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Abstract

With the recent advance in video super-resolution (VSR)
techniques, there have been many requests for super-resolve real-
world old analog TV series into high-definition digital content.
As excellent classical TV series may receive little to no attention
due to their poor video quality, restoring them would open new
business opportunities for reusing old TV contents. A problem
with restoring real-world old TV series is in the complex artifacts
introduced by the old interlaced scanning and compression arti-
facts during the digitization of old analog videos. Though recent
DNN-based VSR models perform nicely on clean videos, due to
the artificial nature of interlacing and compression artifacts, they
fail to restore old videos into a high-definition counterpart free
from noticeable artifacts. In this work, we propose OIdVSR for
restoring old real-world TV series with artifacts of artificial na-
ture. The proposed model implements a bidirectional recurrent
structure with first and second-order propagation where each re-
current layer implements two main functions, i.e., Feature align-
ment (FA) and Pyramid feature aggregation (PFA). The outputs
of the forward and backward layers are merged and upsampled
to produce a High-Definition (HD) frame of the input standard-
definition (SD) frame. We demonstrate through experiments that
our proposed OldVSR can effectively remove artifacts of artificial
nature from old videos and successfully restores old TV series.

1. Introduction

Video is one of the most closely integrated multimedia in
our daily life. The consumers’ expectations for better Quality-
of-Experience (QoE) nowadays have been higher than ever be-
fore. Restoring poor-quality standard-definition (SD) videos has
become an inevitable task with the popularity of high-definition
(HD) displays because poor-quality videos could immediately
disappoint a large volume of consumers regardless of their ex-
cellent story, eventually resulting in a substantial revenue loss for
content providers.

Video super-resolution (VSR) is a challenging problem in
computer vision that aims at recovering the high-resolution (HR)
video using the information from the low-resolution (LR) counter-
parts. With the success of deep learning methods, VSR algorithms
based on deep learning with diverse architectures have been stud-
ied extensively.

Because DNN-based VSR models show promising results,
content providers often request the restoration of old analog TV
series from SD into HD ones. As many excellent classical con-
tents receive little to no attention due to their poor video qual-
ity, restoring them would benefit both the content producers and
the content viewers in that content producers will enjoy the low
cost of reproducing broadcast-ready content while content view-
ers could enjoy past videos full of old memories.
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For DNN-based VSR models, a dataset composed of SD
and HD frame pairs is necessary for training. But for real-world
videos, it is not easy to find datasets with matching SD and HD
pairs. Therefore, a degradation model generates the dataset for
training existing DNN-based VSR models. For example, given a
sharp HR image, the degradation model generates an LR coun-
terpart to make a pair of training data. Many public datasets
construct their LR frames using two representative degradation
models: bicubic[1] or traditional[2, 3]. In the bicubic degradation
model, simple bicubic interpolation generates the LR image. In
the traditional model, the LR image is generated by applying a se-
quence of Gaussian kernel induced blur, bicubic downsampling,
and simple noise model formally defined by:

xR = Dy o K(xHR) + Ny. (1)

That is, the HR image x/'® is convolved using a blur kernel K to
get a blurry image, followed by a downsampling D with scale
factor s and an addition of white Gaussian noise N with standard
deviation 6 to get the LR image x%. An example of publicly
available dataset is the Realistic and dynamic scenes (REDS)[4].
REDS, one of the most used dataset for the training of VSR mod-
els, offers both the bicubic and the traditional degradation model
generated training dataset with a downsampling scale factor of 4.

Public datasets have been an essential part of VSR devel-
opment. They offer relatively sharp images without noticeable
artifacts. But, the over-simplifying mathematical assumption of
degradation models restricts the generation of LR images closer
to real-world images. For example, in these degradation models,
the noise is usually assumed to be AWGN which rarely matches
the noise distribution of real images. Indeed, the noise could
also stem from camera sensor noise and JPEG compression noise
which are usually signal-dependent and nonuniform [6]. In addi-
tion, unlike the public datasets, real old videos may contain sev-
eral types of complex artifacts.

