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Abstract
Detection of moving foreground objects is essential to many

image-sequence-analysis applications. However, preexisting

methods tend to work best when the foreground is visually distinct

from the background, suffering when objects are camouflaged. To

address this shortcoming, a foreground-extraction algorithm re-

silient to camouflage is proposed by incorporating a redundant

discrete wavelet transform into the well-known DECOLOR tech-

nique based on a sparse and low-rank model of the foreground-

extraction problem. Detection of camouflaged moving objects is

enhanced as a result of the combination of multiple background

estimates in independent wavelet subbands into an overall esti-

mate of the background, leveraging the known robustness of re-

dundant wavelet transforms to additive noise. Experimental re-

sults demonstrate that the proposed method offers robustness to

camouflage superior to that of other competing methods for im-

age sequences containing snow leopards in the wild.

Introduction
Extraction of foreground objects is an essential task in

image-sequence analysis. Foreground-object extraction detects

and demarcates moving people, animals, or other objects—a crit-

ical undertaking in visual surveillance. While many foreground-

extraction methods have been developed in prior literature, they

tend to work best when the foreground is visually distinct from the

background, which proves to be a challenge when camouflaged

foreground objects blend into the image-sequence background.

This camouflage issue is of paramount importance in many

applications in the field of conservation biology wherein cameras

are placed in the wild to observe and analyze populations of en-

dangered species. For example, [1–3] consider image sequences

of highly elusive snow leopards. The snow leopard is a vulnerable

species found throughout Central Asia, where poaching and eco-

logical disruptions threaten its survival. Conservation biologists

have set up surveillance across Central Asia to monitor the snow-

leopard population; these “camera traps” take pictures whenever

a source of heat passes in front of the camera. Currently, human

analysts must sort through thousands of images manually in or-

der to determine whether a snow leopard is present or not, as well

as to identify individual cats—clearly, automated processing of

this task would be of great benefit. However, since snow leop-

ards exhibit a high degree of camouflage in their natural habitat,

they pose a significant challenge to existing foreground-extraction

methods.

While there have been numerous foreground-extraction ef-

forts in prior literature, only a few specifically address the is-

sue of camouflage. One of the more recent and effective tech-

niques is the “Fusion in the Wavelet domain for Foreground detec-

tion in Camouflaged scenes” (FWFC) algorithm [4] which lever-

ages the multiresolution analysis provided by a wavelet trans-

form. Such wavelet-domain detection is premised on an ob-

servation that camouflaged objects may be more distinguishable

from the background at certain resolutions or orientations; FWFC

thereby leverages the multiresolution character of a wavelet trans-

form in a cross-scale probabilistic model applied to transform

coefficients. However, FWFC fails to exploit other relevant as-

pects of the foreground-extraction problem—most notably, that

we expect foreground objects to be spatially contiguous. On the

other hand, the well-known “Detection of Contiguous Outliers in

the Low-Rank Representation” (DECOLOR) [5] does impose ex-

plicit spatial contiguity on the foreground-extraction process by

incorporating a graph-driven spatial-adjacency regularization into

a sparse and low-rank optimization. However, like many other

foreground-extraction techniques, DECOLOR does not explicitly

address camouflage.

Consequently, in this paper, we propose a new foreground-

extraction algorithm that adopts a wavelet-based strategy for ro-

bustness to camouflage inspired by FWFC. Unlike FWFC, how-

ever, we deploy the wavelets within the sparse/low-rank DE-

COLOR framework. The resulting algorithm—which we call

multiresolution DECOLOR (MR-DECOLOR)—couples the ro-

bustness to camouflage of the wavelet transform from FWFC with

the spatial contiguity of the foreground as explicitly enforced by

DECOLOR. Additionally, robustness to camouflage is further en-

hanced because MR-DECOLOR forms multiple background esti-

mates in independent wavelet subbands and combines them into a

single overall background estimate, leveraging the known robust-

ness of redundant wavelet transforms to additive noise [6]. Be-

low, we describe MR-DECOLOR in detail and evaluate its perfor-

mance experimentally on several camera-trap sequences of snow

leopards in the wild.

