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Abstract
Diagnosing ligament injuries using MRI scans is a labor-

intensive task that requires an expert. In this paper, we propose a
fully Recurrent Neural Network (RNN) for detecting Anterior Cru-
ciate Ligament (ACL) tears using MRI scans. The proposed network
localizes the ACL and classifies it into several categories: ACL tear,
normal tear, and healthy. Existing detection methods use deep learn-
ing networks based on single MRI sections, and in this way lose 3D
spatial context. To address this, we propose a fully Recurrent Neural
Network (RNN) model that processes a sequence of 3D sections and
so captures 3D spatial context. The proposed network is based on a
YOLOv3 backbone and can produce a sequence of decisions which
are then combined by majority voting. Experimental results show
improvement over state-of-the-art methods.

Introduction
Ligament injuries may lead to unsatisfactory knee function, re-

duce the quality of life, and result in an increased risk of osteoarthri-
tis of the knee [16]. Surgery following knee injuries requires months
of rehabilitation and may result in permanent disability [5]. Conse-
quently, a fast and reliable diagnosis of ligament injuries may assist
in improving patient outcomes. As reported by [25], the Anterior
Cruciate Ligament (ACL) is the most commonly injured ligament in
the human body. Radiologists diagnose ligament injuries based on
Magnetic Resonance Imaging (MRI) scans which provide detailed
information about the knee joint, bones, cartilage, tendons, muscles,
and blood vessels from all angles. However, inspecting MRI scans
is time-consuming and labor-intensive.

Computer-aided diagnosis (CAD) systems can be used to assist
physicians in the interpretation of medical images and increase their
productivity. The performance of CAD systems need not be compa-
rable or better than that of a physician as the goal of such systems is
to be complementary to a physician[6]. In the context of knee MRI,
CAD systems help physicians to locate meniscus at the knee [12]
and segment bone and cartilage [29]. Examples of CAD systems
in other medical fields include lung nodule classification[34], chest
pathology detection [3], skin lesion segmentation [10], and brain tu-
mor detection[6].

In this paper, we present a deep learning approach to assist radi-
ologists in localizing the ACL area and detecting the presence of an
injury there. Our approach uses a fully Recurrent Neural Network
(RNN) to detect a bounding box for the ACL and classifies it into
one of several categories: ACL tear, normal tear, and healthy. Ex-
isting detection methods only use a single frame to make decisions,
while our proposed method uses both spatial (x,y) and frame (z)
relationships to detect ligament injuries throughout the processing
pipeline, including the feature extraction, regression, and classifica-

tion phases.
The main contributions of this paper are as follows: 1) We

propose a fully RNN model that takes into account relations be-
tween frames (sections) to improve object detection. Compared with
standard networks, our proposed model shares features and weights
across the section dimension. In addition, information from prior
sections is used to determine the current output. 2) A modified
channel-spatial attention module is implemented to improve detec-
tion accuracy. Experimental results show that the channel-spatial at-
tention module helps to increase the mAP.50:.05:.95 of our proposed
model from 34% to 37.7%. 3) Our proposed model is a fully RNN
and thus is capable of producing a sequence of decisions. Experi-
mental evaluation shows that compared with YOLOv3 which uses
single sections to make decisions, our proposed model increases the
mAP.50:.05:.95 from 36.6% to 37.7%. To the best of our knowledge,
this is the first work that uses a fully RNN model to perform object
detection with three-dimensional medical data.

Related Work
Existing work on knee MRI diagnosis focus mostly on classifi-

cation tasks [4, 27] where an entire scan is classified without detect-
ing an image region corresponding to the classification. This is in
contrast to the approach we describe in this paper where we detect
and show the region corresponding to the condition and so justify
the decision to the user. Other work, such as [15, 1], can locate the
injured area, but require the extraction of a Region of Interest (ROI)
first. The prediction is made only based on the ROI. This two-stage
approach is somewhat unstable as an inaccurately extracted ROI will
degrade the overall performance. In contrast to this, our proposed
model is trained in an end-to-end manner. Furthermore, unlike most
existing methods where prediction is made based on single MRI sec-
tions, our proposed method processes a sequence of 3D sections and
fully utilizes 3D spatial context to make decisions.

