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Abstract

A correlation between thin-film nitrate sensor performance
and sensor surface texture was hypothesized. Based on this hy-
pothesis, we began research on the application of machine learn-
ing methods on thin-film nitrate sensor surface images to predict
its performance. This technology would enable real-time opti-
mization adjustments to be made during production to greatly
increase the quality of the sensors while reducing costs associ-
ated with testing and defective sensors. Recently, we have made
progress in the addition of new texture features, repeated cross-
validation methods, and auto-tuning of hyperparameters.

Introduction

‘We intend to build a roll-to-roll (R2R) sensor manufacturing
line in order to fabricate low-cost thin-film nitrate sensors in high
volume. Those thin-film nitrate sensors are designed to monitor
soil conditions in the field. The study of nitrate sensors indicates
that the performance of the sensors can be affected by the non-
uniform coating of the ion-selective membrane (ISM) [1], [2]. In
order to make rapid adjustments during the fabrication process,
image-based machine learning techniques are used to predict the
manufactured sensor performance.

The current process shown in Figure 1 is to use the R2R
manufacturing system to print the nitrate sensors in batches. The
manufactured sensors are taken for imaging, and then taken to a
dedicated laboratory for measurement. At the moment, testing is
done in labs. A fitted curve is derived from the physics hypothesis
and the measured performance signal after smoothing to reduce
the noise. The predicted performance is compared against the
fitted performance curve.
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This paper is a continuation of the previous work [3], [4].
We will examine several ways to extract features from captured
sensor images (yellow region shown in Figure 1) and a modified
version of the auto-tuned prediction system (green region shown
in Figure 1) in this paper. With the goal of fully automating the
process, this prediction system is based on different machine-
learning techniques and cross-validation methods. Performance
is improved by auto-tuning the hyperparameter settings for the
machine learning models.

Dataset Preparation
As part of this project, both sensor image data and ground
truth parameters data are generated by ourselves.

Image Data Preparation

According to the physics hypothesis [2], the sensor active re-
gion marked in Figure 2(b) is related to the sensor performance. In
order to capture the sensor active region image, a silicon wafer is
placed underneath the nitrate sensor and an Electro-Optical Sys-
tem (EOS)2 camera attached to a microscope is used. The sensor
imaging setup is shown in Figure 2(a) and Figure 2(c) is an exam-
ple of the captured non-contact sensor image.
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Figure 2. (a) Experiment Setup for Capturing Sensor Images;
(b) Structure of the Nitrate Sensor;
(c) Example of Captured Sensor Active Region Image.

Following is the procedure that is shown in the system
pipeline in Figure 1: once the sensor images have been captured,
we use the method described in the previous paper [3] to segment
the active sensor region from the captured image.

As soon as the sensor active region is cropped from the orig-
inal non-contact sensor image, we apply the image preprocessing
techniques discussed in [3] to enhance texture details in the sen-
sor active region image. An example of this procedure is given in
Figure 3.

2Elect.ro-Optical System Inc, Phoenixville, PA 19460.
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Figure 3. Image Data Preprocessing Procedure.

Sensor Performance Data Preparation

The sensor response signals in this experiment are degraded
by human error during the measurement of sensor performance
rather than sensor defects. Therefore, the outliers should be elim-
inated before generating the ground truth parameters using the
method described in [4].

The physics-based model [2] suggests that the change of po-
tential voltage over time is a logarithmic growth curve. Hence,
Equation 1 is used here to generate the ground truth parameters a
and b for the inlier performance signals.

Vi (t) =a-log(t)+b )

Figure 4 illustrates the modified curve fitting method pro-
posed in [4]. The weighted Levenberg-Marquardt algorithm [7]
is used to find the ground truth parameters that give the best fit-
ting curve Vy;;, while the weighting factor is dependent upon the
dynamic credibility data.
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Figure 4. Ground Truth Data Preparation Procedure Applied to the Inlier
Sensor Data after Outlier Exclusion Based on the Credibility Analysis.

We use the weighted root-mean-square error (RMSE) de-
noted as RMSEcr to evaluate the accuracy of the fitted curve.
CF stands for curve fitting process, and N is the total number of
time points. The weights c(x) are the inversely proportional to the
dynamic credibility data.

RMSEcp(mV) = ¢;f Y c(x) (Ve (x) = Va (X))2 ®)

Figure 5(a) illustrates the difference between the original
measured sensor performance signal Vj,,, the down-sampled and
smoothed signal V;;, and the fitted curve Vy;; in the saturated re-
gion. The RMSEy,, is the weighted RMSE calculated between
Vir and the down-sampled V,,, while the RMSEy is the weighted
RMSE calculated between Vy;; and the down-sampled smoothed
Vs. Figure 5(b) shows the dynamic credibility data for the corre-
sponding sensor.

