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Abstract

In this paper we investigate applying two deep generative
models to digital halftoning with the aim of generating halftones
with comparable quality to those generated with the direct binary
search (DBS) algorithm. For the first framework, we apply con-
ditional generative adversarial networks (cGANs) using two dis-
criminators with different receptive field size and a generator con-
sisting of densely connected blocks. For the second framework,
deep autoregressive (AR) models, we propose mapping input im-
ages into a feature space using a single forward pass of a deep
neural network and then applying a shallow autoregressive model
at the end output. Our methods show promising results; halftones
generated with our algorithms are less noisy than those generated
with DBS screen and do not contain artifacts commonly associ-
ated with error diffusion type algorithms.

Introduction

Recent advances in deep learning for image processing have
brought incredible achievements in diverse areas, but not much
work has been done in applying deep learning to the area of digital
halftoning. Furthermore, most of the work in halftoning using
deep learning has been focused on inverse halftoning, such as in
[1,2,3,4,5, 6], and to our knowledge, only a limited amount of
work has been on halftoning, such as [5, 7]. Therefore, in this
paper, we aim to investigate applying deep learning, specifically
deep generative models, to digital halftoning.

Deep generative models are an area of research using deep
learning where the goal is to find the mapping from some prior
distribuion to the distribution of the space which the training set
represents. Commonly used generative models include variational
autoencoders (VAEs) [8, 9, 10], generative adversarial networks
(GANs) [11, 12, 13, 14, 15, 16, 17, 18], normalizing flow models
[19, 20], deep autoregressive (AR) models [21, 22, 23], and most
recently, stochastic diffusion models [24, 25]. We choose GANs
and deep AR models as the models to work with since they are
more straightforward to apply to halftoning.

This paper is organized as follows. First, we briefly intro-
duce the related works for our paper, namely digital halftoning,
GAN:Ss, and deep AR models. Next, we discuss our algorithms
applying GANs and deep AR models to halftoning, and describe
our contributions. Lastly, we show the halftone results illustrating
that our algorithms are capable of generating halftones with com-
parable quality to those generated with the DBS algorithm [26],
which is known to generate the best quality aperiodic, dispersed-
dot halftones.
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Related work
Digital halftoning

Digital halftoning algorithms aim to convert a continuous-
tone image into an image with a limited number of tone values
while preserving the image quality as much as possible. Halfton-
ing algorithms can be classified based on whether the dot place-
ment is periodic or aperiodic, and whether they are clustered-dot
or dispersed-dot halftoning algorithms. In this paper, we focus on
implementing aperiodic dispersed-dot halftoning algorithms.

Commonly used halftoning algorithms can also be classified
into three categories: screening, error diffusion, and search-based
algorithms. A screening algorithm such as [27, 28] compares each
pixel to a corresponding index of a halftone screen to determine
the halftone pixel value at the pixel location. While these types of
algorithms are fast, they tend to generate noisy halftones. Error
diffusion type algorithms such as [29] quantize the pixel first, and
then the quantization error is diffused to nearby pixels, so that
the error can be taken into account for quantizing the pixels af-
terwards. Lastly, search-based algorithms iterate over the image
to optimize some cost function, such as the direct binary search
(DBS) algorithm in [26]. While search-based algorithms generate
the highest quality halftones, they also tend to be computationally
expensive due to their iterative nature.

Generative adversarial networks

Generative adversarial networks (GANS), first proposed in
[11], learn to generate realistic images by adversarially training
two networks, a generator and a discriminator. The goal of dis-
criminator is to learn to distinguish between real samples from
the training set and generated samples from the generator. On the
other hand, generators take a random vector, typically called a la-
tent vector, as input and generate an image. They are trained with
the goal of fooling the discriminator. To train a GAN, a two time-
scale update rule [30] is typically used, where the generator and
the discriminator are alternately updated while fixing the weights
of the other one. Upon convergence, ideally, the generator gen-
erates images that are indistinguishable from those in the training
set.

