
Effect of hue shift towards robustness of convolutional neural
networks
Kanjar Dea, b and Marius Pedersenb
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Abstract
Computer vision systems become deployed in diverse real

time systems hence robustness is a major area of concern. As
a vast majority of the AI enabled systems are based on convolu-
tional neural networks based models which use 3-channel RGB
images as input. It has been shown that the performance of AI
systems, such as those used in classification, is impacted by dis-
tortions in the images. To date most work has been carried out
on distortions such as noise, blur, compression. However, color
related changes to images could also impact the performance.
Therefore, the goal of this paper is to study the robustness of these
models under different hue shifts.

Introduction
Since the advent of Alexnet [1] in 2012, convolutional neural

networks (CNNs) have become the most extensively used tool for
computer vision tasks ranging from image classification to seg-
mentation in many different applications, such as medical imag-
ing [2], biometrics [3], and image quality [4]. Innovative net-
work architectures like Resnets [5] using residual blocks and skip
connections, Densenets [6] using densely connected blocks, VG-
GNets [7], GoogleNet [8] using inception module etc. have been
deployed in production level computer vision systems. For re-
source constrained environments like mobile devices light weight
architectures like Mobilenets [9, 10] are preferred over large mod-
els where there is trade-off between model size and accuracy.
With mobile device-based computer vision applications becom-
ing more popular, robustness is also one of the key considera-
tions. Apart from image classification, CNNs have been used
successfully in other computer vision tasks like image segmen-
tation [11], object detection [12], image super resolution [13].
CNNs typically use a 3-channel RGB image as input and the
CNN architectures are composed of layers of a combination of
different types of blocks like convolution blocks, pooling lay-
ers, fully connected layers to name a few. To the best of our
knowledge the colour sensitivity of these CNN architectures are
not deeply studied and is an open area of research. Image qual-
ity has an impact on the performance of deep convolutional net-
works and some of the prior research is in line with this hypoth-
esis [14, 15, 16, 17, 18, 19, 20, 21]. Over the years, the robust-
ness of the deep convolutional neural network has become a topic
of active research among researchers [22, 23, 24, 25]. Recently,
Taori et al. [26] studied in detail about measuring natural distri-
bution shifts in images and provided a testbed for evaluating ro-
bustness. New benchmarks are proposed towards making robust
deep neural network models [27]. Recent research [28] suggest
that the performance of classic architectures like Resnet can be

improved by revisiting augmentations, hyper-parameters, training
methodology, etc.

One of the problems encountered by systems deployed us-
ing state-of–the-art convolutional neural networks is that if there
is a shift in the distribution of the testing data from the trained
data the performance of the CNNs drops. Robustness to distri-
bution shift of data is an active area of research and few datasets
have been published in this area like Imagenet-C [29], Imagenet-
A. [30], Imagenet-R [31] etc. to name a few. Therefore, to the
best of our knowledge, the effect of hue shifts on the performance
of state-of–the-art convolutional neural networks has not been in-
vestigated. Therefore, the goal of this paper is to explore the effect
of hue shift on the performance of state of the art convolutional
neural networks. An example of effect of a hue shifted image on
a CNN based classifier model is shown in Figure 1.

Figure 1: Example of a hue shifted image of a bear being misclassified as
a tennis ball by VGG-19 classifier

Investigating this aspect is of importance also in an colour
imaging aspect. Gamut mapping algorithms can create hue
shifts [32], which in turn could impact CNN based computer vi-
sion systems. In addition, other applications use the hue channel
such as efficient image hashing [33] and data hiding [34] etc. Re-
cently, Generative Adversarial networks [35] have been used for
image generation and image enhancement tasks like image super-
resolution [36], image denoising [37], image deblurring [38] , im-
age colourization of gray-scale images [39, 40, 41].

The paper is outlined as follows; first we present the related
works, then we present the methods before we present the results
and discuss them, at last we conclude.

