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Abstract
The detection of the contaminants in daily food and drinking

water is crucial for global public health. For heavy metals detec-
tion of Mercury (Hg) and Arsenic (As), our group has proposed a
novel paper-based and microfluidic device integrated with a mo-
bile phone and an image analysis pipeline to capture and ana-
lyze the sensor images on-site. Still, the detection of lower con-
tamination levels remains challenging due to the small number of
available data samples and large intra-class variance of our ap-
plication. To overcome this challenge, we explore traditional data
augmentation and GAN-based augmentation techniques for syn-
thesizing realistic colorimetric images; and we propose a CNN
classifier for five-contamination-levels classification. Our pro-
posed system is trained and evaluated on a limited dataset of
126 phone captured images of five contamination levels. Our sys-
tem yields 88.1% classification accuracy and 91.92% precision,
demonstrating the feasibility of this approach. We believe that
this approach of training deep learning models on limited detec-
tion images datasets presents a clear path toward phone-based
contamination-levels detection.

Introduction
To address the threats of heavy metals As and Hg to food

safety, our group has proposed a novel paper-based, microflu-
idic biosensor. Fig. 1 shows the proposed detection mechanism
of our biosensors and the test interpretation. Two kinds of the
aptamer-functionalized particles specific to Hg2+ and As3+ are
preloaded on each of the upper, and lower two circular pads, re-
spectively. Test samples are dropped in the inlet of the biosensors.
The biosensor shows colorimetric responses in the presence of the
target after the test solution interacts with the corresponding par-
ticles deposited on the testing areas [1].

To detect and measure heavy metal contaminants in food or
liquids, we propose two image analysis methods to obtain a higher
prediction accuracy with our developed paper-based devices in
our previous work. (1) We convert images of the colorimetric
response captured with a mobile phone camera to grayscale im-
ages, and then we use ∆E from a white background as our baseline
method to correlate the optical properties with the different con-
centrations of the target, and optimally quantize these responses
into five groups to evaluate the prediction accuracy [2], [3]. The
prediction accuracy is shown in Table 1. The ∆E from the global
background method shows an average prediction performance of

Figure 1. Detection mechanism of our biosensors and test interpretation.

(To illustrate the different particles specific for Hg and As, the particles spe-

cific for Hg are labeled blue in the figure; but the actual particles are colored

light pink.)

60%. Its effectiveness is restricted by the limited dataset and the
insufficient utilization of the spatial information contained in the
sensor pad images.

Table 1: Performance of the method based on ∆E from the
global background.

Class C 1 C 2 C 3 C 4 C 5
Accuracy 91% 60% 43% 20% 86%

(2) To further improve the accuracy, we consider the use of
the spectral reflectance of the sensor pad, then develop two dif-
ferent machine learning approaches: k-nearest-neighbor with se-
quential forward feature selection to determine the best set of fea-
tures, and random forest with principal component analysis for
feature reduction for classifying the level of contamination by
As3+ into one of five categories. The accuracy of these two mod-
els is compared by implementing them with the same training and
test datasets. It turns out that the RF model with PCA feature se-
lection performs well in terms of accuracy compared to the k-NN
classifier. Table 2 shows the prediction accuracy of the RF model
with PCA features. The classification performance yields 86.6%
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average accuracy which is higher than the baseline model. The
challenging part of the spectral imaging model is that the spectral
data must be obtained using an expensive and professional optical
component, like a spectroradiometer [4].

Table 2: Performance of the RF model with PCA features.
Class C 1 C 2 C 3 C 4 C 5

Accuracy 82% 80% 71% 100% 100%

Nowadays, convolutional neural networks (CNN) have
gained tremendous popularity in computer vision, especially in
the image classification domain for better performance than pop-
ular image processing methods [5], [6]. Deep learning algo-
rithms yield high classification accuracy by using large, annotated
datasets of images. Therefore, to develop accurate image classi-
fiers for the contamination-levels classification task, we need a
large dataset of images of colorimetric responses. However, ob-
taining large-scale datasets of detection images of contamination
levels is challenging because of limited test samples.

One approach to overcome this challenge is to use data aug-
mentation, a standard procedure to obtain good performance by
deploying rotation, flip, translation, and scaling techniques. An-
other emerging deep learning generative model inspired by game
theory to synthesize images is the Generative Adversarial Net-
work (GAN) [7]. The GAN model consists of a generator to cre-
ate fake images and a discriminator to distinguish between the
real and fake images. These two parts are trained in an adver-
sarial process. Different variations of the classic GAN models
have been proposed. As a representative example, pix2pix is a
GAN model addressing image-to-image translation problems [8].
Recent medical and biological imaging applications have shown
that the GAN framework can successfully generate images and
obtain reasonable performance [9], [10], [11]. Therefore, it is ap-
propriate to apply a GAN model to generate synthetic images for
training purposes.

