteref
Swhitetest

 . (7)

The matrix used to convert a device RGB values to the
device independent CIE XYZ space Mxyztest is generated, for
all the tested and reference smartphone cameras, through
individual camera characterization process (outlined in
ISO-17321, [16]). The resulted matrices are then optimized
(using least squares regression) for all tested illuminants
(Fig. 2). For the calibration of the cameraswith the two studio
light sources, the measured data of the colour Checker SG
colour target and the CIE1931 2◦ observer colour matching
functions [9, 14] were used. The adapting cone excitation
values, on the other hand, are computed from the adapting
whites of the test as well as reference scenes, according to
Eq. (8) and Eq. (9): Lwhiteref

Mwhiteref
Swhiteref

=MCAT02Mxyzref

Rwhiteref
Gwhiteref
Bwhiteref

 (8)
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Table II. The mean and standard deviation of RMSE and1E of the colour correction
results for captured sensor values of the Skin test target patches. The results are given
for the three calibration approaches, and they are averaged over the light source and
acquisition modes.

Camera Correction RMSE 1E
Mean σ Mean σ

A1 CAT 0.123 0.098 8.942 2.962
GP 0.045 0.038 5.701 2.048
RP 0.045 0.041 5.584 2.072
Org 0.115 0.093 6.848 2.377

H2 CAT 0.215 0.105 7.487 2.540
GP 0.090 0.063 6.721 2.608
RP 0.093 0.066 4.796 1.697
Org 0.205 0.107 7.329 2.167

H1 CAT 0.244 0.112 20.507 24.237
GP 0.092 0.057 7.992 3.126
RP 0.103 0.061 6.034 2.841
Org 0.237 0.113 9.019 2.896

R1 CAT 0.172 0.103 18.781 5.723
GP 0.109 0.110 12.856 8.020
RP 0.118 0.108 11.029 4.721
Org 0.230 0.093 11.075 3.708

R2 CAT 0.117 0.073 18.945 7.498
GP 0.206 0.181 18.868 13.873
RP 0.199 0.177 16.857 8.197
Org 0.219 0.063 9.378 3.640

S2 CAT 0.091 0.069 11.142 3.068
GP 0.052 0.030 8.722 4.812
RP 0.058 0.031 6.720 3.550
Org 0.142 0.077 8.735 3.010

S1 CAT 0.085 0.062 11.856 3.535
GP 0.051 0.037 7.084 3.606
RP 0.051 0.033 5.416 1.999
Org 0.139 0.083 8.761 2.762

 Lwhitetest
Mwhitetest
Swhitetest

=MCAT02Mxyztest

Rwhitetest
Gwhitetest
Bwhitetest

 . (9)

4.3.2 Root-Polynomial Regression
In addition to using the underlying physical model for
defining the forward and inverse transformations of colours
from different domains, empirical approaches can also be
used to perform data fitting or interpolation. In colour
imaging, several mathematical and machine learning tech-
niques have been used for colour correction applications [9,
41]. In this study, we have chosen the Root-Polynomial
Regression method, proposed by Finlayson et al. [42], to
represent the empirical approaches in our evaluation. In their
study, the method showed better performance in terms of
computational efficiency and preserving colour appearance

at different exposure levels, compared to the polynomial
regression (Which in turn is known to have superior colour
constancy performances than other linear interpolation
techniques [28]).

Root-Polynomial regression (RP) is another form of
least-squares fitting wherein the characterization function
(usually 3× 3 matrix) is approximated by a polynomial, as
shown in Eq. (10). The root polynomial terms of the training
colours Ptrain contains 1xm polynomial terms (example is
shown in Eq. (11) for 3rd degree polynomial) and the
corresponding weight matrix A contains mx3 polynomial
weights to be optimized, Eq. (12):

RGBref = PtrainA, (10)

Ptrain =
[
r g b √rg ... 3

√
rg 2 ... 3

√
rgb

]
, (11)

Ptrain =


wRref,0 wGref,0 wBref,0

wRref,1 wGref,1 wBref,1
...

...
...

wRref,m wGref,m wBref,m

 . (12)

The RGB components of the training data set are
replaced by their polynomial expansion in order to cast
the polynomial regression problem to that of least-squares
problem. If we collect all N training samples and form the
Nx3 captured RGBref and theirNxm polynomial terms Ptrain,
then the polynomial weight parameters can be optimized
according to Moore-Penrose inverse [9], as given in Eq. (13).
For more detailed explanation of the method, the readers are
recommended to refer to the original paper [42]:

A= (P t
trainPtrain)

−1P t
trainRGBref. (13)

4.3.3 Gaussian Process Regression
The picterus system, described in the earlier sections, also
employs empirical approach to calibrate and colour correct
the RGB captures of smartphone cameras to that of the
reference device (NikonRef.) space, which is used to generate
their bilirubin data set. After pre-processing of the captured
raw colour correction target, Fig. 4, along with the skin
colours for illumination uniformity correction and other
degradation enhancements, the system applies Gaussian
Process Regression to colour correct and transform the skin
colour values to the reference device space [28].