Related works
One of the earlier works which examined the colour repre-

sentation of deep convolutional neural networks like VGG-19 and
Alexnet were proposed by Engilberge et al. [42] where they in-
troduced hue specificity and colour sensitive units. Their results
showed that these units have different hue-specific characteristics,
dependent on the layer. The units belonging to the first layers are
more sensitive to color, and the later units are more sensitive to
the class. Experiments conducted by Buhrmester et al. [43] ex-
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ploring the effect of colour on image classification yielded some
interesting results and certain animal and landscape classes de-
pend on the colour information present in the images. They also
showed that the color information in some cases are not only in-
creasing the performance of the CNN, and that it is color space
dependent. Recently, De and Pedersen [44] investigated the im-
pact of colour on the robustness of deep neural networks where
they have synthetically generated colour distorted images using
the publicly available Imagenet dataset [45] and conducted de-
tailed experiments using state-of–the-art convolutional neural net-
works to study the robustness of these networks. They evaluated
Densenet [46], Resnet [5], VGG19 [7], GoogleNet [8], MobileNet
[9], and Alexnet [1]. The performance of these networks reduces
when information from one or two colour channels in the RGB
colour space is removed, and when hue or saturation changes is
introduced it also impacts the performance. Geirhos et al. [47] has
shown that Imagenet-trained convolutional neural networks are
biased towards texture, but the impact of hue colour component
in images is not explored in detail. Kantipudi et al. [48] demon-
strated that colour channel perturbation attacks on the CNN archi-
tectures VGG, Resnet, and Densenet architectures posed security
threats.Hosseini and Poovendran [49] have shown adversarial ex-
amples can be created by shifting hue and saturation channels in
HSV colourspace and the authors have shown that VGG architec-
ture fails terribly for these adversarial examples.

Methods
In this section we explain the details about the experiments

conducted in this study.

Data Generation
In this paper, we use the colour images of the validation set

of the publicly available Imagenet Database. Removing the gray-
scale images, we have a total of 49101 colour images and we use
the Hue-Saturation-Value (HSV) colour space of these images
to synthetically generate hue-shifted test images for our experi-
ments. HSV colour space is a 3-D representation in the form of a
hexacone where the intensity is represented by the central vertical
axis. Hue is an angle lying in the range 0 to 2π relative to the red
axis where red is at angle 0, green at angle 2π/3, blue at angle
4π/3 and finally red again at angle 2π . Saturation measured in
the range 0 (center) to 1 (outer boundary) is the radial distance
from the central axis to the outer surface. In this paper, we have
generated test images where we shift the hue of the images by
π/6 in the range 0 to 2π . [50] Examples of the images used for
the experiments are shown in Figure 2.

CNN Architectures
Convolutional neural networks are generally a combination

of convolutional blocks, pooling layers and activation functions.
For this study we have considered starting from standard archi-
tectures like Alexnet, Densenet, VGG, GoogleNet, etc. to the
state-of–the-art Efficient Nets, Normaliser free nets for robust-
ness analysis for the task of image classification. Apart from
this, different augmentation, training, and scaling strategies are
investigated for some of the architectures. Pytorch library is used
for all experiments and Imagenet1K pretrained models from Py-
torch model zoo (Torchvision 0.2.0) and TIMM library [51] are
used for all experiments. Top-1 Accuracy parameter was anal-

ysed for a detailed robustness analysis. Augmentation strategies
during training CNN like Augmix [52] and Mixup [53] have been
shown in the past to have a significant impact on the robustness
of the models. EfficientNet V1 [54] are group of models which
use compound scaling techniques in depth, width and resolution
and inverted residual convolutions (MBconv). For our experi-
ments we use lowest resolution (B0) to highest resolution (B7)
models. We conducted further experiments on EfficientNet V1
models which were subjected to adversarial training using Adver-
sarial prop [55] where during training a separate auxiliary batch
norm was used for adversarial examples having different under-
lying distribution which were generated during training. Semi-
supervised learning approach involving knowledge distillation us-
ing teacher and student networks [56] is known to have an effect
on robustness. Teacher networks are trained on labeled images
and these teacher networks are used to generate pseudo labels on
unlabeled images and these are used to train a student network,
JFT-300M dataset has been used some experiments to increase
the performance on Imagenet images. EfficientNetV2 [57] are
an advanced version of efficientnet models using the concept of
Neural Architecture Search [58] (NAS) and new operations like
Fused-MBConv which are smaller and can be trained faster and
three versions small, medium and large are used for our exper-
iments. Recently, Brock et al. have explored the limitations of
batch normalization [59] during training of convolutional neural
networks and proposed normalizer free resnets [60] and normal-
izer free networks [61] and these models have been explored for
our experiments.

Performance metric
To assess the performance of the CNN architectures we use

classification Top-1 accuracy. We make the prediction using dif-
ferent CNN architectures and compare it to the ground truth. The
top score is then calculated as the number of times a predicted
label from the CNN matched the ground truth label, and then di-
vided by the number of data points. This is calculated for the
baseline (no hue shift) and for the 11 different hue shifts.