Our proposed method can be classified as an object detection
approach. Object detection aims to detect instances of a semantic
object class with a bounding box in an image. Convolutional Neural
Network (CNN) has been shown to be an effective tool for this task.
The YOLO model [20] is a successful one-stage approach for ob-
ject detection. It splits an image into grid cells and within each grid
cell tests detection in m bounding boxes. For each of the bounding
boxes, the network outputs a class probability and a set of bound-
ing box offset values (box center, height, and width) for the final
decision. Being a one-stage approach makes the YOLO framework
simple and fast. YOLOv2 [18] improved accuracy and made detec-
tion faster by replacing VGG16 [24] with Darknet [19]. YOLOv3
[21] improved performance further by using a feature pyramid net-
works (FPN) [14] to output extracted features at different scales. Our
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proposed approach is based on the YOLOv3 framework.
To take into account information at multiple time steps, RNN

uses an internal state to save past information. The output of the
RNN model is calculated based on not only the current input but
also past information stored in internal state variables. RNNs are
commonly used to deal with sequential data such as text, speech,
and video sequences. The Long short-term memory (LSTM) model
[9] is a widely used RNN and has been successfully applied to var-
ious tasks such as machine translation [28], text classification [13],
feature representation [26], and image captioning[30]. The core idea
in LSTM is to use an additional internal state, called cell state, to re-
move or add information to the cell memory. Most of the above
approaches use a fully connected LSTM (FC-LSTM) layer and do
not consider spatial correlation.

Xingjian et al.[33], proposed a Convolutional LSTM (ConvL-
STM) network for precipitation nowcasting to predict the future
rainfall intensity in a local region over a relatively short period of
time. To model spatiotemporal relationships, they extended the idea
of FC-LSTM to ConvLSTM which has convolutional structures in
both the input-to-state and state-to-state transitions. Their study
shows that the ConvLSTM model consistently outperforms the FC-
LSTM.

The ROLO network, a recurrent YOLO network, was proposed
in[17]. The ROLO network aims to solve object tracking. In their
work, YOLO is used for basic detection and LSTM is used in re-
gression aiming to restrict the location prediction to a spatial range.
This approach works with 2D data. Given 3D or time-series data,
2D convolution treats sections individually without considering the
relationship between them. To address this problem, our proposed
model fully uses the relationship between frames not only at the de-
tection phase but also at the feature extraction phase.

Attention mechanism [2] was first introduced for machine
translation and now is widely implemented in computer vision net-
works. Several attention mechanisms have been successfully applied
on various deep learning tasks [31, 32, 11, 22]. Our proposed atten-
tion module is based on [35]. Similar to their work, we use two
branches to generate channel-wise and spatial-wise attention and
then fuse the branches. The difference in our work is that instead
of implementing attention using CNN, we apply it in our proposed
recurrent network so that the attention area on a frame can be prop-
agated to the following frame.

Proposed Approach
Given 3D MRI data, sections near to each other have a relation-

ship between them. Our proposed approach aims to utilize this ad-
ditional relationship to improve the performance of ligament injury
detection. We treat the relationship between sections as temporal
relationships and use our proposed fully RNN model to analyze 3D
data. Our model is based on the YOLOv3 framework but replaces
the convolutional layers with the ConvLSTM layers. We further
simplified the original YOLOv3 framework by replacing the pre-
diction on three different scales with two scales. As a consequence,
our proposed model has fewer layers and filters in comparison with
YOLOv3. The proposed model architecture is shown in Fig.1. It is
based on multiple ConvLSTM and channel-spatial attention blocks.