Due to the unstable nature of its training, a large amount
of research on GANs was done on the objective (loss function)
for its training. Wasserstein GAN [12] proposes using Earth-
Mover (EM) distance as the metric for computing disparity be-
tween the training set distribution and the generator output distri-
bution, which can be used to update the network weights via its
dual form when searching within the set of 1-Lipschitz functions
for the discriminator. WGAN-GP [31] proposes using a gradi-
ent penalty loss term instead of clipping the weights, as in [12],
for imposing the Lipschitz constraint. LSGAN [13] proposes us-
ing a least-squares adversarial loss, which is widely adopted due
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to its relatively stable nature and simple form. Another widely
used adversarial loss, hinge GAN loss, is proposed in [14] where
the authors incorporate the concept of maximizing margins of the
separating hyperplane from support vector machines (SVMs) [32]
into GAN training. Relativistic GAN [15] proposes using rela-
tivistic versions of the widely-used adversarial losses to stabilize
the training further.

There also has been a large amount of research on improv-
ing quality of the images generated by GANs. [33] proposes
imposing the Lipschitz constraint on the discriminator by apply-
ing spectral normalization to the convolution layers, which since
has become a common practice for GANs. Self-attention GAN
[16] proposes using self-attention [34] in the generator to promote
global structural consistency in the generated images. [17] gen-
erates images in high resolution by gradually increasing the res-
olution, via incrementally adding layers in the generator and the
discriminator. State-of-the-art GANs such as StyleGANv2 [18]
are able to produce high-quality images in high resolution such
as 1024 x 1024 without visible artifacts. Since the works men-
tioned above are conducted with continuous-tone images, these
improvements are not necessarily applicable to halftones. In fact,
we did not observe any notable improvements in halftone qual-
ity when we added spectral normalization or self-attention to our
GAN-based halftoning module.

While in its original form, GANs learn to map a random vec-
tor into an image, GANs can also be used for image-to-image
translation tasks such as style transfer [35, 36], semantic image
synthesis [37, 38], image super-resolution [39, 40], image inpaint-
ing [41], and so on. When used for image-to-image translation,
these GANs are often referred to as conditional GANs. The ter-
minology comes from treating the input images as conditional
inputs in addition to the latent vectors, but often the latent vec-
tor is not used since the GAN learns to ignore it [35]. We also
adopt the conditional GAN for developing a halftoning algorithm
since halftoning can be thought of as an image-to-image transla-
tion task.

Deep autoregressive models

Deep autoregressive (AR) models assume a dependency of
each pixel on the previous pixels under some scan order, where
the dependency is modeled via a deep neural network. Compared
to other generative models such as GANs, they are known to have
the following benefits [42]. First, AR models can capture depen-
dencies between the neighboring pixels and promote local consis-
tency. Second, training AR models is stable compared to other
generative models.

The first deep AR models proposed are PixelCNNs and Pix-
elRNNs in [21], where the causal relation between pixels is mod-
eled by a convolutional neural network (CNN) or a recurrent neu-
ral network (RNN). Since causality of the model is crucial for
AR models, the authors of [21] propose using masked convolu-
tion, where the uncausal pixels are masked out prior to convolu-
tion. Originally PixelRNNs outperformed PixelCNNs, but [22]
proposed using gated activation and adding horizontal convolu-
tion stacks to get rid of convolution blind spots, resulting in the
gated Pixel CNNs outperforming PixeIRNNs. More recently, AR
models were incorporated with transformers [34] in works such
as [23].

While AR models are useful in modeling image priors, they
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are inherently computationally expensive. For training AR mod-
els, the ground truth images from the training dataset are fed as in-
put, and since the networks are built to be causal, a single forward
and backward pass is sufficient to compute the gradients and up-
date the network weights. On the other hand, for inference, since
each pixel has to be inferred following the scan order, paralleliza-
tion is not possible. Thus, the inference requires a large amount
of time. Because of this, papers on AR models mentioned ear-
lier mostly perform experiments in low-resolution datasets such
as CIFAR-10 [43] and a downscaled version of ImageNet [44].

Conditional GANs for halftoning

Our implementation of conditional GANS is loosely based on
the cGAN framework in [35]. That is, we learn the forward map-
ping from continuous-tone images to corresponding halftones via
supervision. Instead of using only continuous-tone images as in-
puts, we add the DBS-screened [28] halftones of the continuous-
tone images as a secondary set of input images. We found
that adding screened images as inputs improves halftone quality
slightly.

For the generator, we stack densely connected blocks [45].
Originally proposed as part of a classification network in [45],
they are known to be useful in image processing tasks, such as in
[40] where densely connected blocks are used in a residual man-
ner. We use four convolution layers in each densely connected
blocks. And in each convolution layer, convolution is followed by
ReLU activation [46] and instance normalization [47]. A densely
connected block is illustrated in Figure 1. Our generator over-
all includes two convolution layers, followed by six densely con-
nected blocks and two convolution layers at the end, as illustrated
in Figure 2. We do not perform any downscaling/upscaling since
we found that it degrades the output halftone quality.

concat

Figure 1. A densely connected block. IN stands for instance normalization
[47].