Interlacing artifact is an example of a very common anomaly
observed in many old TV series due to the early interlaced scan-
ning protocols like PAL and NTSC they were produced. The in-
terlaced scan is a display signal type in which one-half of the hor-
izontal row pixels (odd-field) are refreshed in one cycle and the
other half (even-field) in the next. The problem of this method is
that the two fields cannot be aligned exactly, especially when there
exist large movements of objects. This creates artifacts of artifi-
cial nature in the form of comb-teeth shape. Many deinterlace
algorithms have been developed but severe artifacts may remain
even after it has been applied.

Compression is another major source of artifacts. Especially
block-based video coding schemes create various spatial artifacts
due to block partitioned processing and quantization. These re-
sults as blurring, blocking, ringing, basis pattern effect, and color
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Figure 1.  An illustration of visual artifacts found in old TV series. In this
example, the deinterlacing and compression artifacts manifests as a stair
pattern in the man’s back shoulder. On the letter, we observe a comb-teeth
pattern.

bleeding. Aside from the interlacing and compression artifacts,
old videos may also include video acquisition artifacts, video
post-processing artifacts, and many more.

All these artifacts, blur, and noise could be blended in ran-
dom order and manifest in a diverse way to worsen the perceptual
quality of the old video frames. Figure 1 shows an example where
the deinterlacing and deblocking artifact are blended. In the case
of the letter, a human perceives the discontinuous white and blank
pattern as a hole that needs filling to make it into a proper letter.
In the case of the stair pattern on the man’s shoulder, a human
would draw a line to repair it.

Contrary to a human, existing VSR models fails to restore
the artifacts mentioned above. Because existing DNN-based VSR
models have been trained mainly on clean datasets, their re-
construction ability is somewhat limited to work on clean im-
ages only. For instance, given a real-world frame, regardless of
whether the blur or artifact has been modeled accurately or not, a
few amounts of noise mismatch will be sufficient to cause a per-
formance drop to VSR models. Indeed existing DNN-based VSR
will unlikely extrapolate degradations they never learned. Instead,
these models will reconstruct the unwanted pattern and make it
more focused and salient. Figure 2 shows the reconstructed im-
ages from existing DNN-based VSR models.

The goal in developing OldVSR is to build a plausible model
which can deal with unexpected artifacts in real-world old TV se-
ries to produce an HD video with enough quality to broadcast. In
this work, we present the process of how we handle the anoma-
lies caused by the blend of deinterlacing and deblocking artifacts
present in Figure 1.

2. Model Architecture

OIdVSR implements bidirectional recurrence structure for
temporal aggregation of frames where each recurrent layer con-
tains two main functions: Feature alignment (FA) and Pyramid
feature aggregation (PFA). Given a set of LR frames, the forward
and backward recurrent layers generate aligned and aggregated
feature maps that are further merged and upsampled to produce
a HD frames. In the rest of this section we present the details of
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Figure 2. Qualitative example. The resotration result of existing DNN-
based VSR models (EDVR [20] and BasicVSR [13]). These models fail to
remove artifacts in old video frames.

our model’s architecture. The structure of OldVSR is depicted in
Figure 3.

2.1. Recurrence structure

The recurrent framework is popular for many video pro-
cessing tasks including super-resolution[7, 8, 9, 10, 11, 12, 13].
The recurrent framework could either be unidirectional [8],
bidirectional[13] , or omnidirectional[14]. Recently, Chan et al.
[13] showed the effectiveness of bidirectional propagation over
unidirectional counterpart in aggregating features sequentially.
Moreover, [14] proposes an omniscient network that exploits the
present state feature for performance improvement.

