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Abstract 
Noise parameters estimation is required in various stages of 

digital image processing. Many efficient algorithms of noise 
estimation were proposed during last two decades. However, most 
of these algorithms are efficient only for a specific type of noise for 
which they are designed. For example, methods of variance 
estimation of additive white Gaussian noise (AWGN) will not work 
in the case of additive colored Gaussian noise (ACGN) or, in 
general, in the case of a noise with non AWGN distribution. In this 
paper, a totally blind method of noise level estimation is proposed. 
For a given image, a distorted image with a discarded portion of 
pixels (around 10%) is generated. Then an inpainting (or impulse 
noise removal) method is applied to recover those discarded pixels 
values. The difference between the true and recovered pixel values 
is used to robustly estimate image noise level. The algorithm is 
applied for different image scales to estimate a noise spectrum. In 
this paper, we propose a convolutional neural network called 
PIXPNet for effective prediction of values of missing pixels. A 
comparative analysis confirms that the proposed PIXPNet provides 
smallest error of recovered pixel values among all existing methods. 
A good efficiency of application of the proposed method in both 
AWGN and spatially correlated noise suppression is demonstrated. 

Introduction  
A task of noise level estimation is actual for many areas of 

digital image processing and analysis [1]. Quality of image 
denoising [1, 2] directly depends how precise a noise level is 
estimated. Noise level estimation is important in no-reference image 
visual quality assessment [3].  This task is also connected to 
estimation of unpredictability of image regions for human 
perception which is used in lossy image and video compression [4, 
5]. Knowing a noise level one can estimate a level of lossy 
compression distortions which are visually inconspicuous [6].  

Most efficient methods of noise level estimation are not blind. 
They are designed under condition that a noise specific distribution, 
type, and spectrum are known in advance.  

Efficient algorithms of AWGN variance estimation [7-9] are 
designed under assumption that noise distribution is Gaussian, while 
noise variance and mean are constant for a whole image.  

Algorithms for estimation of spectrum of ACGN [10,11] are 
also designed under assumption that distribution of the noise is 
Gaussian and its variance is a constant.  

A map of standard deviations of non-stationary noise can be 
estimated with a good precision [12] if the noise distribution is 
Gaussian and noise spectrum is uniform.  

 In the case when an image is corrupted by a noise which 
distribution differs from distributions used for the design of the 
noise estimation algorithms, these algorithms will produce 
erroneous estimates. This problem is most contentious for noise 
level estimators which are based on deep convolutional neural 
networks (DCNNs) [11-13]. Such CNNs, pre-trained under specific 
noise (e.g., AWGN), may produce wrong results of prediction in real 
situations. 

In practice, noise is often non-Gaussian and/or colored. For 
cases when a pre-processing is applied to an image, a variance of 
residual noise can be different for different image regions. In this 
case, most of the state-of-the-arts methods of estimation of variance 
of AWGN are not applicable. Because of this, designing robust 
methods not trained for a specific noise is a very important problem, 
which we address in this paper. 

A method of totally blind noise level estimation was proposed 
in [5], where a Deep convolutional autoencoder (DCAE) with a 
small compression ratio introduces losses in a given image. Since 
this DCAE is trained on noise-free images, it preserves an image 
informative component and destroys a noise component. Because of 
this, a difference between input and output images of the DCAE are 
used for noise level estimation. The main drawback of the DCAE is 
possible overlearning during a training, where after a small number 
of iterations the DCAE packs two pixels values in one element of 
layer activations in the autoencoder’s bottleneck, which limits an 
ability of DCAE to separate an image into noise and informative 
components. 

In the paper, we propose a different fully blind approach of 
noise level estimation for prediction of an informative component 
of the image, and a use of a difference between input and predicted 
images for a noise level estimation.  

The key element of the proposed method is a prediction of pixel 
values descarded by an impulse noise. Any efficient algorithm of 
image inpainting [14-21] or an algorithm of impulse noise removal 
[22-27] can be used for this purpose. However, in this paper we 
propose a novel DCNN for pixels values prediction. This DCNN, 
which we called PIXPNet, is optimized for this task and shows a 
state-of-the-art precision of pixel values prediction. 

In this paper, we analyze efficiency of pixel values predictions 
by PIXPNet as well as an efficiency of suppression of different types 
of noise using estimates obtained by the proposed method.  

Proposed method of noise level estimation 
For many practical situations, noise characteristics are 

unknown. In Fig. 1, two examples of such images are given. Image 
in the Fig.1,a is a result of image processing in phase imaging [28]. 