Figure 2. The generator network structure for our cGAN based halftoning
algorithm.

During training, we also add an auxiliary output from the
generator after the fourth densely connected block, followed by
two convolution layers. Training using an auxiliary branch is
adapted from [48], which is known to enhance gradient flow to the
lower layers and increase the correlation between the intermedi-
ate feature outputs and final outputs of the network. The auxiliary
branch is strictly for training and is discarded during inference.
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For the discriminator, we are using Markovian discrimina-
tors (PatchGAN), as in [35]. Instead of using a single discrimi-
nator, we use two independent discriminators as shown in Figure
3. Similar ideas of using multiple discriminators can be seen in
recent papers such as [37]. The first discriminator has a recep-
tive field size of 4 x 4, whereas the second discriminator has a
receptive field size of 94 x 94. Intuitively, we can think of this
as the smaller discriminator learning to see local pixel values to
be close to the binarized result, whereas the larger discriminator
learns to see the overall dot distribution. We found that using two
discriminators stabilizes training of the overall framework.

Conv
Discriminator with 1x1s1
smaller receptive field (4x4) | 1-564
LRelU

1 64->64 — 64->128

Conv Conv Conv
4xa4s2 4x4s2 4x4s1 Conv
[ 64->128 |—~ 128->256 [— 256->512 |—+ 4x4s1 |—
BN BN BN 512->1

Conv
Discriminator with 4x4s2
larger receptive field (94x94) | 1->64
LRelU

Figure 3. The network structures of the two discriminators for our cGAN
based halftoning algorithm. After each activation, dropout [49] with p = 0.5
is applied to prevent discriminator overfitting. The notation 4x4s2 indicates a
convolution kernel of size 4 x 4 is applied with a stride of 2, 1— >64 indicates
that the input tensor has 1 channel and the output tensor has 64 channels,
and BN and LRel .U stands for batch normalization [50] and leaky RelLU ac-
tivation [51], respectively.

We train the cGAN with supervised training. The training
dataset of continuous-tone and halftone image pairs are generated
with the DIV2K dataset [52], where we first convert the images
to grayscale, then we divide them into nonoverlapping 256 by
256 patches, which then are converted to halftones using the DBS
[26] algorithm. This results in around 28,000 image pairs in the
training dataset.

For training the cGAN, we use the least-squares GAN [13]
loss as the adversarial loss (.£,;,). For the generator update, we
add the L1 loss between the ground truth image and the network
output (Z57), which is computed from both the end output and
the auxiliary branch output. We also add another loss term, which
we call the human visual system loss, defined as

1 N—1M—-1

Luvs = N ;) ZO{(hHVS**I)[m,n]—(hHVS**H)[mm]}Z
1

where I denotes the continuous-tone image, H the halftone image,
and hyys the human visual system filter proposed in [53]. The
overall loss for the generator update is given as

L =Ly +0.5%67 +30.0Lyys 2)

For the discriminator update, we only use the adversarial loss.
Since the discriminators easily overfit, we scale down the learning
rate for updating the discriminators. For the smaller discriminator,
we scale the learning rate by 0.2, and for the larger discriminator,
we scale the learning rate by 0.04. Also, instead of updating the
discriminators using generated images from the current batch, we
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use a pool of generated images following [54], which is known to
prevent the discriminators from un-learning to distinguish image
artifacts from generated images that they previously learned. We
train the networks for 60 epochs with the Adam optimizer [55]
with hyperparameters (B, 2) = (0.5,0.999) and batch size of 8.
For the learning rate, we start with 5.0 x 1072, and after 30 epochs
it is scaled by 0.9 every epoch.

Deep AR models for halftoning

As mentioned earlier, naive application of deep AR mod-
els can be highly time-consuming at inference since it requires a
number of forward passes of the network equal to the number of
pixels in the image. While for continuous-tone images this can
be bypassed by generating a downscaled version of the image and
upscaling, e.g., as in [42], it is not a solution for halftone images.

