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Abstract 
Optical characterization and appearance prediction of 

translucent materials is needed in several fields of engineering such 

as computer graphics, dental restorations or 3D printing 

technologies. In the case of strongly diffusing materials, flux 

transfer models like the Kubelka-Munk model (2-flux) or 4-flux 

model have been successfully used to this aim for decades. However, 

they lead to inaccurate prediction of the color variations of 

translucent objects of different thicknesses. Indeed, as they assume 

Lambertian fluxes at any depth within the material and in particular 

at the bordering interfaces, they fail to model the internal 

reflectance at the interfaces, penalizing the accuracy of the optical 

parameter extraction. The aim of the paper is to investigate the 

impact of translucency on light angular distribution and 

corresponding internal reflectances, by the mean of the radiative 

transfer equation, which describes more rigorously the impact of the 

scattering on the light propagation. It turns out that the light 

angular distribution at the bordering interfaces, assumed to be flat, 

is far from being Lambertian, and the internal reflectance may vary 

a lot according to the layer’s thickness, refractive index, scattering 

and absorption coefficients. This work not only enables to better 

understand the impact of scattering within a translucent layer but 

also invites to revisit the well-known Saunderson correction used in 

2- or 4- flux models. 

Introduction 
Many fabrication processes rely on the use of translucent materials, 
i.e., materials in which light can enter deeply and be scattered 
progressively along its path. This is the case for example with some 
polymer inks in 3D printing, dental repair materials [1], [2], human 
tissues, some ceramics, and many other materials for which color 
management is essential. The issue with these translucent materials 
is that the color and general appearance depend a lot on the object’s 
thickness, in a way that a simple light scattering model ‒ the 
Kubelka-Munk (2-flux) model [3], or even the 4-flux model [4] ‒ 
cannot predict accurately. One reason for the lack of accuracy of 2-
flux models with translucent layers is the poor estimation of the 
internal reflectance of the interfaces bordering the material layer. 
Indeed, the Saunderson correction [5, 6] assumes usually an 
inaccurate Lambertian distribution of the light striking the 
interfaces. More importantly, the exact angular distribution depends 
on the scattering and absorption properties of the layer and on its 
thickness. Moreover, with the reflectance or transmittance 
measurement geometries recommended by the CIE, e.g. the d:8° or 
8°:d geometries, the incident light or the captured light is directional, 
whereas the two-flux models expects measurements based on a bi-
hemispherical geometry. This has almost no impact in strongly 
scattering layers but may have a significant impact in a translucent 
material. As an example, it has been shown recently that in dental 

repair material, using an internal reflectance value of 4% (instead of 
the expected Lambertian value of 60% for a refractive index 1.5) 
improves a lot the color prediction accuracy for slabs of various 
thicknesses [7]. In principle, these issues could be addressed using 
more sophisticated solutions of the Radiative Transfer Equation [8] 
either by direct solving or by Monte Carlo methods. However, 
compared to the 2- or 4-flux methods, these approaches are much 
more time consuming, making difficult the extraction of optical 
parameters from a large set of experiments. 

The aim of the study is to investigate this point in detail using 
the formalism of the radiative transfer equation, and to compute 
more accurate values of the internal reflectance to be used in the 
simplified 2-flux model (such as the Saunderson correction for the 
Kubelka-Munk model [5, 6]), in function of thickness, refractive 
index, absorption and scattering coefficients. We first present briefly 
the method used to solve the radiative transfer equation in the case 
of homogeneous and flat scattering layers, then use it to simulate the 
angular radiance distribution near their interfaces, and analyze the 
influence of various parameters: absorption coefficient, layer 
thickness.  