  

 
a 

 

b 
Fig. 1. Examples of images with unknown noise characteristics 
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Fig. 2. Structural scheme of the proposed algorithm of noise level estimation 

Noise on the image is spatially correlated (non-white) in the 
image center. The noise is almost white near image edges. The noise 
level is low in the image center and increases towards image edges. 
The noise distribution is near Gaussian in the image center and 
becomes non-Gaussian (heavy-tailed) near image edges. The noise 
on edges can be considered as an impulse noise.  

Note, that all state-of-the-art methods for noise suppression [7-
12] do not work for this image. 

Another example is shown in the Fig.1,b. This image (and its 
enlarged fragment) is a result of image processing chain in Canon 
EOS 250D digital camera. It is automatically combined from several 
noisy images with a block matching. There is a visible residual noise 
on the image. The noise spectrum is non-white and unknown. Noise 
variance differs for different image regions. Noise is partially 
smoothed by lossy JPEG compression. A same situation is here: 
there is no good method which provides a reliable result. 

Our goal is to propose a method which is able to estimate noise 
level map for such images with unknown and non-stationary noise 
characteristics.  

A structural scheme of the proposed algorithm of noise level 
estimation is presented in Fig. 2.  

For a given noisy image, a distorted image with removed set of 
pixels is generated as well as a mask indicating positions of these 
pixels. Then a method of restoration of the removed pixels values is 
applied. The method has two inputs: distorted image and the mask. 
The difference between recovered image and noisy image is 
calculated (only for the positions of removed pixels).  

Our hypothesis is the following: if a good pixel predictor is 
used, then a noisy component of input noisy image will prevail in 
the difference, because the algorithm can predict pixel values but 
cannot predict noise values. Using this difference and a robust 
estimator (for example, median absolute deviation) one can estimate 
a noise level on the noisy image. The method will work for any noise 
distribution.  

A key factor here is how efficient is the algorithm of prediction 
of missed pixel values. For an ideal prediction of pixels values, the 
difference between input and recovered images will contain only a 

noise component. For an inaccurate prediction there will be impurity 
in the difference conditioned by the presence of an information 
component. The larger impurity will result in larger errors in noise 
value estimation. 

CNN for pixel values prediction 
For missed pixel values prediction, we designed DCNN called 

PIXPNet (Fig. 3).  
In contrary to the conventional CNN for noisy estimation, this 

predictor can be trained using any images including noise-free 
images. As a result, the proposed algorithm is not connected to any 
specific noise characteristics. In this sense it is fully blind and can 
be applied to any real-life noise level estimation. 

The network combines U-Net and ResNet architectures and has 
two inputs: grayscale image with the missed pixels and the mask of 
these pixels’ positions (known pixels are marked by 0, missed pixels 
are marked by 1). The output of PIXPNet is a recovered image. 

The network architecture is very similar to DRUNet 
architecture [2] demonstrating state-of-the-art efficiency of AWGN 
suppression on images.  Values of missed pixels in the input image 
are replaced by mean level of known neighbor pixels. PIXPNet was 
trained in Matlab using a custom training loop and MSE loss 
function. Input size for the training was 128x128 pixels. After the 
training PIXPNet can process images of arbitrary size.  

The PIXPNet was pre-trained using 11000 images:  noise-free 
images, photos with real-life distortions, clipart, cartoons, sketches, 
infographics. Due to this, a pre-trained PIXPNet can predict pixels 
of any images. We pretrained the PIXPNet for impulse noise 
probability 0..15% and for 200 000 iterations with minibatch size 
16. Adam optimization was used with the initial learning rate 
0.0001. After each 50 000 iterations the learning rate was decreased 
twice.  To increase a number of difficult patches in the training, we 
have used a technique described in [29]. 

A pre-trained PIXPNet and Matlab’s demo scripts are available 
in http://ponomarenko.info/pixpnet. 
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Fig. 3. Structural scheme of PIXPNet (SConv – Stride convolution, TConv – Transpose convolution) 

Comparative analysis of pixel prediction 
efficiency 

We compared a pre-trained PIXPNet with the several 
algorithms of impulse noise removal (for known positions of the 
corrupted pixels). The results obtained for noise-free Tampere17 [7] 
database images (not used for PIXPNet training) are given in Fig. 4. 