Gaussian Process Regression (GP), is a nonlinear regres-
sion using gaussian processes and Bayesian approach [43].
The method has a capability of capturing a wide variety of
relations between the input (test RGB in our case) values and
outputs (reference RGB) by utilizing a theoretically infinite
number of parameters (using gaussian processes) and letting
the data determine the level of complexity through themeans
of Bayesian inference. The mathematical details of gaussian
process regression requires quite lengthy explanations of the
gaussian processes as well as Bayesian inferences, which an
interested reader can find in the provided references [43,
44]. However, for generating the proposed evaluation
results of the gaussian process regression-based colour
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Figure 8. Chromaticity values of the skin test patches before and after Gaussian processes transformation. The xy values of the patches computed from the
reference camera (in black circles), test cameras (H1 and S1 in blue triangle), and the corrected results of the Gaussian processes (in red) are provided in
the CIE1931 chromaticity diagram. The corresponding measured xy values of the patches with the spectroradiometer are also shown with green squares.

correction results, we have applied the scikit-learn python
implementation of the algorithm proposed by Rasmussen
et al. [44]. The smartphone sensor values of the Picterus
calibration card, Fig. 6, were used to train the regression
model with the default initial kernel and alpha parameter
settings.

5. COLOUR CORRECTION EVALUATION RESULTS
ANDDISCUSSION

As described in the previous section, Fig. 3, we have
generated both captured and simulated RGB sensor values
for all the seven smartphone cameras under different light
sources. In this section, the colour correction results of
all collected data with three evaluated colour correction
methods (discussed in the previous section) will be presented
and evaluated in both captured and simulated scenarios. The
colour reproduction variability analysis among evaluated
smartphone devices will also be given and the acceptability of
using one reference camera for bilirubin estimation (as used
in the Picterus system) will be discussed accordingly.

5.1 Colour Correction Evaluation with Captured Sensor
Values
All the raw RGB sensor values of the Skin test colour
target, shown in Fig. 6, patches (resulted from the ac-
quisition process described in the Studio acquisition and
pre-processing section) for all evaluated cameras and under
two studio light sources (shown as ‘‘CL Studio A’’ and
‘‘and CL Studio D65’’ in Fig. 2) are colour corrected to the
reference camera space (Nikon with A illuminant). The three
colour correction approaches together with the captured
and measured Picterus calibration target reference data (for
training the two regression models) were employed. The
reference rawRGB sensor values of the same Skin test patches
are also computed with the reference Nikon spectral sensor
sensitivities and measured Picterus reference A illuminant.
Finally, the colour difference between the colour correction
results of all the smartphone sensor values and reference
sensor values are computed, both in the linear RGB space
(asRMSE values) and the perceptualCIELab colour space (as
1E values).
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To transform the device dependent sensor values of all
the cameras to the device independent CIE chromaticity
XYZ values, all the smartphone cameras were characterized
and their corresponding 3 × 3 transformation matrix is
generated. Prior to computing colour differences, each
matrix is optimized for each evaluated light source based
on the colour Checker DSG colour target patches’ (shown
in Fig. 6) measured data, as explained in the ISO-17321
standard [9, 16]. The CIELab values used to compute
the CIE1E differences are computed using the Konika
Minolta reference white patch reflectance (shown as ‘‘wref’’
in Figure 7.) as a reference white [38].

The final colour difference results are summarized and
given in Table II and III. The values presented in Table II
show the average colour differences of the evaluated colour
correction methods, averaged over the evaluated studio
light sources and acquisition modes (with flash or without
flash). The results show that the empirical approaches
lead to closer colours to the references rather than the
chromatic adaptation transform method. This inference
holds for all the evaluated smartphone cameras and colour
difference matrices. As described in the related sections,
machine learning based approaches performs better when
the application domain and conditions are fully known
and properly represented in the training data set, as it
is the case in our evaluation. The skin test colour target
patches, used for our testing, and the Picterus calibration
card patches, used for training the models, have a similar
skin colour distribution. However, the colour differences of
the regression models’ results may go higher if tested with
colour patches which are completely out of the training data
distribution.