In this work, we adopt a bidirectional recurrence framework.
In addition to the first-order recurrence, our model relaxes the
first-order Markov property to use the second-order recurrences
too. In general bidirectional settings, the frames are first prop-
agated in the backward direction and then into the forward di-
rection independently. Therefore, the backward and forward lay-
ers received additional information only from future and pre-
vious frames respectively. Restricting an interconnection from
backward to forward recurrent layers, the forward layer can re-
ceive information from both the future and past frames, leading
to more abundant information and better quality outputs. Given
a set of LR frames {...,x,_2,X_1,%,X41,%+2,...} and features
propagated from forward layers { f,ﬁ 2 f,F, 1} and backward layers
{ ftlilv ftliz} at respective times, we have

f[B:RB(-xt7xl+l7xt+27ft€»17ftli2)v (2)

ﬁF :RF(xt7xl+17xt+27_f[}il7f‘t€27f‘t3)7 (3)

where Rp and R denote the backward and forward recurrent lay-
ers, respectively.

2.2. Alignment

VSR models involve the handling of multiple consecutive
video frames. Due to the motion of objects, the features in the
neighbor frames are, in most cases, spatially misaligned. The
alignment module plays the key role of explicitly aligning the
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Figure 3. Model architecture of OIdVSR (a) The recurrence structure. (b) the alignment layer. (c) the pyramid feature aggregation layer

features in the neighboring frames for subsequent feature aggre-
gation.

There have emerged many different methods for alignment.
Most of these methods fall into two main types: the one that
uses optical-flow and the other that uses deformable convolu-
tion [25, 26] for alignment. In optical-flow-based methods[16,
12, 15, 17, 18, 19, 13], the inter-frame motion information is
extracted first, and then the warping operation is performed be-
tween frames according to the inter-frame motion information to
make one frame align with another one. In deformable alignment
methods[20, 21, 23], an additional convolution filter computes
the misalignment offsets from the concatenated input and neigh-
bour feature maps.The deformable-convolution kernel adopts the
computed misalignment offset and computes the final output from
given input feature map. Compared to the previous method, the
offset in the deformable alignment method replaces the role of op-
tical flow. In practice, the training of deformable alignment often
incurs instability which results in performance deterioration. But,
when trained well it improves performance over the optical-based
alignment.

In this work, we adopt a optical-flow-based alignment. Op-
tical flow can be computed using either the traditional meth-
ods(e.g., Lucas&Kanade[28] and Druleas [29]) or deep learn-
ing based methods such as FlowNet[27], FlowNet 2.0[30],
SPyNet[31], and PWC-Net[32]. SPyNet and PWC-Net are good
choices as they implement a lightweight architecture that allows
faster inference and shorter training times. We choose PWC-Net
for accuracy gain that results from better construction of the fea-
ture pyramid and the cost volume. With PWC-Net we compute
the optical flow o; for backward and forward layers B and F given
by:

ot{B,F}

{O(Xh-x[:‘:i)‘i: 172} (4)

Next, given the optical flow o;, our model warps the feature map
of the neighbor frame and aligns it to the target. The output of the
warping is aligned feature map a; given by:

a1 = (w (B olB = 1,2 ©)
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We perform the warping on the feature map instead of the image
for performance increase as demonstrated in [13]. The aligned
feature map is then passed to the pyramid reconstruction layer for
feature aggregation as we discuss next.

2.3. Feature aggregation

In VSR, a deep chain of residual blocks without batch nor-
malization is the commonly used component for feature aggrega-
tion. This plain residual block processes the features at the same
scale as the input (e.g., height x width). Some artifacts like the in-
terlacing are more pronounced when there is a large displacement
of objects. Simple downsampling could diminish the displace-
ment thus alleviating the effect of interlacing artifacts. Downsam-
pling is equivalent to amplification of the field-of-view (FOV) for
convolution filter, therefore, gives a better chance to handle large
displacements. But there is a tradeoff as relying only on down-
sampled frame results in a loss of details

The pyramid structure is a popular choice that implements
the classical coarse-to-fine concept. The coarse-to-fine concept
proceeds by processing the artifacts using a multi-scale image
pyramid, starting from the coarsest level (the largest FOV) to the
finest (the smallest FOV). By gradually refining artifacts through
the pyramid levels, this approach can aggregate the features at
multiple scales and handle large displacements better, therefore,
improve the visual quality of reconstructed frames.

