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Abstract

Measuring the shape, motion, and physical properties of os-
cillating fluids is critical for understanding the physics of fluid
systems and optimizing and controlling them in real-time. Con-
ventional surface measurement techniques such as profile analy-
sis or stereo reconstruction are not effective for monitoring flu-
ids in industrial processes due to occluding structures, extreme
heat, and complex light interactions at the fluid surface. We pro-
pose a video-based method comprising forward and inverse trans-
forms. The forward transform employs a physics-based fluid sur-
face model combined with a ray-traced renderer to map shape and
motion parameters to synthetic video frames. The inverse trans-
form uses machine learning models to recover surface parameters
from video. The inverse models are trained on synthetic data gen-
erated by the forward transform. We illustrate the method on an
industrial 3D printer for which we recover the motion and sur-
face of a molten aluminum alloy oscillating inside a microscopic
nozzle. The inverse transform is ill-posed but can be regularized.
We show that surface properties can be reliably inferred with ei-
ther a suitably regularized nearest neighbor regressor or a deep
convolutional network whose results are less stable but faster to
compute.

Introduction

Understanding the shape, motion, and physical properties
of oscillating fluids can provide insight into the physics of fluid
systems, enable the optimization of designs in industrial fluid
processes and enable real-time optimization of industrial mech-
anisms operating on such fluids. However, fluids in industrial
processes present many challenges to conventional measurement
techniques, such as occluding structures, extremes of heat and
pressure, and complex light interactions at the fluid surface. We
develop and illustrate an approach to this important class of prob-
lems for a specific application in monitoring and controlling the
liquid metal jet on the Xerox ElemX 3D metal alloy printer (Fig-
ure 1). A critical problem in maximizing print quality is con-
trolling the settling time of molten metallic fluid in the nozzle
between ejection events. Material properties, nozzle design, and
pump control can influence the settling time. The optimization
of some of these parameters will benefit from ways to quantify
the oscillation of the fluid. Here we use visual methods to moni-
tor the oscillation by inferring the shape of the metal-air interface
from high-speed video frames. The highly specular metallic sur-
face of the molten metal and the obstructive nature of the nozzle
precludes conventional depth-inference techniques. We develop
two physics-informed techniques that overcome these challenges.
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Figure 1. Xerox ElemX Printer 3D Aluminum Alloy Printer

Related Work

The recovery of shape from images has a long history in
computer vision. In the “shape from shading” [3] approach, one
uses the changes in reflectance with angle found on Lambertian
surfaces to infer the surface normal at each pixel in the image.
One can then integrate over the slopes to get a shape. Unfortu-
nately, these techniques do not work well on specular surfaces.
The specular highlights are very sparse so that there is not much
information about the surface, and when there are gradients, the
transitions tend to be fairly abrupt between minimum and maxi-
mum brightness levels.

Another common method is the “silhouette” method which
builds up a shape by looking at the shadow cast by an object when
viewed from the side. The object can be rotated to build up a
three-dimensional shape. It only works on convex shapes, but our
oscillating surface is approximately convex. Unfortunately, the
surface of interest is entirely occluded by the nozzle for half of
each oscillation and largely occluded by the heat shield the rest of
the time.

A very popular method for depth estimation in robotics is the
stereo algorithm [5], which recovers shape by finding matching
image patches in two different views of the same scene, comput-
ing their disparity (the difference in the position in each image)
and then solving a set of constraints based on epi-polar lines to
figure out the depth of the objects in the images. Unfortunately,
this method requires two different views. Given our high frame
rate, we would need to synchronize these views to less than 100
microseconds. This might be addressed by using a split mirror to
image two different views with the same camera. However, more
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fundamentally, highly-specular surfaces break one of the assump-
tions of stereo — that you can match patches between images and
compute disparity. Given highly specular objects, the light can
change dramatically with a small change in viewpoint, preventing
matching. The sparseness of highlights again makes it difficult to
gather information about more than a tiny portion of the scene.

LIDAR measures shape based on time of flight of reflected
light [7]. LIDAR has rapidly improved and fallen in cost and is
now available in compact solid state implementations, but there
are none that work with 0.5mm objects. This might be address-
able through mirrors or optics, however, the specularity again
plays a problematic role. The rays of the LIDAR are scattered
off the mirror-like surface of the molten metal droplet preventing
an image from being formed.