Solving the radiative transfer equation with 
bordering interfaces 
The radiative transfer equation (RTE) was solved using the discrete 
ordinate method [8] [9], for a homogenous layer of thickness d in 
the plane parallel geometry (sometimes called "slab") for given 
absorption µa and scattering µs coefficients (see Fig. 1). From these 
coefficients, two derivate parameters are defined: the albedo  

( )0 /s a sµ µ= + µω , and the optical thickness ( )d a s dµ + µ=τ , 
where d is the thickness of a layer, in m. The incident light is 
assumed to be a directional flux at normal incidence on the whole 
surface, featuring an azimuthal symmetry. In consequence, in this 
1D geometry, physical quantities only depend on the depth z and 
zenithal angle θ. The angles |�| ≤ 90° correspond to the lower 
hemisphere Ω’ where radiance values depict the angular distribution 
of the light going upwards. The other angles correspond to the upper 
hemisphere Ω, where radiance values depict the angular distribution 
of the light going towards negative values of z (therefore 
downwards). Boundary conditions at the interface account for the 
Fresnel reflection, following the methods proposed in Refs. [9] and 
[10]. Note that multiple reflections of the specular light are included 
in the source term of the RTE for diffused light, following the 
approach proposed in [10]. 

The direct solving method enables to obtain the angular radiance 
distribution at any depth in the layer, therefore at the two depths of 
interest here z = 0 and z = d. These angular distributions, resulting 
from the solving of the radiative transfer equation with the Fresnel 
angular reflectance of the interfaces, are integrated over the 
hemisphere to provide the expected internal reflectance.  
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Fig. 1: Studied configuration where a layer of scattering medium with different 
refractive index as the surrounding air (“slab”) is illuminated by directional light 
at normal incidence. Physical quantities depend on depth z and angle �. 

In order to validate the implemented model, benchmarks with a 
widely used Monte Carlo code [11] with different sets of parameters 
(refractive index, absorption and scattering coefficients, layer 
thickness, and Henyey-Greenstein phase function) were performed, 
considering the same geometrical configurations and physical 
parameters. 

Semi-infinite layer 
We first consider the case of a semi-infinite scattering medium 

(optical thickness (µa +µs)d >> 1). To simplify the discussion, the 
phase function was assumed to be isotropic, i.e., g = 0.  

The main mechanisms occurring during light transport in the 
diffusing material are well-known and illustrated on Fig. 2. First, the 
incident directional flux can be either reflected by the top interface 
or transmitted in the medium, where it is progressively scattered or 
absorbed. Some light propagating upwards may reach the interface, 
where it can be either transmitted or reflected. Note that all light rays 
with incident angle higher than the critical angle ic = arcsin(1/n) are 
necessarily reflected (total internal reflection). It must be noted that 
in the semi-infinite material, the light that propagates upwards has 
necessarily undergone one or several scattering events. 

 

 

Fig. 2: Photon trajectory inside a semi-infinite layer of scattering medium 
(refractive index n2 = n) under collimated incident light (flux F0). The incident 
light can be either reflected at the interface (A) or transmitted into the medium. 
After a scattering event (B), a photon may propagate until reaching the 
interface. If the incident angle is below the critical angle ic, it can exit the 
medium or be reflected (C). If it is higher than ic, it is totally reflected back to 
the medium (D). Percentages are given for n=1.5. 

  

Fig. 3: Cut view of the relative angular radiance diagram near the top interface 
for semi-infinite scattering layers of two media of refractive index n = 1.5, with 
g = 0: a non-absorbing medium of scattering coefficient µs =5.0 mm-1 and  
albedo ω0 = 1 (blue curve), and an absorbing medium of extinction coefficient 
(µa+µs) = 5.0 mm-1 and albedo ω0 = µs / (µa+µs) = 0.9 (red curve). The light 
illuminating the interface from inside the layer propagates with zenithal angles 
|θ| > 90° whereas the reflected light propagates with angles |θ| < 90°. 

Let’s us now discuss the collective impact of these mechanisms 
on the overall radiance angular distribution at the top interface. In 
Fig. 3 are plotted, in polar coordinates, cut-views of the relative 
angular radiance Lz(θ) at z = 0, or L0(θ), as a function of the angle θ 
defined in Fig. 1, for a non-absorbing medium (blue curve) or 
absorbing medium (red curve).  