Background

A simple method for background estimation is to find the

median temporally over the image sequence. That is, let an N-

frame image sequence be represented as X = [x1 · · ·xN ] ∈ℜP×N ,

where xn is frame n of the sequence vectorized as a column vector,

and P is the number of pixels in each frame. The median provides
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a single-image background estimation as

b = median{X} , (1)

where the median is calculated temporally for each pixel location.

From this background image b, the foreground can be extracted—

for example, a pixel in X can be classified as foreground if it lies

more than one standard deviation away from the background (e.g.,

[1]). However, as a foreground-extraction method, this approach

tends to generate relatively poor results due to is failure to exploit

not only spatial information but also frame-to-frame motion.

A more sophisticated approach to background estimation

was proposed as a practical use of robust principal component

analysis (RPCA) [7]. In this, the image sequence is modeled as

the combination of a low-rank component (the background B) and

a sparse component (the moving foreground S) which are jointly

estimated by solving

min
B,S
‖B‖∗+λ ‖S‖1 s.t. B+S = X, (2)

where the nuclear norm is a convex proxy for rank(B), the ℓ1

norm is a convex proxy for the sparsity of S, and, again, the

columns of X are frames of the original image sequence. While

B provides a background estimation directly, for foreground ex-

traction, an explicit foreground mask must be derived from S. For

example, [2] classifies a pixel as foreground if its corresponding

value in S lies more than one standard deviation away from the

mean value of S, similar to what was done for the median ap-

proach above. Like the median method, RPCA also does not im-

pose any spatial coherence on the foreground and tends to have

difficulty discerning the motion of camouflaged objects.

Inspired by the low-rank/sparse formulation of RPCA, but

imbued with a goal of spatially contiguous foreground objects,

DECOLOR [5] features an iterative optimization that integrates

object detection and background learning into one process. The

DECOLOR optimization is

min
B,M

1

2

∥

∥M◦(X−B)
∥

∥

2

F
+α

∥

∥B
∥

∥

∗+β
∥

∥M
∥

∥

1
+γ

∥

∥Avec(M)
∥

∥

1
, (3)

where B is a matrix of the desired background images; M is the

desired foreground mask, a binary matrix indicating regions in X

which are detected as foreground; A is a node-edge incidence ma-

trix that represents a spatial neighborhood surrounding each pixel

in X; and ◦ is the Hadamard product. Like RPCA, DECOLOR

aims for a low-rank background (via regularization with nuclear

norm
∥

∥B‖∗) as well as a sparse foreground (via regularization

with
∥

∥M‖1); unlike RPCA, though, DECOLOR features an ex-

plicit binary mask (M) of the foreground as well as regularization

designed to impose spatial contiguity on the foreground (via A).

The DECOLOR algorithm is summarized in Alg. 1 and consists

of an alternating optimization: finding low-rank background B by

SOFT-IMPUTE [8] assuming a fixed mask M (Alg. 2), and find-

ing M by graph cuts [9] assuming a fixed B (Alg. 3). However,

although DECOLOR successfully maintains a high degree of con-

tiguity in the foreground objects it extracts, it tends to work best

when the foreground is clearly distinct from the background. Like

with many other foreground-extraction techniques, camouflaged

foreground objects present a formidable challenge to DECOLOR.

Algorithm 1 The DECOLOR Algorithm

1: Input: X = [x1 · · ·xN ] ∈ℜP×N

2: Initialize: B← X, M← 0, α , β
3: repeat

4:
{

B,α
}

= EstimateBackground
(

X,B,M,α
)

5:
{

M,β
}

= EstimateMask
(

X,B,M,β
)

6: until convergence

7: Output: B,M

Algorithm 2 Background Estimation via SOFT-IMPUTE

1: function EstimateBackground
(

X,B,M,α
)

2: K←
⌊√

N
⌋

3: repeat

4: B←Θα

(

M◦X+M◦B
)