Therefore, due to their better performances in our appli-
cation, the rest of our analysis will only be using the results
of the two regression algorithms (RP and GP). Accordingly,
the average colour differences of the smartphones for the two
studio light sources as well as acquisition modes (averaged
over the two regression based colour correction methods) is
provided in Table III. Additionally, Figure 8 also shows the
CIE tristimulus visualizations of sample results (for Huawei
P30 and Samsung Galaxy S7 smartphones). As it can be seen
from the figure, the tristimulus values of both phones before
and after corrections (for the studio light CL A) are similar
to that of the reference and measured tristimulus values.
This is mainly due to the similarity of the studio light CL
A and the reference light source, Picterus Ref. A. However,
as it can be seen from the results of the two smartphones
under the CL D50 light sources, the colours become closer
to the reference values only after the application of the
colour correction methods. Also, as mentioned previously,
for a camera to be colorimetric and satisfy the Luther
condition, the 3 × 3 calibration matrix is optimized with
the CIE1931 2◦ observer colour matching function [16].
As the result, all the calibration matrices resulted from our
characterizations of all the cameras can also be transforming
their corresponding RGB values to approximate locations
in the CIE Yxy space. On the other hand, according to the

Table III. The mean and standard deviation of RMSE and1E of the colour correction
results for captured sensor values of the Skin test target patches. Only, the results of
the best performing calibration methods (the Gaussian process and Root polynomial,
as shown in Table II) are used for computing averages for the two studio light source
measurements. Note: the phrase ‘‘MA’’ and ‘‘MD50’’ represent the CL studio A and CL
studio D50 light sources, respectively.

Camera Light Mode RMSE 1E
Mean σ Mean σ

A1 MA Flash 0.0289 0.016 5.1 1.764
No_flash 0.0812 0.05 6.269 2.3782

MD50 Flash 0.0526 0.026 6.394 1.9804
No_flash 0.0182 0.024 4.806 1.5893

H2 MA Flash 0.026 0.021 5.748 2.1373
No_flash 0.0898 0.057 4.787 1.8111

MD50 Flash 0.1207 0.038 6.789 2.9739
No_flash 0.1292 0.071 5.71 2.1626

H1 MA Flash 0.1088 0.035 8.711 3.1471
No_flash 0.096 0.058 6.635 3.3323

MD50 Flash 0.0549 0.026 5.141 1.8196
No_flash 0.1302 0.076 7.564 2.9593

R1 MA Flash 0.1918 0.108 14.3 4.8224
No_flash 0.19 0.104 14.77 5.5936

MD50 Flash 0.0455 0.031 12.12 8.1951
No_flash 0.0262 0.014 6.584 3.7188

R2 MA Flash 0.357 0.096 25.17 9.2487
No_flash 0.3712 0.105 26.22 10.569

MD50 Flash 0.0252 0.02 8.53 5.2656
No_flash 0.0565 0.035 11.53 6.9494

S2 MA Flash 0.0511 0.023 7.101 2.2015
No_flash 0.0776 0.033 13.12 4.5386

MD50 Flash 0.0639 0.024 4.671 2.0752
No_flash 0.0274 0.018 5.992 1.9728

S1 MA Flash 0.0186 0.018 5.306 1.5408
No_flash 0.0872 0.031 8.546 4.5033

MD50 Flash 0.0433 0.023 5.393 1.721
No_flash 0.0539 0.026 5.755 2.0905

results shown in Table III, the effects of the flash on the
enhancement of colour reproduction various depending on
the type of smartphone and used light sources. As shown in
one of the state-of-the-art bilirubin estimationmethods [25],
the flash and no-flash acquisition modes can be applied to
expand the training image features and enhance prediction
accuracy.

5.2 Colour Correction Evaluations with Simulated Sensor
Values
At times, the available studio light sources can be limited
in number. Even with high number of available light
sources, measuring and capturing colour targets for all
the possible smartphone and light source combinations

J. Imaging Sci. Technol. 060407-11 Nov.-Dec. 2021
IS&T International Symposium on Electronic Imaging 2022 Color Imaging XXVII: Displaying, Processing, Hardcopy, and Applications



Abebe, Hardeberg, and Vartdal: Smartphones’ skin colour reproduction analysis for neonatal jaundice detection

Figure 9. RMSE difference distribution for different camera capture simulations under different light sources.

requires great effort and may take a long time. Therefore,
for effective evaluation and study purposes, the application
of the camera sensor value simulation approaches (described
in the previous Camera Characterization and Capturing
Simulation section) can be a good idea. In this case, to be
able to assess the colour reproduction variability among the
evaluated smartphones for a wider range of illumination
conditions, we havemeasured the sensor spectral sensitivities
of the smartphone cameras and simulated their sensor RGB
results, accordingly.