Results and Discussion
There is a significant effect of hue shift on the robustness of

these models (Tables 1, 2 and 3). The main observation is that

Figure 2: Examples of the generated images
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Table 1: Classification Top-1 accuracy (%) of well-known CNN architectures on hue shifted images

Architecture
Hue Shift

None 30 60 90 120 150 180 210 240 270 300 330
Alexnet [1] 56.7 44.7 32.6 27.5 27.8 27.9 28.0 27.2 25.9 25.9 32.5 44.5
GoogleNet [8] 69.8 69.3 68.9 66.6 61.5 59.2 58.2 58.6 60.8 66.9 68.8 69.2
VGG-19 [7] 72.4 65.2 55.5 51.9 52.5 51.7 50.8 50.7 51.6 52.3 57.7 65.8
Densenet-161 [46] 77.1 72.3 66.7 64.1 63.1 61.6 61.0 61.2 61.7 62.9 67.0 71.9
Resnet-152 [5] 78.3 73.2 67.1 65.0 64.9 63.8 62.4 62.5 63.3 64.3 67.6 72.9
MobileNet-V2 [9] 71.9 65.1 56.2 53.1 53.4 52.6 51.3 51.8 53.1 54.3 58.5 65.1
EfficientNetV2S [57] 83.8 80.4 77.1 76.4 75.9 74.5 75.9 74.3 74.7 75.7 77.2 80.2
EfficientNetV2M [57] 85.0 81.8 78.9 77.8 77.6 76.9 78.2 76.4 76.8 77.8 79.2 81.7
EfficientNetV2L [57] 85.4 82.6 79.9 78.7 78.5 78.0 78.9 77.7 77.9 78.8 80.0 82.5
NF-Net F0 [61] 83.2 79.7 76.1 74.7 74.3 73.9 75.1 72.9 72.9 74.0 76.0 79.3
NF-Net F1 [61] 84.5 81.0 78.3 77.4 76.8 75.5 76.3 74.8 75.3 76.5 77.9 80.8
NF-Net F2 [61] 84.9 80.9 77.6 76.3 76.2 75.6 76.7 75.3 75.7 76.3 78.0 80.9
NF-Net F3 [61] 85.5 82.1 79.7 78.9 78.5 78.1 78.8 77.3 77.8 79.0 79.8 81.8
NF-Net F4 [61] 85.6 82.5 80.0 79.2 78.8 78.6 79.2 77.9 78.5 79.4 80.2 82.3

Table 2: Classification Top-1 accuracy (%) EfficientNet using different training strategies on hue shifted images

Training strategies
Hue Shift

None 30 60 90 120 150 180 210 240 270 300 330
EfficientNet-B0 [54] 76.8 71.5 66.0 65.0 65.1 64.1 65.0 63.5 63.0 64.0 66.5 71.4
EfficientNet-B0 + ap [55] 77.0 73.1 68.4 66.6 66.5 66.7 67.9 66.3 65.6 66.6 69.4 73.2
EfficientNet-B0 + ns [56] 78.6 73.0 66.7 64.0 63.8 63.2 61.8 62.3 63.7 64.5 67.6 73.5
EfficientNet-B1 [54] 78.8 74.8 70.2 68.9 68.6 67.9 68.6 67.6 68.1 68.8 70.7 74.5
EfficientNet-B1 + ap [55] 79.2 75.7 71.5 70.2 70.2 69.8 70.6 69.1 68.5 69.6 71.3 75.4
EfficientNet-B1 + ns [56] 81.4 76.7 70.8 68.7 68.6 67.7 66.2 66.7 67.9 69.0 71.6 76.5
EfficientNet-B2 [54] 80.0 75.6 71.1 70.0 69.9 69.2 69.4 67.9 68.3 69.2 71.1 75.4
EfficientNet-B2 + ap [55] 80.2 77.2 73.4 72.2 71.9 71.3 72.1 70.9 70.6 71.2 73.3 76.8
EfficientNet-B2 + ns [56] 82.4 78.0 72.9 71.0 70.7 70.1 68.5 68.5 69.6 70.4 73.0 77.8
EfficientNet-B3 [54] 81.6 77.8 73.7 72.7 72.8 71.9 72.2 71.0 71.3 72.3 74.3 77.7
EfficientNet-B3 + ap [55] 81.8 79.2 76.3 75.1 75.1 74.7 75.0 74.2 74.6 75.3 76.8 79.2
EfficientNet-B3 + ns [56] 84.0 80.1 75.4 73.9 73.8 72.9 72.0 71.8 72.4 73.0 75.8 80.2
EfficientNet-B4 [54] 83.0 79.5 75.6 74.6 75.0 74.2 74.3 73.4 73.6 74.5 76.1 79.2
EfficientNet-B4 + ap [55] 83.2 81.0 78.7 77.8 77.6 77.0 77.2 76.5 76.6 77.4 78.5 80.9
EfficientNet-B4 + ns [56] 85.1 81.0 77.6 76.6 76.6 76.3 75.8 74.9 75.5 76.3 78.0 81.1
EfficientNet-B5 [54] 83.7 80.3 77.1 76.5 76.4 75.1 75.8 74.9 75.3 76.1 77.5 80.4
EfficientNet-B5 + ap [55] 84.2 82.2 80.1 79.3 79.0 78.1 78.3 77.8 78.3 79.0 80.0 82.0
EfficientNet-B5 + ns [56] 86.0 82.4 79.6 78.9 78.7 78.1 77.6 76.7 77.3 78.1 79.7 82.3
EfficientNet-B6 [54] 84.0 81.2 78.2 77.3 77.2 76.3 76.1 75.6 75.9 76.7 78.2 81.0
EfficientNet-B6 + ap [55] 84.7 82.8 80.8 80.3 80.2 79.4 79.3 79.0 79.6 80.1 80.9 82.6
EfficientNet-B6 + ns [56] 86.4 84.1 82.1 81.7 81.4 80.5 80.6 79.3 80.1 80.9 81.8 84.0
EfficientNet-B7 [54] 84.8 81.9 79.2 78.6 78.6 77.4 78.0 77.0 77.3 78.1 79.3 81.9
EfficientNet-B7 + ap [55] 85.0 83.1 81.1 80.5 80.0 79.5 79.5 79.0 79.4 79.9 81.1 83.0
EfficientNet-B7 + ns [56] 86.8 84.3 82.3 82.1 81.6 80.9 80.1 79.9 80.7 81.3 82.2 84.0