5: until convergence

6: if rank(B)≤ K then

7: α ← α/
√

2

8: goto Step 3

9: end if

10: return B, α

Note: Θ(·) is the singular-value thresholding operator

On the other hand, FWFC [4] is constructed by design to

address the problem of camouflaged foreground objects. Specif-

ically, FWFC attempts to identify foreground in the domain of

a redundant discrete wavelet transform (RDWT) [6], in the hope

that small differences in the image domain become more visible

in one or more wavelet subbands. FWFC estimates each RDWT

coefficient’s likelihood of being foreground or background by de-

veloping cross-scale probabilistic models for both foreground and

background for each wavelet band; i.e.,

p(xθ |fg) = p(xθ
1 |fg)p(xθ

2 |fg) · · ·θ p(xθ
L |fg)

p(xθ |bg) = p(xθ
1 |bg)p(xθ

2 |bg) · · ·θ p(xθ
L |bg),

(4)

where xθ
l is an RDWT coefficient of subband orientation θ at

transform level l, θ ∈ {LL,LH,HL,HH}. This calculation is pos-

sible due to the fact that each RDWT subband is equal in size to

that of the original image. These likelihoods are then fused across

the wavelet orientations, resulting in a probabilistic estimate of

whether a wavelet coefficient is foreground or background; the

maximum likelihood then produces a binary foreground mask.

Experimental results in [4] demonstrate that this mask is accu-

rate even under camouflage conditions due to the multiresolution

aspect of the RDWT.

The Proposed MR-DECOLOR Algorithm
Inspired by FWFC’s use of the RDWT for camouflage, as

well as the spatial contiguity in DECOLOR, our proposed MR-

DECOLOR method for foreground extraction incorporates an

RDWT into the DECOLOR framework (Alg. 1), resulting in the

MR-DECOLOR algorithm as described by Alg. 4. Specifically, in

MR-DECOLOR, the background-estimation component of DE-

COLOR (as implemented via SOFT-IMPUTE as Alg. 2) takes

place within the RDWT domain, with an inverse RDWT casting

the estimated background back into the spatial domain prior to
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Algorithm 3 Mask Estimation via Graph Cuts

1: function EstimateMask
(

X,B,M,β
)

2: A← graph adjacency matrix for spatial neighbors

3: γ ← 5β
4: estimate σ from X−B

5: β ←max(β/2,4.5σ2)

6: M←argmin
M

∑
p,n

(

β − 1

2
(Xp,n−Bp,n)

2

)

Mp,n

+ γ ‖Avec(M)‖1 (solve via graph cuts)

7: return M, β

Algorithm 4 The MR-DECOLOR Algorithm

1: Input: X = [x1 · · ·xN ] ∈ℜP×N , num subbands S

2: Initialize: B← X, M← 0, {αs}s=1,...,S, β
3: {X̃s}s=1,...,S← RDWT(X)
4: for s = 1, . . . ,S do

5: B̃s← X̃s

6: end for

7: repeat

8: for s = 1, . . . ,S do

9:
{

B̃s,αs

}

← EstimateBackground
(

X̃s, B̃s,M,αs

)

10: end for

11: B← RDWT−1
(

{B̃s}s=1,...,S
)

12:
{

M,β
}

← EstimateMask
(

X,B,M,β
)

13: until convergence

14: Output: B,M

the mask-estimation component (implemented via graph cuts as

in Alg. 3).

Conducting the background estimation within the RDWT

domain yields two advantages. First, following the same mo-

tivation behind FWFC [4], the addition of the RDWT to MR-

DECOLOR provides robustness to camouflage. That is, FWFC

employs an RDWT to yield a multiresolution analysis that sep-

arates the image into separate subbands in hopes that a cam-

ouflaged object would be detectable in at least one of the

wavelet subbands. MR-DECOLOR employs the complementary

motivation—namely, we hope that the background is more sep-

arable from the camouflaged foreground in at least one of the

wavelet subbands. Therefore, we employ SOFT-IMPUTE inde-

pendently in each RDWT subband, generating independent back-

ground estimates for each subband.