The Pyramid Feature Aggregation (PFA) module is the ag-
gregator used in our model (Figure.3(c)). PFA performs feature
aggregation at 3 multiple levels. First, given the aligned feature
map as input, PFA convolves the input using a convolution with
a stride 2!, 1 = {0,1,2} to compute downsampled feature map
le . Next, PFA applies the head residual blocks to downsampled
feature maps to compute the feature map le . Then, PFA concate-
nates current level feature map with the 2x upsampled tail feature
map from next level to output a concatenated feature map flc :

1 = [valsl) a1 =00 ©)

where, PFA applies the tail residual blocks to flc, [=0,1 to com-
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pute the feature map fIT except the last layer where sz = fZH .
Through the multi-scale backward feature aggregation starting

from level 2 to level O, PFA outputs the feature map ft{B’H} = fg .

Given the intermediate features f,{B’H}, an upsampling module
U,, composed of multiple convolutions and Pixel-Shuffle [22] is
used to generate the output HR frame:

P = Uy (£B, £1). ©)

3. Experiments

In this section, we present our experiment. We first describe
the process of collection of our dataset. Next, we explain the set-
tings for training OldVSR. Finally, we present the comparison
results of OldVSR to the existing VSR models.

3.1. Dataset

Based on the year of production, the old TV series categorize
into two types: Those produced before and after the year 2000.
Before 2000, TV series were filmed only in an analog format us-
ing SD filming equipment. Between 2000 to 2006, during the
transition period from analog to digital standard, TV series were
produced jointly in SD and HD formats. From TV series having
both the SD and HD copies, we extracted 300 short clips of 60
frame pairs. Because the aspect ratio between SD and HD copy
differs, we first align SD to HR copy and then remove extra pixels
at the boundary to make an aligned sample pair.

TV series produced before 2000 have more titles and contain
more diverse artifacts than those produced after 2000. Especially,
interlacing artifacts are more severe and varied in the older series,
and this is probably an additional effect caused by the limitations
of the past compression technology while storing analog videos
into digital format. Unfortunately, there is no high-quality frame
paired with the corresponding low-quality frame. Therefore, to
strengthen data variety, we synthesized interlaced videos from
existing progressive videos. We selected 50 videos from varied
genres of movies and TV Series. Select videos are progressive-
scanned with Full-HD (1920x1080) format. We sampled 14 short
clips of 60 consecutive frames from each video and obtained 700
clips forming a dataset of 1000 video clips in total.

We add artifacts to each clip as follows. First, we down-
sample Full-HD frames by a scale factor of 2 using bicubic inter-
polation to make the SD counterpart of the HD frames. Next, we
produce interlaced frames by interleaving the upper-field from the
first frame with the lower-field from the second frames for a given
pair of frames(e.g.,[t,¢ + 1], [f + 1,¢ +2]), generating a frame with
unchanged height at same frame rate. Then, we apply compres-
sion to the interlaced video using the H.264 codec with a constant
rate factor (CRF) set at random from 28 to 38 to control the im-
age quality at medium encoding speed. This blends interlace and
compression artifacts. Finally, we deinterlace frames using “yet-
another-interlace filter” (yadif) by keeping the frame rate intact.
The synthetic dataset comprises downsample only, [downsam-
ple, interlace, compression] and [downsample, interlace, com-
pression, deinterlace] clips with the mixing ratio of 0.5,0.25,0.25,
respectively. We randomly select 20 percent of clips while main-
taining mixing ratio and retaining these as a validation set. We
use the remaining samples for training. For testing, we manually
select real-world frames from old TV series with only SD copy
available.
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Table 1: Quantitative Results

Model PSNR | SSIM
TDAN [23] 42.659 | 0.9812
EDVR-M[20] | 39.931 | 0.972
EDVR-M 42103 | 0.9792
WOTSA [20]