Texture Feature Extraction
Gray-level Co-occurrence Matrix (GLCM)

The GLCM method [8] is a commonly used image descriptor
representing the distance and angular spatial relationships over an
image sub-region of a specific size.
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The gray-scale sensor image contains 255 gray levels, mak-
ing the size of our GLCM matrix 255 x 255 (denoted as P, (i, j)).
It is unreasonable to use the entire GLCM matrix as the texture
feature. Hence, we calculated the GLCM features [8] from the
normalized GLCM matrix P(i, j) = P,(i, j) /R, where R is the to-
tal number of pixel pairs. Figure 6 shows the GLCM features that
we explored. The features marked in blue are the most commonly
used, and the equations marked in green are the parameters that
are used to calculate the remaining GLCM features.
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Figure 6. GLCM Features.

Sequential Forward Floating Selection (SFFS)

To avoid having less meaningful features disturb the predic-
tion model, we applied the sequential forward floating selection
(SFFS) method [9], [10] to select a subset of GLCM features to
minimize the prediction error. Figure 7 shows the SFFS procedure
and the size of subset changes during each iteration [10].
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Figure 7. (a) SFFS Procedure;
(b) Example of the Subset Size Changes During the SFFS Procedure.

Figure 8(a) and (b) gives an example of the SFFS method ap-
plied to the ground truth parameters a and b. The total number of
GLCM features is 27; and we are using the 5-fold cross-validation
method to evaluate the performance during subset selection. The
blue dots represent the average performance at each desired num-
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Figure 5. (a) Example of Fitted Logarithmic Curve;
(b) Dynamic Credibility Data.
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ber of output subset size, and the light blue region represents the
variance of the performance. The performance for the regression
model is the negative root mean square error calculated between
the ground truth parameter and the predicted parameter. g stands
for the ground truth value while pred stands for the predicted
value.

RMSEgprs_o(mV) = \/ % Y (aprea(x) —ag (X))2 3)

RMSEsrrs (mV) = \/ %Z (Bprea@) b)) &)

Sequential Forward Selection Sequential Forward Selection

(a) (b)

Figure 8. (a) SFFS Subset of Parameter a;
(b) SFFS Subset of Parameter b.

In this case, we choose the nine features that have been se-
lected by the SFFS method for both ground truth parameters a and
b.

Angularly Averaged Power Spectrum (AAPS)

In order to calculate the angularly averaged spectrum signal
[11], we apply the 2D Fourier transform to the grayscale sensor
image to obtain the 2D power spectrum density (PSD) signal first.
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Figure 9. Angular Mask Generation.
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Figure 10. Example of AAPS Results.
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Afterwards, we set the angular interval A0 in degrees, deter-
mine which angular interval the pixel belongs to and generate the
sector mask. Meanwhile, we could calculate the distance from
the center frequency to each frequency (radius) and create the
radius mask. To remove spectral artifacts at both low and high
frequencies, we set up a radius limitation by defining the r,z;,, and
'Max Parameters to exclude PSD values at frequencies outside this
range. As a result, we can generate the angular mask by combin-
ing the sector mask, the radius mask, and the limit parameters.
Figure 9 demonstrates an example of generating the angular mask
with AB equal to 30 degrees, rysi, equals 0.0391 cycles/pixel or
20 pixels for a 512 x 512 pixel DFT, and ryz,, equals 0.488 cy-
cles/pixel or 250 pixels for a 512 x 512 pixel DFT.

By normalizing the total PSD along with each sector by the
total energy contained in each sector, we get the AAPS signal
demonstrated in Figure 10. As shown in the figure, the AAPS
signal varys a lot given different sensor active region images.

Radially Averaged Power Spectrum (RAPS)

To calculate the radially averaged power spectrum (RAPS)
[12] signal of each sensor image, we need to convert the im-
age from gray level (reflectance) I, to absorptance I, by I, =
1 —1,/255. Then similar to the AAPS feature, we apply the 2D
Fourier transform to the absorptance image I, and get the 2D PSD
signal.

We then set up the ring width r,,, calculate the radius at each
pixel location, and generate the circular ring mask as the RAPS
radial mask, as shown in Figure 11.

3

Radius Radial Mask

Figure 11. Radial Mask Generation.

The RAPS signal is computed by normalizing the total PSD
in each circular ring by the total energy of the image contained
within the circular rings. Energy is largely concentrated in the
center. Changing the ring width r,, would result in different RAPS
results, as shown in Figure 12. The sensor active region image
used for this example is the sensor index 19-12-10-C_50 shown in
Figure 10.