The second advantage of the RDWT in MR-DECOLOR is

that it leverages the known robustness to noise of the RDWT [6]

to improve the background estimate prior to subsequent mask es-

timation. Specifically, each SOFT-IMPUTE background estimate

can be considered to be the true background subband corrupted

with additive noise due to an inaccurate estimation. The inverse

RDWT merges each background estimate in the subbands into

a final background estimate in the spatial domain while simulta-

neously diminishing this distortion, thus ultimately generating a

background estimate closer to the true background. Finally, the

usual DECOLOR mask estimation via graph cuts is then applied

using this generated background.

Table 1. CCR (in percent) for the various techniques

Dataset

Method #1 #2 #3 #4 #5

Median 88.8 95.1 82.9 88.3 89.6

RPCA 90.0 95.0 83.3 85.9 90.6

DECOLOR 79.6 92.4 73.6 86.3 91.8

FWFC 93.5 95.4 85.3 87.8 92.4

MR-DECOLOR 89.9 96.4 88.5 89.0 95.1

Experimental Results
The five image sets selected for the testing of MR-

DECOLOR were obtained through camera traps set throughout

Central Asia. These camera trap images were provided by Pan-

thera, an organization devoted to the conservation of wild cats.

Datasets #1, #2, and #3 were images taken during the daytime,

where each snow leopard blends in with the rocky background.

Datasets #4 and #5 were taken at night and also exhibit a high

amount of camouflage, blending in with both the grass and rocks

in the background. By selecting image sets with a high amount

of camouflage and at varying times of the day, the robustness of

MR-DECOLOR to camouflage is effectively tested.

We now test the performance of our proposed MR-

DECOLOR foreground extraction in comparison to other

foreground-extraction techniques. Specifically, we compare

against four other techniques: the median method as used in [1, 2],

RPCA [7], DECOLOR [5], and FWFC [4]. To make a quantita-

tive comparison, the foreground masks produced by each tech-

nique were compared to ground-truth foreground masks that were

drawn by hand for each sequence of images, and the correct clas-

sification rate (CCR),

CCR =
TruePositives+TrueNegatives

TotalPixels
, (5)

was calculated with respect to the ground-truth mask. These CCR

results are reflected in Table 1. Performance is also illustrated

visually in Fig. 1 for a single frame from each dataset.

In all cases except Dataset #1, MR-DECOLOR outper-

formed the rest of the methods, as evidenced by the high resulting

CCRs reported in Table 1. We note that Dataset #1 had a high

level of camouflage present across all image frames as well as a

faint moving shadow cast by the foreground leopard; however,

this shadow was not included in the ground-truth mask. MR-

DECOLOR more successfully extracts this moving shadow along

with the foreground leopard than do the other techniques under

consideration, ultimately resulting in MR-DECOLOR yielding a

lower CCR than FWFC for this dataset. We anticipate that in-

corporation of explicit shadow suppression (e.g., [10, 11]) might

rectify this issue, but this is beyond the scope of the present work.

Conclusions
In this paper, we proposed a new foreground-extraction ap-

proach, MR-DECOLOR, by incorporating an RDWT into the

well-known DECOLOR algorithm. MR-DECOLOR was inspired

by the use of wavelet-based multiresolution analysis originating

in the recent FWFC algorithm, which in turn was motivated by an

observation that foreground objects may be more separable from

the background at certain wavelet resolutions or orientations than
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Figure 1. Original images, corresponding ground-truth foreground masks, and the estimated foreground mask from the various algorithms under consideration.

in the original image domain. Robustness to camouflage was also

enhanced in MR-DECOLOR due to the fact that multiple back-

ground estimates in independent RDWT subbands were combined

into a single overall background estimate, leveraging the known

robustness of the RDWT to additive noise. Experimental results

conducted on real camera-trap datasets featuring highly camou-

flaged snow leopards in the wild confirmed that MR-DECOLOR

offered superior robustness against camouflage when compared to

competing foreground-extraction methods for most of the scenar-

ios considered.
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