We aim to solve the classification problem posed by a small
scale of data samples and large intra-class variance. In this pa-
per, we propose an approach to generate high-quality colorimet-
ric responses from our detection images captured by a phone
camera and apply a CNN based on EfficientNet-B0 [12] for the
contamination-levels multi-classification. The proposed method
is evaluated on five contamination levels, and is compared with
our previous work. We hope that the proposed methods can be
a strong candidate for phone-based contamination-levels detec-
tion. Because the user need only take an image of the test re-
sponse using their phone camera and feed the captured image into
the proposed model, the model can automatically classify the test
sample’s contamination level.

The rest of the paper is organized as follows. In Section 2, we
present the dataset, explore two methods for generating realistic
synthetic images, and evaluate the classification results achieved
by the proposed CNN classifier. Section 3 reports the experimen-
tal results for classifying contamination levels. In Section 4, the
conclusions are given.

Methodology
The main challenges of our project are the small scale of

available data samples and the large intra-class variance. To over-

come these challenges, we first use traditional data augmentation
techniques to enlarge the training dataset of the colorimetric sig-
nals (AUG data), then train the proposed CNN model with these
training sets, and test with the real test dataset. Finally, we syn-
thesize realistic images using pix2pix (GAN data), and observe
the classification accuracy after adding the GAN data to the AUG
training set.

Dataset description
In this study, the colorimetric responses of 5 contamination

levels (As3+) are used as the experimental data. Our optical sys-
tem first acquires the colorimetric signals of the biosensors. The
optical system mainly consists of a photo studio booth (Amzdeal,
purchased from Amazon.com) for providing the controlled D65
illumination environment, a mobile phone camera (iPhone 11 Pro
Max, CA, USA), and a fixture to hold the mobile phone. Next,
we extract the regions of interest and obtain the corresponding
segmentation masks, as illustrated in Fig. 2. Through the above-
mentioned steps, our dataset consists of 126 phone captured im-
ages: 35 in Class 1 (0, 1, 2 ppm), 32 in Class 2 (4, 5 ppm), 22
in Class 3 (10 ppm), 15 in Class 4 (20, 30 ppm), and 22 in Class
5 (50 ppm). All the ROIs are resized to a uniform dimension of
200 × 200 pixels. Finally, we divide the original dataset into a
training set, a validation set, and a test set according to the ratio
5: 2: 3, as shown in Table 3.

Figure 2. Dataset examples of 5 contamination levels: the ROI images

of the colorimetric signal and the corresponding segmentation masks (The

numbers in blue are the grayscale values. To distinguish different classes,

we use different grayscale values to label different classes’ response areas).

Table 3: Overview of the small-scale dataset showing the divi-
sion, respectively, into training, validation, and test sets.

Class Training set Validation set Test set Total
Class 1 17 7 11 35
Class 2 16 6 10 32
Class 3 11 4 7 22
Class 4 7 3 5 15
Class 5 11 4 7 22

Traditional data augmentation
Deep learning algorithms yield high classification accuracy

by using large, annotated datasets of images to train a network.
This can cause a danger of overfitting when a deep network deals
with a limited numbers of training images. One standard method
to address this problem uses traditional data augmentation meth-
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ods. Classic data augmentation techniques include scaling, crop-
ping, flipping, rotation, translation, and other deformations. The
color of the image is important to our application, and we aim to
train a classifier to predict the unknown test image’s contaminant
level based on its colorimetric signal. Therefore, we choose the
rotation, flipping, and shifting data augmentation methods, and
avoid color deformation.

Generative adversarial network
Another promising tool to generate synthetic images is the

Generative Adversarial Net (GAN). The GAN model consists of
a discriminator D to discriminate between the real and fake im-
ages, and a generator G generating fake images to fool the dis-
criminator. These two parts are trained in an adversarial process.
Recent studies have shown that the GAN framework can success-
fully generate images and obtain good performance [13]. Inspired
by [10], we explore pix2pix, a variant of conditional GANs for
learning the translation from the binary segmentation images to
the colorimetric signal images. The loss function is shown in (1).

G∗ = argmin
G

max
D

LcGAN(G,D)+λLL1(G) (1)

Here the generator G tries to minimize this loss function, whereas
the discriminator D tries to maximize it, λ is the hyperparameter
that balances the L1 loss term, which is used to obtain sharp im-
ages. One of the limitations of pix2pix is that it requires paired
images to train the network. For our application, the input paired
images to train the network are the ROI images of the colorimetric
signal and the corresponding segmentation masks, as illustrated in
Fig. 2. Then, we only feed the segmentation masks to the trained
pix2pix network to generate realistic colorimetric signals.