ConvLSTM Block
The structure of the ConvLSTM layer is shown in Fig.2. The

ConvLSTM layer accepts 4D features (time step, channel, height,

width) and uses 2D convolution operations. We use the cell structure
of FC-LSTM, instead of the one used by Xingjian et al.[33]. The
cell in Xingjian et al.implements a ”peephole connection”[7] which
allows gates to access the cell state. We removed the ”peephole
connection” to reduce the number of parameters. The core equations
of ConvLSTM are can be formulated as Eq. 1

it = σ(Wxi ∗ xt +Whi ∗ht−1 +bi)

ft = σ(Wx f ∗ xt +Wh f ∗ht−1 +b f )

ot = σ(Wxo ∗ xt +Who ∗ht−1 +bo)

Ct = ft �Ct−1 + it � tanh(Wxc ∗ xt +Whc ∗ht−1 +bc)

ht = ot � tanh(ct)

, (1)

where in these equations, it , ft , and ot are the input, forget, and
output gates, respectively. The cell and hidden state at time t are
denoted as Ct and ht . The operations ∗ and � represent convolution
and element-wise multiplication. The Sigmoid function is denoted
as σ .

ConvLSTM layers are arranged in blocks based on the residual
connection of Darknet [21]. In each block, the first of stack Con-
vLSTM layers uses a 1× 1 kernel to reduce the dimension of the
input. This is then followed by a 3× 3 kernel designed to increase
the number of output channels and extract features at the same time.
Then, the block outputs and inputs are added element-wise to form
the final output of the block. In comparison with the original resid-
ual block of He et al.[8] that uses a stack of 3 layers, experiments in
[21] suggest that this block produces better results.

Channel-spatial attention module
Our channel-spatial module, as shown in Fig.3, is a modified

version of the module proposed in [35] and can analyze 4D features.
We switch all dense layers in the original module to LSTM layers
and replace 2D convolutional layers with ConvLSTM layers. Our
attention module has two branches: channel and spatial attention
branches. Given 4D input features Q with shape (t,c,h,w) where h
and w are feature dimension, c is the number of channels and t is the
number of frames, the module output, Q2, has the same shape as the
input.

The channel attention block re-weights features so that impor-
tant channels receive higher weights compared with non-essential
channels. The output of this block is a channel attention mask Q′.
The spatial attention block, similar to channel attention block, re-
weights features in the spatial domain and generates spatial attention
mask Q′′. Channel attention and spatial attention mask re-weight
the original features separately by element-wise multiplication. The
fused feature map, Q1, is produced by element-wise addition of the
channel and spatial attention outputs. A residual connection is ap-
plied to form the final output Q2.

Experiments
Datasets

Two knee MRI datasets are used in this work: MRNet [4] and
kneeMRI [27]. The MRNet dataset consists of 1,370 knee MRI ex-
ams performed at Stanford University Medical Center. The dataset
contains 1,104 (80.6%) abnormal exams, with 319 (23.3%) ACL
tears and 508 (37.1%) meniscal tears. Exam labels were obtained
through manual extraction from clinical reports[4]. Spatial annota-
tions were done by a radiologist. Since labeling the entire dataset
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Figure 1. YOLO ConvLSTM model architecture

Figure 2. ConvLSTM cell

Figure 3. Channel-spatial attention module

is time-consuming, the radiologist annotated only 2 to 4 continuous
frames with a bounding box and assigned a label (ACL tear or nor-
mal tear) if a ligament injury was identified. In all the radiologist
labeled 228 exams in this manner.

The kneeMRI Dataset has annotations of healthy and injured
ligaments. It contains sagittal views with three different ACL di-
agnoses: not injured (690 cases), partially injured (172 cases), and
completely ruptured (55 cases). We use the non-injured cases as
healthy labels in this work. To balance the injured and non-injured
(healthy) exams, we randomly selected 263 healthy exams from the
kneeMRI dataset and formed a combined dataset with the MRNet
dataset. The combined dataset was split into the training and testing
subsets as shown in Table 1. Note that the table shows the number
of labeled frames, not the number of exams. Each exam normally
has multiple (4 to 6) continuous labeled frames.