After the simulation for all the reference, training, as
well as test skin colour data, the results of the simulated
smartphones sensor values using the ten illuminations were
colour corrected, using the two regression approaches.
The average colour differences between the corrected
smartphones’ sensor simulation results and the reference
sensor values are computed for all evaluated scenarios,
similarly with the captured sensor values evaluation. The
distributions of the colour difference for some selected
light sources as well as over the whole ten light sources
is provided as box plots, given in Figure 9, and 10. Just

by looking at the distributions of the RMSE and 1E of
all the evaluated smartphones, an evident device-to-device
difference is visible.

Consequently, in order to verify if the noticed device-to-
device difference is significant, a one-way ANOVA (ANalysis
Of VAriance) analysis is performed. ANOVA uses variance-
based F test to check the group mean equality, by testing the
non-specific null hypothesis i.e. all group means are equal.
The resulting F and p values of the ANOVA analysis for
the selected light sources and over the entire sets of light
sources are given in Table IV. The p values obtained from
both the RMSE and 1E analysis are significant (p< 0.05),
except for the results of compact fluorescent lamp (CFL). To
have further insight onto which pairs of the smartphones
have significantly different colour reproduction results, we
additionally performed multiple pairwise comparison (post
hoc comparison) analysis using Tukey’s honestly significant
difference (HSD) tests. The results of the HSD tests for both
colour difference matrices are visualized in Figure 11.

According to the various device-to-device colour re-
production difference results, shown so far, it is obvious
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Figure 10. 1E difference distribution for the different camera capture simulations for some selected light sources.

Figure 11. POST-HOC testing results with Tukey Honestly Significant Difference(HSD) method.

that there is significant difference of corrected colour results
of different smartphone cameras. Among all the evaluated
phone, Apple and Redmi-micro phones resulted in the most
significantly smaller and larger colour differences, respec-
tively. Such results shows that, since the difference between

the two phones is higher, the bilirubin estimation results can
also differ greatly. Therefore, unless such device variabilities
are handledwith proper colour correction systems in general,
jaundice detection system based on colour calibration could
always lead to dangerous misdiagnosis.
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Table IV. One-way ANOVA analysis results for evaluating the significance of the
difference among the corrected values of the evaluated smartphone cameras.

RMSE DE
Light_source F p_value F p_value

CL studuio A 24.12763 1.21E-22 44.765 2.18E-37
CL studuio D50 8.889243 7.93E-09 8.5862 1.60E-08
CFL 2700k 0.070653 0.9986184 0.4488 0.845528
Hal 2800k 10.43215 2.32E-10 54.129 5.29E-43
LED 4000k 14.53775 2.70E-14 17.44 6.07E-17
LED 2800k 11.47066 2.24E-11 37.832 7.66E-33
Over all lights 5.627539 0.000008 17.871 2.06E-20

6. CONCLUSION AND FUTUREWORK
Of late, the number of smartphone-based solutions for
monitoring jaundice levels in newborns are increasing.
Since most of the proposed solutions depend on the colour
reproduction qualities of smartphone cameras, the proposed
work presents a thorough analysis of device-to-device colour
reproduction variability. The study includes the results of the
investigations for many smartphone cameras, light sources
as well as colour correction algorithms. The results showed
a significant variability among devices even after colour
correction with one of the best regression algorithms.

In addition to device variability, it was observed that
many of the smartphone-based bilirubin solutions are highly
prone to image degradation during image acquisition pro-
cess, inaccuracies in simulations of skin colour reflectance
and generation of representative calibration reference targets.
Moreover, the amount as well as intersectionality limitations
of existing skin color measurement and simulation data sets
further hinders the accuracy of the diagnosis. Most datasets
introduce bias towards Caucasian skin tones and higher
misdiagnoses rate could be occur in dark skinned newborns.

Therefore, as a future work, increasing use of real and
inclusive measured skin data sets, with various illumination
condition as well as smartphone devices, can lead to
increased performances. Skin reflectance data set, bilirubin
measurements and mathematical models should also be
more inclusive to different shades of skin colours, including
the ones with higher melanin concentration. With more
representative data set, advancedmachine learningmethods,
such as deep learning, can be applied to alleviate most
of the limitations of the existing jaundice monitoring
solutions. Convolutional autoencoders as well as other
appropriate networks can be utilized for more accurate
colour corrections, preprocessing and quality enhancement,
as well as bilirubin level estimation purposes.
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