RAPS signal ‘ r ‘
| o wfy
W o

Ring width = 0.0586 cycles/pixel
or 30 pixels for a 512 x 512 DFT
#of rings =13

Ring width = 0.00977 cycles/pixel
or 5 pixels for a 512 x 512 DFT
#of rings =79

Figure 12. Example of RAPS Results.

Prediction System

Following the previous work, the support vector regression
(SVR) model [17] and the alpha-trimmed mean random forest
(ATRF) model [4] are selected as the prediction models.
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ATREF involves applying the alpha-trimmed mean filter [20]
to all the predicted values from each decision tree in the random
forest [19], and obtaining the predicted value of the ATRF.
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Figure 13. Structure of The Prediction Model.

The structure of the prediction system is shown in Figure
13. The system takes the generated ground truth parameters and
the feature vectors (texture features combined with manufacturing
factors) as input during the training process. To test the accuracy
of the prediction model, the system uses the feature vector as in-
put, and outputs the predicted performance parameters during the
testing process.

Data normalization is necessary when the features are in dif-
ferent ranges, and we use the Min-max normalization method
(MMNM) [13] to normalize each feature to the range [0, 1].

To evaluate the performance of the prediction system,
RMSEp,. is calculated between the predicted curve based on
the predicted parameters @’ and &', and the fitted curve generated
based on the ground truth parameters a and b.

Vsir(x) = a-log(x) +b (5)

Virea(x) =d' -log(x) + b’ (6)
1

RSMEpred = \/N Z(Vpred(x) - Vfit (x))2 (7)
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Figure 14. Structure of Repeated K-fold Cross-validation Method.

A single k-fold cross-validation run will result in a noisy es-
timate of model performance, because different folding sets will
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result in various prediction performances, especially for a small
dataset. Due to the limitation of the size of our dataset, we choose
the repeated cross-validation (RCV) method [14] to estimate the
accuracy of our prediction model. The RCV is performed by ran-
domly folding the entire dataset and repeating the traditional k-
fold cross-validation (CV) procedure multiple times. Each cross-
validation procedure is performed with a different random fold-
ing of the dataset. The prediction performance will be the average
prediction performance of each k-fold CV as shown in Figure 14.

Auto-tuning Procedure
Hyperparameters are the specified parameters set before
training the prediction model and could affect the models’ accu-
racy. We use the nested cross-validation (NCV) method [15], the
grid search method, and the random search method [16] to find the
optimized hyperparameter setting with the best prediction perfor-
mance. This process, referred to as auto-tuning, is shown in Fig-

ure 15.
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Figure 15. Overview of The Auto-tuning Prediction System.

As part of the auto-tuning process, two search methods are
considered to find the optimal combination for constructing the
prediction model: the grid search method, which is the exhaustive
search way, and the random search, which uses random combi-
nations of hyperparameters. In our case, we use the grid search
method for the ATRF model, and the random search method for
the SVR model.
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Figure 16. Structure of Nested Cross-validation Method.

The NCV method is developed by constructing a k-fold CV
(inner loop) nested inside a k-fold CV (outer loop) as shown in
Figure 16. The inner loop applies k-fold CV on the training
dataset of the outer loop. The idea of the NCV method is to search
for the optimized hyperparameters in the inner loop and to eval-
uate the optimized hyperparameters setting in the outer loop for
comparison and selection. We repeat the NCV for 50 trials, and
the optimal setting is the one that exhibits the highest frequency
of results.

Experiment Results
With the use of nested cross-validation and two search meth-
ods, we designed an auto-tuning prediction system for higher per-
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formance accuracy. The nested cross-validation method runs fifty
trials with five folds in the outer loop, and three folds in the in-
ner loop. There are three hyperparameters for the SVR model:
the decision boundary € in the range [1e-6, 1], the regularization
parameter C in the range [10, 1e6], and the RBF kernel [18] pa-
rameter Y in the range [le-6, 1]. For the ATRF model, there is
only one hyperparameter, which is the number of decision trees
Nyree in the range [1k, 10k] contained in the forest. There was no
limit specified for the depth of each decision tree, so all nodes
were expanded until all leaves were pure. The optimized combi-
nation of hyperparameters is then used to construct the prediction
model.

To obtain a reliable and stable estimate of system perfor-
mance, we run 200 trials of the repeated 5-fold cross validation
procedure to train and evaluate our system. It is the equivalent of
running a single test for 1000 times.

The feature vectors with which we have experimented are
shown in Table 1. In addition to texture features, the manufac-
turing factors (MF) are added to the feature vector as input to the
prediction system. The manufacturing factors include the average

pixel DFT for Methods 9 to 11.