Table 1. Summary of the combined dataset. There are total 1419
and 306 frames in the training and test sets, respectively.

Train Set Test Set Total
Normal Tear (frames) 224 45 269
ACL Tear (frames) 480 104 584
Healthy (frames) 715 157 872

Total number of frames 1419 306 1725

Evaluation Metrics
To measure the performance of models, we use several met-

rics. We evaluate object detection as two tasks: classification and
localization. To evaluate classification, we build the class confusion
matrix and compute based on it the recall, precision, and F1 score per
class type. While in general detection problems, images may con-
tain more than one object, in our specific problem we can assume
that each frame contains only one object. To evaluate localization,
we use Average Precision (AP) for each class type. We calculate
AP50 and AP75 for each class under certain Intersection over Union
(IoU) thresholds (0.5 and 0.75). We then compute the mean AP of
all classes under certain IoU threshold: mAP50 and mAP75. The fi-
nal measurement mAP.50:.05:.95 is the mean AP for IoU from 0.5 to
0.95 with a step size of 0.05 of all classes.

To our knowledge, while there is some existing work on the
classification of ACL conditions without localization, there is no ex-
isting work targeting ACL detection. Thus, to form a baseline for
comparison we use the original YOLOv3 model which we trained
with the labeled knee MRI data. We trained two YOLOv3 mod-
els: one trained from scratch and the other starting with a pretrained
ILSVRC [23] dataset weights. We also have two implementations
of the proposed model: with and without the attention module so
that we can measure the contribution of the channel-spatial attention
module.

Results
The classification and localization results are shown in Table

2 and Table 3, respectively. The best value is marked in red. As
can be observed in the tables, while that the proposed approach does
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Table 2. Classification metric results

Recall Precision F1 Score
Class Type ACL Tear Normal Tear Healthy ACL Tear Normal Tear Healthy ACL Tear Normal Tear Healthy
YOLOv3 0.403 0.444 0.891 0.875 0.869 1.0 0.552 0.588 0.942
YOLOv3
+ pretraining 0.798 0.733 1.0 0.965 0.825 1.0 0.873 0.776 1.0

Proposed model
+ without attention 0.875 0.822 0.898 0.866 0.685 0.992 0.871 0.747 0.943

Proposed model 0.894 0.711 0.987 0.885 0.744 0.981 0.889 0.727 0.984

Table 3. Localization metric results
AP50 AP75 mAP.50:.05:.95

Class Type ACL Tear Normal Tear Healthy mAP50 ACL Tear Normal Tear Healthy mAP75 All classes
YOLOv3 0.432 0.314 0.818 0.521 0.188 0.136 0.259 0.194 0.260
YOLOv3
+ pretraining 0.813 0.442 0.903 0.719 0.346 0.160 0.438 0.315 0.366

Proposed model
+ without attention 0.780 0.627 0.818 0.742 0.276 0.036 0.319 0.210 0.340

Proposed model 0.815 0.512 0.905 0.744 0.373 0.061 0.357 0.264 0.377

not improve the classification F1 score when compared to YOLOv3
with pre-training, it does improve the mAP score thus demonstrat-
ing better detection. The tables also show that our attention module
contributes to improved detection results. Note that the proposed
approach is substantially less complex than YOLOv3.