Recent work in the deep learning community has shown that
one can use a trained network to infer depth. It is possible to take
sparse depth information and complete shapes [2]. Unfortunately,
our information is very sparse and we do not actually have any
explicit depth information. Alternatively, a number of researchers
have demonstrated monocular depth reconstruction from single
images [10] which make use of a large training set of image pairs
with matching RGB and depth images. The network learns prior
information about the likely depths of everyday scenes such as
bedrooms which allow it to predict depth even though the depth
in monocular images are inherently unidentifiable (e.g., we do not
know if we are looking at a small close object or a large distant
object). We do not have the training data required to train these
models on the dynamics of the metallic droplets. In addition,
the density of information again relies on most surfaces having
diffuse Lambertian reflectance models so that we get light from
most parts of the scene. There has been a small amount of work
with non Lambertian surfaces (e.g., [6]), but these scenes are only
weakly non-Lambertian and have dense shape cues. Our droplet
scenes have very sparse, highly specular surfaces.

We were not able to find any existing work on estimating
depth that would be directly applicable to these highly specialized
images of sparse, highly specular, dynamic surfaces.
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Figure 3. Closeup of video frame showing approximately 0.5mm circular
nozzle, metallic fluid inside and some spatter

Method

The lab setup includes a high-speed camera mounted beneath
and to the side of the nozzle, and pointed up at the aperture. We
use the Phantom Veo 710 high-speed camera. The nozzle diame-
ter is approximately 0.5 mm. The scene is illuminated by a Sugar-
cube Ultra White LED coupled to a fiber optic guide. The appara-
tus appears in Figure 2. Images are captured using a Mitutoyu 2x
macro lens at 640 x 480 pixels and 19,000 frames per second. A
high-magnification macro lens is used to make the aperture visi-
ble. An example of a closeup of the nozzle can be seen in Figure 3.

Our approach overcomes the limited information in sparse
highlights through a strong physics-based prior. We then describe
two different ways of using this prior to estimate model state from
images.

Physics Model Prior

To introduce a prior from physics, we model the fluid inter-
face as a damped oscillating circular membrane under the force
of gravity [1]. In this model, material particles in the membrane
are assumed to move mainly along the direction normal to its flat
configuration, here the vertical direction. Thus, only vertical dis-
placements from a flat configuration are needed to describe the
membrane shape at any time. This problem has a closed-form so-
lution in terms of a series, where the spatial part is expressed using
Bessel functions and the temporal part using damped harmonic
functions. Since the oscillating surface is approximately convex,
we consider the membrane deformation as axisymmetric, and we
take only a few low-order terms from the series. With these as-
sumptions, the membrane’s vertical displacements is given by a
function D(r,t) for each radius r € [0,R] at time ¢ of the form

D(rt) = d+ [pr %rz}
+e " sin(wy1) [aRJo (201 %)]
e sin(wt) [bRJO (zm%)] , )

where A1 ~ 2.4048, Ay, = 5.52 are the first and the second roots
of the zeroth order Bessel function Jy. The term d + [pR — %rz]
represents steady-state membrane’s shape under the force of grav-
ity, 71,72 > 0 are the rates of the exponential decay, and @;, w, >
0 are the corresponding oscillation frequencies. Coefficients a
and b determine the relative weights of the two Bessel function
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Figure 4.  Radial mesh calculated from equation 1 (left) and ray-traced

specular image (right).

modes.

Inference from Images

Our ultimate goal is to recover the process parameters from
lab video of the fluid motions. The physics model (1) gives us a
way of going from high-level parameters, such as the oscillation
frequency and exponential decay constants, to a liquid air surface
shape at some point in time.

To translate the surface shape into an image, we construct
a radially symmetric mesh whose height is given by the Bessel
approximated vibrating membrane model in Eq. (1). We found
that the radial mesh gave a smoother render with fewer artifacts
than a rectangular mesh. We use Blender’s “SUN” light model
which generates parallel rays to approximate the focused LED
light source illumination of the droplet. We obtained the approxi-
mate position of the light source relative to the camera in terms of
azimuth and elevation angles by measuring angles in the lab. The
camera model used is the default Blender pinhole camera model.
We use the open source Blender “Cycle” ray tracing engine to
create an image of the mesh. We observed that the images from
the lab of the nozzle showed small highlights around the edge
of the nozzle, likely due to machining defects in manufacturing.
We observe that the highlights from these defects are active in
specific phases of oscillation and therefore are informative. We
added a number of randomized spherical artifacts around the out-
side of our nozzle model to generate similar artifacts in simulated
images.