Proposed CNN architecture
EfficientNet models are based on uniformly scaling the net-

work width, depth, and resolution to yield higher test accuracy
and better efficiency with a smaller number of parameters than
previous ConvNets, like RestNet-50, and Inception-v2 [14], [15].
EfficientNet consists of a series of models from B0 to B7, and
the number of parameters varies from 5 × 106 to 66 × 106 [12].
Considering that we focus on a phone-based contamination detec-
tion application, we use EfficentNet-B0 with the least number of
parameters for transfer learning and to extract features of the gen-
erated detection images. To perform the five-contamination-levels
classification task, we add a sequence of two fully connected lay-
ers with batch normalization, RELU activation functions, and a
dropout layer. Finally, the classification layer contains five output
units for 5-class classification based on using the softmax acti-
vation function. To test the performance of our proposed CNN
classifier, we use accuracy, precision, and F-1 score as the evalu-
ation metrics.

Experiments and results
To solve the multi-class classification problem posed by the

small scale of our dataset and its large intra-class variance, we
explore two kinds of data augmentation techniques, and compare
their effectiveness for classifying the five contamination levels.
The experiments are set up as follows:

(1) We enlarge our training dataset (AUG training data) by
using traditional data augmentation, then calculate the test accu-

racy of our proposed CNN model trained with the different num-
bers of the AUG data.

(2) To compare the classification effects between the tradi-
tional data augmentation method and pix2pix, we use the AUG
training dataset that yields the highest test accuracy to train
pix2pix. Then we input the specific segmentation masks to
pix2pix to generate the corresponding realistic colorimetric sig-
nal images.

Traditional data augmentation evaluation
According to the proposed approach, we first apply rotation,

flipping, and shifting to produce a large number of images for the
training and validation datasets. Here, Nrotation = 70, N f lip = 2,
and Ntrans = 24. Inspired by [16], we randomly sample the aug-
mented images to additively form the different training dataset
groups Dtrain1 ⊂ Dtrain2 ⊂ ... ⊂ Dtrain8 such that Dtrain1 only
consists of the original training dataset, each class of Dtrain2 in-
cludes 1,000 samples, ..., and each class of Dtrain8 includes 7,000
images. Then, we randomly select 1,000 images per class for the
validation dataset.

We train the proposed CNN classifier separately for each set
of the training groups and evaluate the test results on the same
original test dataset. The accuracy results for five contamination
levels with the increasing training datasets are illustrated in Fig.
3. It shows that the classification results improve from 61.9% with
no AUG data to 88.1% (Dtrain4, the optimal AUG data group). We
also notice that after Dtrain4, the classification results drop down
slightly and continue to fluctuate around 80%. Table 4 presents
the confusion matrix for the optimal AUG training data group
Dtrain4. The classification performance using only classic data
augmentation (Dtrain4) yields 91.92% average precision, 86.6%
average recall, and 86.7% average F-1 score.

Figure 3. Classification results for the five-classes test data as a function

of the training set size.

Pix2pix data augmentation evaluation
Researchers have reported that the augmented images pro-

duced by the traditional data augmentation approach are highly
correlated; and GANs are a promising approach to generate a
large, diversified dataset of images for training purposes [10],
[16]. So, we use the optimal AUG data group Dtrain4 to train
pix2pix and input the segmentation masks of the well-trained
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Table 4: Confusion matrix for the CNN model trained with the
Dtrain4 group.

Ground Predicted Class
Truth C1 C2 C3 C4 C5 Precision Recall
C1 11 0 0 0 0 84.6% 100%
C2 1 9 0 0 0 75% 90%
C3 1 3 3 0 0 100 % 42.9%
C4 0 0 0 5 0 100% 100%
C5 0 0 0 0 7 100% 100%

pix2pix to generate a realistic colorimetric images dataset. Here,
we also additively form the synthetic training group datasets
(GAN data) Dtrain4 ⊂ Gtrain5 ⊂ Gtrain6 ⊂ Gtrain7 ⊂ Gtrain8.
To avoid the influence of the edges in the training group on the
classification, the segmentation masks of Gtrain5 and Dtrain5 are
the same, and this requirement applies to the rest of the training
groups, i.e. Gtrain6 and Dtrain6 are the same, and so on.

Fig. 4 shows the synthesized high-quality colorimetric im-
ages of five-classes with the well-trained pix2pix. Fig. 3 shows

Figure 4. Synthesized examples of five-classes with pix2pix. For each

class, the figures from left to right are a segmentation mask, a synthesized

image generated by a well-trained pix2pix, and the colorimetric signal’s orig-

inal image.

the test accuracy of the GAN-based synthetic augmentation ex-
periments. Even though the highest classification result is still
obtained with Dtrain4, adding the synthetic training data does
improve the accuracy for the training sets Gtrain6, Gtrain7, and
Gtrain8, compared with the same training set number in the AUG
training group. It also reduces the fluctuation in accuracy.

Conclusion
In this paper, we focus on solving the multi-class classifica-

tion problem posed by a small scale dataset and large intra-class
variance. We propose a CNN classifier and explore two kinds of
data augmentation techniques to compare their effectiveness for a
classification task. Moreover, we conclude that this proposed ap-
proach demonstrates promising results for a contamination-levels
classification task with limited data.
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