From the classification results in Table 2, we can observe that
the channel-spatial attention module helps to improve the recall of
the ACL tear and healthy classes by about 1.9% and 8.9%, respec-
tively, while the recall of the normal tear class reduces by 11.1%.
For precision, the ACL tear and normal tear scores increase by 1.9%
and 5.9%, respectively, while healthy label scores decrease by 1.1%.
The F1 score for the ACL tear and healthy classes improve by 1.8%
and 4.1%, respectively, while scores for the normal tear class de-
crease by 2%. The overall performance is improved after introduc-
ing channel-spatial attention. When compared with the YOLOv3
framework, our proposed model is better than the YOLOv3 without
pretraining in terms of recall and F1 scores, while precision is a little
lower. The pretrained YOLOv3 results are comparable to the ones
produced by our proposed model. Our proposed model has a higher
recall and F1 scores for the ACL tear class, while the precision of
the ACL tear class of our proposed model is lower by 8%. Our pro-
posed model does not perform as well as the pretrained YOLOv3 in
the normal tear class, while for the healthy class there is no big dif-
ference between the two models, where both models perform well.

From the localization metric results in Table 3, we see that the
channel-spatial attention module helps to improve the mAP.50:.05:.95
scores from 34.0% to 37.7%. The mAP50 and mAP75 scores are
increased by 0.2% and 5.4%, respectively. For the mAP.50:.05:.95
score, the proposed model achieves a score of 37.7% which is about
3.7% higher than the score without attention module. Compared
with the YOLOv3 framework, our proposed model is better than the
model without pretraining. At AP50, our proposed model is about
twice better than YOLOv3 without pretraining in ACL tear cases,
19.8% higher in normal tear cases, and 8.7% higher in healthy cases.
The mAP50 score is 22.3% higher than the YOLOv3 without pre-
training model. However, at AP75 the proposed model is 7.5% lower

than YOLOv3 without pretraining for the normal tear class, even
though the detection of ACL and healthy classes are much better.
The mAP75 score of our proposed model is 7% higher than YOLOv3
without pretraining. Our model increases the mAP.50:.05:.95 score by
11.7% from YOLOv3 without pretraining. We can conclude our
proposed model has better performance compared with a YOLOv3
model without pretraining. Compared with pretrained YOLOv3, our
model shows advantages at AP50. All three classes are improved
by 0.2%, 7%, and 0.2%, respectively. The mAP50 of our model
is 2.5% higher. However, at mAP75, the pretrained YOLOv3 is
about 5.1% higher than our proposed model. At the final measure-
ment mAP.50:.05:.95, our model is 1.1% higher than the pretrained
YOLOv3 model. In summary, we conclude that at the lower IoU
threshold, our proposed model has advantages over the pretrained
YOLOv3 and that with increasing threshold values, this advantage
becomes smaller. The overall measurement, mAP.50:.05:.95, shows
that our proposed model is better than the pretrained YOLOv3 and
improves the metric from 36.6% to 37.7%.

Fig. 4 shows examples of predicted results produced by our
proposed method. The top row (a) shows the ground truth annota-
tion, whereas the bottom row (b) shows our predicted result. As can
be observed, the proposed model is able to classify the injury type
and detect the injured region at the same time.

Conclusion
We propose a fully RNN deep learning model with a channel-

spatial attention module for knee MRI diagnosis using supervised
learning. Experimental results show that our proposed approach is
better than YOLOv3 and validate our assumption that there is ben-
efit in maintaining section context using RNN to analyze 3D data.
From a model complexity aspect, our model has fewer layers and
kernels than YOLOv3. The YOLOv3 has about 81 convolutional
layers, while our model has 62 ConvLSTM layers (23% reduction).
Further, the number of filters is reduced from 1024 to 512. The
experimental results also validate that the channel-spatial attention
module helps in improving the performance of our proposed model.
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Figure 4. Final output visualization: (a) shows the groundtruth and (b) is our predicted output.

In comparison with the YOLOv3 framework, our proposed model
has a better performance than a YOLOv3 model with or without pre-
training (smaller improvement when compared to pretrained model).
The overall performance measure mAP.50:.05:.95, validates that our
proposed model is better than the YOLOv3 framework.
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