To reduce runtime at inference, we propose using a deep
feedforward network, which we call a feature extractor, to map
the continuous-tone images to a feature space prior to AR infer-
ence. Jointly training both the feature extraction network and the
AR network will result in the features closely related to the out-
put halftones, which will allow us to perform AR inference with
the AR network consisting of only a relatively small number of
masked convolution layers. The overall framework is illustrated

in Figure 4.
recurse in
m raster order
Output

halftone

very
shallow Output

Input .
) Feature extractor using a deep CNN > it halftone

Figure 4. The proposed framework for deep AR model based halftoning.

For our halftoning algorithm, we use the generator from the
c¢GAN halftoning algorithm as the feature extractor, except that
we remove the output convolution layers and replace them with a
single 1 x 1 convolution layer. For the AR network, we use four
masked convolution layers with gated activation [22] followed by
a 1 x 1 convolution layer with sigmoid activation.

For training the deep AR model, we jointly train the fea-
ture extractor and the AR network from scratch. Since the out-
put is a binary halftone, we use pixel-wise binary cross entropy
loss for training, and the same dataset used for training cGAN is
used. We again use the Adam optimizer [55] with hyperparame-
ters (B1,B) = (0.5,0.999), with learning rate of 5.0 x 1073 and
batch size 4. The deep AR model is trained for 30 epochs and we
do not use any learning rate scheduling.

Results

We will show some halftone results here by using the lake
image in Figure 5. This image is of size 2040 x 1356, and we will
zoom into two patches in the image marked with red and blue
rectangles in the figure. The red patch is of size 200 x 133 and the
blue patch is of size 300 x 200.

Figure 6 shows halftone results on a textured region of
the image (blue patch in Figure 5). Comparing the halftones
generated by our algorithm to the halftone generated by the
DBS screen, we can see that our algorithms generate less noisy
halftones. On the other hand, our algorithms generated halftones

158-3



Figure 5. The original continuous-tone image to be used for showing
halftoning results.

that are comparable to the halftone generated by the DBS algo-
rithm in this area. The error diffusion result shows more detail in
the siding of the buildings than all the other halftone results due to
the known edge enhancement effect of error diffusion algorithm
[56].

Figure 7 shows halftone results on a smooth region of the
image (red patch in Figure 5). Here, we can see that error diffu-
sion contains visible vertical and maze-like artifacts, whereas the
halftone images generated by the other algorithms do not show
such artifacts. Again, the halftone generated by the DBS screen
is noisier than the halftones generated by our deep learning based
algorithms.

While the deep learning based halftoning algorithms are
showing promising results, deep learning is inherently computa-
tionally expensive, so it is worth discussing the runtimes it took
for running each algorithm on the lake image. The deep learn-
ing based algorithms are implemented using PyTorch [57], and
we performed experiments with a machine that runs on an Intel
i7-9700K CPU with 3.6GHz clock, 16GBs of RAM, and a single
core of NVIDIA GeForce RTX2070 super GPU. To perform infer-
ence on the entire lake image, cGAN took around 11s on average,
whereas the deep AR model took around 2500s. In comparison,
the DBS algorithm, which is implemented in C, took around 800s
on average.

Conclusions

In this paper, we discussed applying two widely used deep
generative models, mainly conditional GANs and deep AR mod-
els, for halftoning. For the conditional GAN model, we imple-
mented the generator network using a stack of densely connected
blocks, and used two independent discriminators to stabilize the
training. For the deep AR model, we proposed using a deep feed-
forward convolutional neural network to convert the input image
into a feature space, and then performing AR inference using a
relatively small AR network. Our halftoning algorithms produced
halftones less noisy compared to DBS-screened halftones, espe-
cially in textured regions. On the other hand, halftones in smooth
image regions showed that our halftoning algorithms do not gen-
erate the artifacts commonly associated with error diffusion algo-
rithms. Overall, our halftoning algorithms show great promise in
that they are able to generate halftones with comparable quality
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to those generated with the DBS algorithm.
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DBS-generated screen DBS . Ours (AR)

Figure 6. Halftone results on a textured region. Error diffusion is implemented using the algorithm in [29] with serpentine raster scan, the DBS screen is
generated using the algorithm in [28], and the DBS algorithm is from [26]. The continuous-tone and halftone images are zoomed by 200%.
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Figure 7. Halftone results on a smooth region. Error diffusion is implemented using the algorithm in [29] with serpentine raster scan, the DBS screen is
generated using the algorithm in [28], and the DBS algorithm is from [26]. The continuous-tone and halftone images are zoomed by 300%.
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