In the case of a non-absorbing semi-infinite material (blue 
curve), the light that propagates upwards, after backscattering, is 
Lambertian: the radiance is a constant Lu, the graph draws a hemi-
circle. This is expected, and in agreement with common 
assumptions made in the literature. In the lower hemisphere, as set 
by the boundary conditions, the downward radiance L0(θ) is the 
result of the internal reflection of the radiance propagating upwards, 
therefore the product of radiance Lu with the Fresnel reflectance. For 
a refractive index n of 1.5, this later is equal to 0.04 at θ = 0°, and 
suddenly reaches 1 beyond the critical angle ic = arcsin(1/n) ≈ 42°. 
Let’s examine the corresponding internal reflection coefficient ri. 
The later is defined as : 
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where 
��� is the Fresnel angular reflectance of the material-air 

interface when light comes at an angle θ from the medium (therefore 
when the angle is 180° – θ in our radiance diagram, where the light 
striking the interface propagates with zenithal angles |θ| > 90°). As 
the upward light is Lambertian (the radiance L0(θ) is constant over 
the hemisphere Ω), we have ��  = 0.60.  

In the case of an absorbing semi-infinite medium (red curve), 
the overall radiance is lower than in the non-absorbing case, as 
expected. Moreover, we observe that the upward radiance (in the 
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upper hemisphere) is not constant any more: it is higher as the angle 
θ increases. The light propagating upwards is therefore not 
Lambertian. Let us comment this discrepancy. First, remind that at 
z = 0, the upward radiance results from the backscattering of 
specular light and diffuse light propagating downwards. As 
previously seen, the latter is not Lambertian, because of the angular 
dependency of the Fresnel reflection. However, in the non-
absorbing case, the upward radiance results from an infinite number 
of isotropic scattering events, whereas in the absorbing case, from 
only a limited number of scattering events. In consequence, 
although isotropic, scattering fails to perfectly randomize the light 
direction, which explains why the contribution of lower angles is 
lower than the contribution of higher angles to the upward radiance. 
The anisotropy of L0(θ) modifies the calculation of the internal 
reflectance ri. In this case, the numerator of Eq. (1) does not change 
much whereas the denominator decreases, resulting in an increase 
of ri (see Fig. 6). 

Layer with finite thickness 
We now consider the case of a layer of finite thickness. Total 

internal reflection may occur at both interfaces in a similar way, 
although the situation of each interface is not symmetrical, as the 
specular light enters from the top interface only. In this case, not 
only the top (denoted ��) but also the bottom (denoted �� ′) internal 
reflectance require attention. 

Fig. 4 (resp. Fig. 5) represents the radiances L0(θ) and Ld(θ) at 
the top and bottom interfaces as functions of the zenithal angle in 
absence of absorption (respectively in presence of absorption), for 
various optical thicknesses of the medium (the sum of the absorption 
and scattering coefficients remaining constant in our simulations).  

 
 
 
 

 
 

 

Fig. 4: Polar plot of the radiance at the top interface, L0(θ) (Fig. 4a), and the bottom interface, Ld(θ) (Fig. 4b), for layers of different optical thicknesses in absence 
of absorption (refractive index n = 1.5, albedo ω0 = µs / (µa+µs)=1.0). 
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Fig. 5: Polar plot of the radiance at the top L0(θ) (Fig. 5a) and bottom Ld(θ) (Fig. 5b) for layers of different optical thicknesses in presence of absorption (refractive 
index n = 1.5, albedo ω0 = µs / (µa+µs)=0.7). 