We now have a way of going from the physics model to
membrane shape to rendered image. What we need is a method
to invert the process, i.e., going from images to shape coefficients
(p,d,a,b). This could be done as an optimization where one di-
rectly optimizes shape coefficients to alter the mesh and the ren-
dered image until it matches recorded video frames from lab data.
A natural measure would be the mean-squared error (MSE) in
pixel intensities between the synthesized image and the lab video
frame image.

Unfortunately, the sparse nature of specular highlights makes
the MSE objective function non-smooth in shape coefficients. To
illustrate this, consider the following argument. As it might be
the case with a random initialization, suppose that the location
of the highlight in one image is distant from the location of the
highlight in the lab image, so that they do not overlap at all. If
we alter the parameters of the simulator to move the highlight in
the synthesized image by a small amount, it will still not over-
lap with the lab image highlight. This means that the pixel-wise
MSE error will not change, and thus that there will be no sig-
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Figure 5. Forward-model-based rendering and machine learning inversion.

Figure 6. Subset of dataset showing renderings of membranes correspond-
ing to various shape parameters.

nal for gradient-based methods to optimize the shape coefficients.
It may be that Wasserstein or “earth mover” distance instead of
MSE could be used, but these metrics are expensive to calculate.
Over and above the cost of computing the metric, the rendering
pipeline to generate new images is also very expensive, making
this general approach infeasible.

We decided to employ a machine learning algorithm to go
from the images to shape coefficients of the model that gener-
ated the images. To simplify the matching process, we ignore the
temporal dimension initially and just look at matching frame by
frame. The basic idea is to pick some shape coefficients and then
ray-trace an image from them and then train a machine learning
model using these supervised pairs to go from image to shape co-
efficients (see Figure 5). We investigate two different machine
learning approaches that have distinct trade offs between com-
putational complexity and convenience of introducing temporal
priors. The first method is a non-parametric nearest-neighbor
method, and the second is a deep convolutional network approach.

We generated data for the machine learning approaches by
sampling shape coefficients from uniform ranges determined by
looking at video and bounding the reasonable extremes of these
parameters. We also sampled a small amount of variation in cam-
era angle and relative light position to make the system robust to
small errors in calibration. We sampled batches of 20,000 images
and 100,000 images. Examples of renders appear in Figure 6.
These images were also augmented by various transforms includ-
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Figure 7. Lab video frame (left) and closest ray-traced simulation (right).

radius r (m)

Displacement D(*.t) (m

Figure 8. A lab image and plotted radial profiles (D(-,t)) of membranes with
resembling rendered images. All of rendered images have similar slopes at
the one location where the highlight appears in the lab image, but different
slopes at other places where there is no illuminated structure to constrain the
model.

ing small displacements, contrast, noise and blur.

Regularized Nearest-Neighbor-Based Inference

In the nearest-neighbor method, we match a video frame
from the lab camera to each of the ray-traced synthetic images
and return the ten closest synthetic images along with the shape
coefficients used to generate these images. We experimented with
various possible metrics for determining the closeness between
a lab image and a synthetic image. We compared the matrix
2-norm, Euclidean distance and the perceptual computer vision
metric SSIM [9]. We found that matrix 2-norm and Euclidean dis-
tances outperformed SSIM. Moroever, Euclidean distance worked
as well as matrix 2-norm, so we proceeded with the former, being
the most computationally tractable. An example of this identifi-
cation is shown in Figure 7.

In our analysis of retrieved images we found that images
that appear to be similar could have very different shape coeffi-
cients. We compared the shape of the radially symmetric mem-
branes used to generate these images by plotting their radial pro-
files (D(+,1)) on a single graph. As shown in Figure 8, all of the
radial profiles have a similar slope at one particular location. This
means that a fixed light source bounces off all of these shapes in
the same way at this location. As a result, the sparse highlight in
the lab image provides a constraint for one point on the surface.
In contrast, the shape is unconstrained where the image is dark, so
there are multiple possible shapes that could be at these locations.
This suggests that the problem is only weakly identifiable.

To deal with weak identifiability at the frame level, we in-
troduce a regularization constraint that assumes that the time-
sequence of shape coefficients we identify should follow the as-
sumed evolution in Eq. (1), that is, d and p should be constant in
time, while the amplitude of each Bessel mode should behave as
an exponentially decaying sinusoid in time. In the ideal scenario,
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Figure 9.

10 closest neighbors to video frame image from dataset of 20k synthesized
examples. In blue, the identified function f(t).
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Figure 10. Inference of decaying sinusoidal oscillation. Vertical slices of
10 closest neighbors to video frame image from dataset of 100k synthesized
examples. In blue, the identified function f(t).

out of the multiple synthetic frames that resemble a lab image at
each time step, there will be at least one whose shape coefficients
are given by the aforementioned time evolution. In reality, we do
not observe this, so we resort to identifying a sequence in time of
synthetic images that will render a time-sequence of shape coeffi-
cients as close as possible to an ideal case.