Table 3: Classification Top-1 accuracy (%) of different architectures with Resnet-50

Res-50 Models
Hue Shift

None 30 60 90 120 150 180 210 240 270 300 330
Resnet 50 [5] 76.1 69.9 62.5 58.9 59.0 58.1 57.4 57.6 57.8 58.3 62.5 69.4
Resnet 50 + Augmix [52] 77.5 71.7 63.8 60.6 60.2 59.2 59.0 58.7 58.9 60.0 64.3 71.2
Resnet RS-50 [28] 79.8 75.2 70.3 68.5 68.3 67.3 69.2 67.2 66.3 67.7 70.6 75.0
NF-Resnet 50 [60] 80.7 75.9 70.9 69.5 69.4 69.8 72.5 68.6 67.2 68.6 71.5 75.9

IS&T International Symposium on Electronic Imaging 2022
Color Imaging XXVII: Displaying, Processing, Hardcopy, and Applications 156-3



when the hue angle is shifted in either direction in the hue circle,
there is a decrease in classification accuracies of the pretrained
models. This behaviour is demonstrated by all architectures in-
cluded in our study, and the networks perform the poorest when
the hue of the original test images are shifted by 150 to 210 de-
grees and with higher hue shifts we have poorer classification ac-
curacy. Architectures with higher scale (Efficient net B6,B7, NF-
Net F4) are more robust to the hue shift. Training strategies like
Adversarial training, Noisy Student also improves the robustness.
In addition, efficient augmentation strategies make some impact
on hue shifts. GoogleNet has the smallest drop in performance
for all architectures. Tables 1-3 show the summary of important
results. From Table 2 we infer that the model’s robustness to hue
shifts increases with the increase in resolution of images (B0 has
resolution of 224× 224 and B7 has a resolution of 600× 600).
Further, it is observed that the training procedure also has an im-
pact on the robustness of images that are impacted by hue shifts.
Training the same models using Adversarial prop [55] has more
robustness to hue shifts. It is also observed that noisy student
training improves the robustness of the system but comes with the
overhead of extra data requirements. Table 3 gives a summary
of the comparison between vanilla Resnet-50 architecture, with
Resnet-50 architecture trained augmix (pretrained weights from
the authors), Resnet RS-50 which is trained with advanced hyper-
parameters, augmentations, etc. and Normaliser free Resnet-50
models and we can see that all these have an impact on perfor-
mance on hue shifted images and NF-Res50 being more robust to
hue shifts. Different experiments conducted during this study sug-
gest that the hue component has an impact on the performance of
the convolutional neural networks and not only the architectures
but the method in which these networks are trained and augmen-
tations and hyper-parameters during the training stage also have
an effect on the robustness of the CNN models.

Conclusion
To the best of our knowledge, very little work has been done

to study the effect of hue shift on the robustness of convolutional
neural networks based systems (CNNs). Previously, it was ex-
plored how different colour distortion affects CNNs, which served
as a motivation to explore how something fundamental like hue
shifts affects the inference of state-of–the-art deep neural net-
works. This can in turn motivate future researchers to incorporate
colour information to build more robust systems. Colour informa-
tion in general has not been deeply studied with respect to deep
learning models and is an important parameter for consideration
for robustness. With the robustness of CNNs to adversarial at-
tacks becoming more important every passing day, the effects of
hue must be explored in detail and the experiments presented in
this paper are one of the first steps in this direction.
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