With or without absorption, for a large optical thickness, i.e.,  
(µa + µs) d  >> 1 (red-orange curves), the radiance distribution at 
the top interface tends to the one observed for a semi-infinite 
medium discussed in the previous section (Fig. 3): the slab 
behaves as a semi-infinite medium. In absence of absorption, the 
radiance distribution at the bottom interface also tends to be a 
constant, and thus, ri = ri’. In presence of absorption, the radiance 
distribution at the bottom interface tends to be negligible for large 
optical thicknesses. Even if it is possible (although difficult) to 
compute an internal reflectance at this bottom interface, this 
quantity no longer has a physical meaning nor any interest with 
these very small radiance values. 

When (µa + µs)d << 1 (blue curves), however, the impact of 
scattering becomes negligible. We thus observed the same trend 
at both interfaces, in presence or in absence of absorption: 

radiances L0(θ) and Ld(θ) become almost negligible for incidence 
angles lower than the critical angle ic. Indeed, lower incidence 
angles are extracted at each interface and are no longer 
compensated by scattering. In consequence, upward and 
downward radiance become almost identical at each interface. 
For this reason, the numerator and denominator of equation (1) 
tends to be equal for each internal reflectance, resulting in an 
internal reflectance close to one when d tends to zero. 

Notice that the same results are obtained when the 
absorption and scattering coefficients are multiplied by a certain 
factor and the layer thickness is divided by the same factor: the 
optical thickness, which is the relevant parameter in the model, 
remains constant in this case. 

The internal reflectances of the top and bottom interfaces, 
respectively �� and ��

�, are plotted in Fig. 6, resp. Fig. 7, as 
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functions of the optical thickness for various albedo values. We 
retrieve the fact that when d, thereby the optical thickness τd, is 
very small, the internal reflectance value tends to 1 at both 
interfaces. As the optical thickness increases, the internal 
reflectance decreases. It asymptotically approaches 0.60, the 
value usually considered in the Saunderson model, for the top 
interface when the medium is strongly absorbing (low ω0 values), 
or a higher value than 0.6 if the medium is less absorbing (0.63 
when ω0 = 1, i.e., the medium is non-absorbing, as featured also 
in Fig. 4).  At the bottom interface, beyond an optical thickness 
around 2, the internal reflectance value is below 0.60.  

  

 
Fig. 6: Internal reflectance ri of the top interface versus optical thickness 

(µa+µs) d for several albedo ω0 = µs / (µa+µs) with µa+µs = 5 cm-1. The bold 
dashed line at ri = 0.6 corresponds to the value usually considered in the 
classical Sanderson. 

 
Fig. 7: Internal reflectance ri’ of the bottom interface versus optical 
thickness (µa+µs) d for various albedo values ω0 = µs / (µa+µs) with µa+µs = 
5 cm-1. The bold dashed line at ri’ = 0.6 corresponds to the value usually 
considered in the classical Sanderson. 

Conclusions 
Detailed simulations based on the numerical solution of the 
radiative transfer equation were used to calculate the internal 
diffuse reflectance, a parameter needed in the efficient 2-flux or 
4-flux models used for optical parameter extraction and 
appearance prediction. In this work, only isotropic scattering was 
considered for the sake of simplicity. 

For large optical distances, the internal diffuse reflectances 
at each interface were found in agreement with the expectation of 
the Lambertian approximation when absorption is negligible. In 
presence of absorption however, these internal reflectances 
slightly differ, the top one being a bit higher, and the bottom one 
a bit lower than the Lambertian value. 
For intermediate and low optical distances (translucent material), 
it turns out that both internal reflectances tends to be 
approximately equal, and much higher than expected, which 
probably strongly impacts the accuracy of parameters extracted 
when the Lambertian value is assumed.  

These results are the consequence of the competition 
between Fresnel reflection, which induces anisotropy in the 
angular distribution of radiance (low incidence angle rays may 
escape from the slab while high incidence angle rays remain 
trapped by total internal reflection), and scattering, which tends 
to randomize the light direction. 

This work not only enables to better understand the impact 
of scattering within a translucent layer but also invites to revisit 
the well-known Saunderson correction used in 2 or 4-flux models.  
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