The average RMSE and the standard deviation of RMSE are
used to estimate the performance of the image-based prediction
system.

RMSE e (mV) = \/ % Y (Vi (6) = Vprea () ®)

As mentioned previously, the prediction result for each
method is estimated by repeated 5-fold cross-validation with 200
trials.

The accuracy and the robustness of the image-based predic-
tion system can be described by the average RMSE and the stan-
dard deviation shown in Table 2 for the SVR model and in Ta-
ble 3 for the ATRF model. The dataset used in this experiment
contains 108 sensors. The StDev,;4 represents the standard de-
viation over the performance for each fold within each trial while
the StDev,,;, represents the standard deviation over the average
performance for each trial.

Prediction Results for SVR Model

meflsured sensor thickness, and three process control para.meters: Method | RMSE | StDevyorq | StDeviiu
solid content, line speed, and flow rate. Each manufacturing fac- (mV) (mV) (mV)
tor is a floating-point number. All features within each method
will be normalized to the range [0, 1] before feeding them to the M 5.9094 1.1194 0.2152
prediction model. ’ M2 6.7825 1.3033 0.3433
M3 6.2308 1.1690 0.2545
Feature Vectors Implemented in the Image-based Prediction M4 6.5245 1.0633 0.2692
System M5 5.9377 1.1092 0.1574
M6 6.0645 1.0772 0.2005
Method Feature Vector M7 6.0743 | 1.1759 0.1986
M1 LBP (uniform) + MF M8 5.8192 1.1061 0.1589
M2 LBP (nri_uniform) + MF M9 | 57532 | 1.0620 | 0.1651
M3 GP + LBP (uniform) + MF M10 | 5.8111 | 1.0144 | 0.1581
M4 GP + LBP (nri_uniform) + MF M11 5.9991 1.0085 0.1740
M5 GLCM (5 features) + MF
M6 GLCM (9 features by SFFS) + MF
M7 GLCM (27 features) + MF
M8 AAPS + MF Prediction Results for ATRF Model
M9 RAPS (spatial frequency 0-0.09 cycles/pixel) + MF Method | RMSE | StDeviolq | StDevirial
M10 | RAPS (spatial frequency 0-0.18 cycles/pixel) + MF (mV) (mV) (mV)
Mi1 | RAPS (spatial frequency 0-0.36 cycles/pixel) + MF M1 | 6.0726 | 1.0214 | 0.2503
M2 6.1380 1.0258 0.2941
M3 6.1213 1.0362 0.2618
Methods 1 to 4 are discussed in [3]. The local binary pattern M4 6.5588 1.1077 0.2455
(LBP) features [5] are calculated with P = 8 pixels and R = 3 MS 7.3711 11717 0.3156
pixels mentioned in [3]. The Gaussian pyramid (GP) [6] contains Mé 6.7581 1.1483 0.3175
three layers. Hence, applying the LBP method on each GP layer M7 6.8488 1.2270 0.3354
generates a 1D feature array three times longer. M8 6.8914 1.1841 0.2620
Methods 5 to 7 are related to the 27 GLCM features. The M9 6.3647 1.0660 0.2831
GLCM matrix is calculated with a distance of 5 pixels and a M10 6.4668 1.1021 0.2701
45 degree angle. The five features used in M5 are contrast, dis- M11 6.4084 1.1229 0.2603
similarity, homogeneity, correlation, and angular second moment.
The nine features based on the SVR model selected by the SFFS
method for Method 6 are dissimilarity, homogeneity, mean u; and
uj, variance o; and o, sum of squares, sum entropy, and infor- Conclusion

mation measures of correlation H,.

The AAPS method is set with AO = 30 degree, ryz;, = 0.0391
cycles/pixel, and rp4y = 0.488 cycles/pixel. The RAPS method
is set with r,, = 5 pixels or 0.00977 cycles/pixel for a 512 x 512
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An image-based prediction system has been developed to ac-
curately predict the potentiometric response of the nitrate sensor
based on the preprocessed sensor active region images. This sys-
tem allows us to monitor the sensors quality during the fabrication
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process with an R2R system in the future. This paper focuses pri-
marily on the modifications we made to the texture extraction and
the prediction system sections.

For the texture feature extraction section, we analyzed the
GLCM descriptor, the AAPS features, and the RAPS features. To
select a meaningful subset of features out of all features, we also
applied the SFFS method.

For the prediction section, we used the repeated cross-
validation method while training to make the prediction results
more stable and reliable. In order to make the whole process au-
tomatic, we developed an auto-tuning technique using the nested
cross-validation method, the grid search method, and the random
search method.
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