Formally, let t = ¢;,...,t; be the number of time instances.
At each time step, a Euclidean norm || - ||, is used between lab
images and synthetic images to find the 10 best-matching syn-
thetic frames. We denote the set of nearest neighbor membrane

. 10, ¢/ . .
shapes at each time 7 as {D j(r,t)}j:l;/ 1y, To identify the shape
coefficients in time, we follow the motion of the center of the
membrane, r = 0. According to Eq. (1), its vertical displacement

should be given by a function of the form

f(t) = ae P'sin(6r — )+ ¢,

where we only aim at identifying the longest-lasting of the
two decaying sinusoids. In this formula, we introduced unknown
parameters «, 3,0, €, . Notice that we added a phase € to reflect
that the instant # = 0 is not well-defined. These coefficients can
be mapped to the shape coefficients a,b and d + pR at each time
frame.

As discussed earlier, in the ideal case, at least one of the ten
runner up synthetic images over every time instance f, will have
shape coefficients for which the vertical displacement at the center
will be f(z,). Since this is seldom the case, we find f(¢) that best
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Figure 11. We train a variational autoencoder (VAE) on lab video images
to learn features that pickup relevant details in realistic images from real life.

matches this condition. Considering this, the problem is to find
optimal values of parameters a, 8,8, €, over the synthetic data

set {Dj(r,l)};.i’ltft:ti by minimizing

[ (min{|D;(0,1) = £}, min{1D;(0.t7) = £t)1}) -

In our calculations we used a Random Seed variant of a Differen-
tial Evolution optimization scheme [8].

We found that it was important to generate a sufficiently
large number of samples to cover the lab video images. We saw
a dramatic improvement in inference quality when going from a
database of 20k samples (Figure 9) to 100k samples (Figure 10).

The regularized nearest neighbor inference provided a
smooth stable inference of a decaying sinusoidal process. When
we compare the zero crossings of the inferred process with events
hand marked on video frames, the alignment is excellent. We
were able to infer both frequency of oscillation and exponential
decay rate from the inferred process. We observed that the fre-
quency was very stable and precise whereas the decay rate was
more variable and unstable.

The nearest neighbor method was computationally intensive
and took hours to converge even when taking advantage of parallel
computational schemes, making it impractical in its current form
for real-time use by engineers or operators.

Deep Neural Network Approach

In this approach, we train a convolutional neural network
(CNN) to predict shape coefficients of the membrane that cor-
responds to an image taken by the lab camera. The obvious ap-
proach here is to train on supervised pairs of ray-traced simulation
images and their corresponding shape coefficients. Unfortunately,
a high-capacity, low-bias neural network has the potential to dra-
matically overfit to simulation artifacts in order to get high pre-
diction accuracy on the coefficients, leading to poor performance
on actual video images. We developed a novel training procedure
to minimize overfitting (Figure 11). We trained a variational au-
toencoder (VAE) [4] on natural video images to create features
that are independent of simulations. The autoencoder simply tries
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Figure 12.  We train a supervised regression model to predict shape co-
efficients from synthesized images generated from known coefficients using
real world image features learned by VAE.

Figure 13. Real lab video image (left) and VAE reconstructions from fea-
tures (right) show features capture various membrane shapes well.

to reconstruct its input so it does not need supervised labels. The
autoencoder has an encoder stage that projects a 2D image onto a
low-dimensional feature vector, and a decoder stage that expands
the latent feature vector to a reconstruction of the image using
transverse convolutional layers. We used an autoencoder with 10
latent dimensions and found that it worked well.

In the second step, we reuse the encoder learned by the VAE
to compute natural features from synthetic images (Figure 12).
Instead of the original decoder, we substitute a new decoder that
performs a regression from the natural image features to the shape
coefficients, a supervised regression model. Because we are using
the natural image features, it is harder for this supervised network
to overfit to features of the simulated images.

Before applying the neural network to lab data, we validated
the component functions. We verified that the autoencoder cap-
tured a wide variety of images corresponding to different possible
membrane shapes by testing the reconstruction on many samples.
In Figure 13 we can see a number of image pairs in which the lab
video image (left) is accurately reconstructed (right).

We then tested that the supervised coefficient regression was
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Figure 14.  Neural network approach recovers sinusoidal process from

individual images frames of synthesized membrane oscillation.