BasicVSR [13] | 42.398 | 0.9802
OldVSR 42.925 | 0.9821

3.2. Settings

We train and test five models(TDAN[23], EDVR-M[20],
EDVR-M woTSA[20], BasicVSR[13], and Ours) using the
dataset mentioned in the previous subsection with 2x downsam-
pling. For the existing DNN-based VSR models, we train each
model using the same network and settings described on each
paper except the upsampling layer modified to output a 2x up-
sampled frame. For OldVSR, we adopt Adam optimizer [34]
with parameters [ = 0.9, = 0.999] and Cosine Annealing
scheme [24]. The initial learning rate of the main network is set to
1.5x10*. We use pre-trained PWC-Net [32] as our flow network.
The learning rate of the flow network is set to 2.5x103. The total
number of iterations is 600K, and the weights of the PWC-Net are
fixed during the first 150K iterations. The batch size is 4 and the
patch size of input LR frames is 64x64. We use Charbonnier loss
[33] defined by L = D _ xHD|12 4 ¢2 with e = 1 x 10712,
It is known that Charbonnier loss better handles outliers and im-
proves the performance over the conventional ¢,-loss [5]. We use
30, 20, and 10 residual blocks for the PFA’s layers 1, 2, and 3, re-
spectively. Layerl consists of 12 head and 18 tail residual blocks,
layer2 consists of 8 head and 12 tail residual blocks, and layer3
consists of 10 head residual blocks. We set all feature channels to
64.

3.3. Results

We conduct comparison experiments on four models men-
tioned above. We summarize the quantitative results in Table 1
and provide the qualitative comparison in Figure 4. As shown in
Table 1, OldVSR achieves the best performance on the dataset
presented in section 3.1. In particular, OldVSR outperforms
EDVR-M [20], a light-weight version of large capacity sliding-
window method EDVR, by up to 0.5dB in PSNR. When com-
pared with the BasicVSR [13], OldVSR achieves improvements
of 0.52dB. TDAN [23] qunatitatively achieves comparable PSNR
and SSIM to our method, but we observed that TDAN fails to re-
store a faithful frames qualitatively. We present three qualitative
comparisons in Figure 4. OldVSR successfully restores the bro-
ken lines produced due to the mixed interlace and compression
artifacts often found on old TV series. In particular, OldVSR is
the only method that smoothly connects the staircase-like line on
the man’s shoulder line (Figure 4 (a)), the line pattern in the car
bumper and the edge of the bonnet (Figure 4. (b)), and the round
edges of the hole on the right side of man’s face and man’s shoul-
der line(Figure 4(c)). TDAN restores the letter in Figure 4. (a) as
OIdVSR does but performs poorly on others.
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Figure 4. Qualitative comparisons (a) OldVSR restores correctly men’s shoulder line. OldVSR and TDAN restores the letter (b) OldVSR restores correctly
the pattern of the bumper and the edge of the bonnet. (c) OIdVSR restores restores correctly the men’s shoulder line and the edges of the round hole.

4. Conclusion We are extending into OldVSR new architectures to enhance
the quality of old TV series. The reason we deal with the blend
interlace-deblocking artifact in the first place is the occurring fre-
quency. But, there still exist other artifacts with less frequency of
occurrence we will address in the future. In addition, we plan to
extend the degradation model. Although methods for extending
the degradation kernel or adding noise diversity are studied, their

In this work, we present OIdVSR, a model for restoring old
TV series that contains artifacts caused by the blend of interlac-
ing and compression artifacts. We proposed an efficient pyramid
structure for feature aggregation that solves artificially generated
distortion. We also supplemented the lack of data for training
through synthetic dataset generation. We showed qualitatively

that contrary to existing DNN-based VSR models, OlIdVSR re- application is still unrealistic. Creating a more realistic degrada-
constructs smoothly missing hole and staircase pattern artifacts, tion model based on the real-world old TV-series data we cur-

often found in old TV series. rently have is another task to be addressed in the future.
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