Figure 15.
ray-tracer from shape coefficients inferred by neural network.

(Left) Lab video frame image. (Right) image synthesized by

working at least approximately. We used the ray-tracing engine
to simulate a sequence of video frames corresponding to a vary-
ing sinusoidal process with known frequency and amplitude. We
then used the regression network on this sequence to extract the
dominant coefficients. The network accurately inferred the sinu-
soidal process as can be seen in Figure 14. There are some small
errors in amplitude that correspond to locations where images are
not very informative due to the structure of highlights in these
images.

We then applied the validated network to an extended lab
video recording. As can be seen in Figure 15, the neural net-
work can infer shape coefficients from the image and then use
these coefficients with the physics model of the membrane and
the Blender ray tracing engine to resynthesize an image that is
often very close to the lab video image.

In this video, there are ejections at 100Hz that create high
amplitude disturbances to the fluid sequence every 10 ms. As can
be seen in Figure 16, the neural network is able to make use of
many features included the main highlight and edge artifacts to do
frame by frame inference of amplitude that tracks the oscillations
well.

On an extended sequence, one can clear see the oscillation
rate and decay rate of the process between ejections (Figure 17).
We can see that this nozzle is settling fully between ejections.

Future Work

In the near future we plan to setup a new experimental plat-
form to gather additional video data under various conditions to
further evaluate the performance of the technique and demon-
strate its robustness. To further increase the applicability of the
technique, we plan to develop automatic calibration by detecting
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Figure 16. Neural network inference of amplitude from lab video frames.

Hybrid Parabola Bessel Parameters: p,a,b

06 ) ‘ =
04 ] |

02 ',",‘
- “1 Ll‘.“. {
Il

250 500 750 1000 1250 1500 1750 2000
Frame Number

Real value

°

Figure 17.  Neural network inference of amplitude of extended sequence
can be used to compute oscillation frequency and decay rate.

camera and lighting angles automatically.

Our nearest neighbor implementation showed the promise
of this approach but was too slow for practical use. The use of
more efficient nearest neighbor techniques such as KD-trees or
latent semantic hashing (LSH) which has been applied to high-
dimensional objects might be combined with parallel GPU based
implementations to increase practicality.

We would like to improve the fidelity of the simulation
model and ray-tracing rendering pipeline in multiple ways. The
addition of non-radial or asymmetric vibrational modes to the
physics model and refining the artifact generation in the simu-
lation around the nozzle perimeter could lead to better inference
with the current framework.

In addition to improving the current framework, we have also
envisioned ways to change the paradigm. Our present work uses
a single white lamp from a single direction which results in very
sparse ambiguous information. The use of multiple lights or a
pattern projected on a curved reflector to generate incidence from
multiple angles could provide many times the amount of informa-
tion, greatly increasing the accuracy of inference (see Figure 18).
Ray-traced simulations show multiple highlights from lights po-
sitioned at multiple angles.

The technique described here is based on oscillating mem-
brane but other types of physics models could be used to track
different kinds of motion such as Faraday waves on the surface of
a liquid (see Figure 19). Similarly, the example here is based on
light reflection, but the model could also be applied to different
kind of light-surface interactions such as diffraction or interfer-
ence patterns.

Eventually we plan to examine how some form of visual
monitoring could be integrated into real-time control of the printer
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Figure 18. Multiple LED lamps using different colors are used to illuminate
the membrane surface or possibly a colored reflector (left). Multiple color
highlights provide more coverage than a single highlight from one lamp and
colors can be used to distinguish incident angle of lamps forming the high-
lights (right).

Figure 19. Faraday wave in a vibrating bath.

during operation.

Summary

The inference of shape from oscillating fluids is not easily
done with previous techniques due to the unique way in which
light interacts with specular fluids, extreme environments and oc-
clusion. We show that the addition of a strong physics-prior to-
gether with machine learning inversion of an image rendering
pipeline can recover high-resolution inference of fluid shape and
behavior. We illustrated two solutions: (a) the regularized nearest
neighbor optimization, which yielded very stable and smooth in-
ferences; and (b) a deep learning method using natural features,
which has low bias, allowing investigation of non-oscillatory be-
havior and significantly higher frame rates, suitable for real-time
control. In addition to the setting illustrated here, the technique
can be generalized to new applications and different kinds of light
phenomena. The work here offers engineers and scientists a new
tool to recover the shape and motion of oscillating fluids from im-
age based monitoring that can improve both the design optimiza-
tion and realOtime control of industrial processes incorporating
fluids.
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