 
Fig. 4. Prediction errors for pixels recovering by different methods 

We added to the comparison the following image inpainting 
methods. DCTE [14] reconstructs missed pixels based on 
minimization of entropy of coefficients of discrete cosine transform. 
IN1 (based on least-squares method), IN2 (based on linear system 
of equations), IN3 (IN2 with a better plate equation), IN4 (usage of 
a spring metaphor), IN5 (neighbors averaging) are algorithms 
implemented in “inpainting nans” library [15]. CBAP is a content 
based adaptive predictor used in lossless image compression [16]. 
MCOH is Matlab’s “inpaintCoherent” function. PEN-Net is a 
DCNN for image inpainting [17]. MUMF is an image inpainting 
algorithm based on the Mumford-Shah-Euler image model [18]. 
HARM is a harmonic inpainting [19]. SHEP is the Shepard 
inpainting [20]. AMLE is inpainting based on absolute minimization 

of Lipschitz extension [21]. MEOH is Matlab’s “inpaintExemplar” 
function. 

Also, we added for the comparison the following methods of 
impulse noise removal. ANNbF is ANN-based Removal for Salt and 
Pepper Noise [22]. NAMF is a non-local adaptive mean filter [23]. 
OMP is a method based on orthogonal matching pursuit [24]. 
MEDIAN is median of eight neighbor pixels. MEAN is mean of 
eight neighbor pixels. ACmF is adaptive Cesáro mean filter [25]. 
DAMRmF is an adaptive modified Riesz mean filter [26]. FUZZY 
is an adaptive fuzzy filter for salt and pepper noise [27]. 

 

a b c 

d x e 

f g h 

Fig.5. Illustration of the proposed MED4 impulse noise removal algorithm 

In addition, we propose a new simple and fast method of pixel’s 
prediction combining four median edge detectors [30]. We called 
the method MED4. For prediction of a pixel x eight neighbor pixel 
values are used (see Fig. 5): 

 
  x = median{a, a, e, e, b, b, g, g, d+b-a, b+e-c, d+g-f, e+g-h}    (1) 

 
Median edge detector for the left top corner of the Fig. 5 is 

calculated as median{d, b, d+b-a} [30]. In (1), we combine median 
edge detectors for all four corners of 3x3 neighborhood of x. It is 
interesting that the proposed simple MED4 provides for this task 
superior results than most of the compared sophisticated and time-
consuming methods.  

It is clearly seen that PIXPNet significantly outperforms other 
methods producing 25% smaller prediction error than the nearest 
competitor DCTE which, in addition, is much slower. 

Thus, PIXPNet is the best predictor to be used as the core of 
the proposed blind noise level estimation algorithm. 
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Fig. 7. Example of spatially correlated noise suppression:  a) noisy image σb=0.8, σ=5, PSNR=34.2 dB, b) DRUNet+NLNet, PSNR=39.1 dB, c) DRUNet+PIXPNet, 
PSNR=39.2 dB 

Usage of PIXPNet for estimation and 
suppression of AWGN noise  

We estimated efficiency of the proposed method for AWGN 
suppression. For denoising, we have used DRUNet network [2] 
which requires noise standard deviation as one of the inputs. 

Two cases were considered: an ideal denoising with a priori 
known noise standard deviation, and denoising with noise standard 
deviations using the proposed method based on pixel values 
predictions by PIXPNet. 

Let us give details of the noise standard deviation estimation. 
PIXPNet is used to predict every ninth pixel of a given image (one 
pixel for each 3x3 patch is considered as a missing one and is 
predicted). Then the differences between pixel values and predicted 
values are calculated. Local variances in 7x7 sliding window are 
calculated for the recovered image. 95% of the differences with 
corresponding largest values of local variances are rejected from the 
analysis. Median absolute deviation is used to estimate standard 
deviation of noise on remained differences. 

Results of denoising for Tampere17 set and different true noise 
standard deviations are given in Table 1.  

Table 1. AWGN suppression, PSNR, dB 

 σ=5 σ=10 σ=20 

Noisy image 34.2 28.1 22.1
Denoising with true standard deviation 41.6 38.3 35.1 
Denoising with estimation by PIXPNet  41.0 38.0 35.0 

 
One can see that the proposed estimator provides PSNR of 

denoised images smaller than for an ideal case only by 0.3-0.6 dB.  

Usage of PIXPNet for estimation and 
suppression of spatially correlated noise 

We also estimated a case when the proposed estimator is used 
for suppression of spatially correlated nose. We used multiscale 
denoising scheme [11] showed in Fig. 2. DRUNet [2] is consistently 
applied to different image scales with a preliminary estimated noise 
value as one of the network’s inputs. We compared the proposed 
estimator with NLNet estimator [11] which provides the state-of-
the-art results for the task.  

 
Fig. 6. Multiscale scheme of spatially correlated noise suppression (more 
scales can be included) 

  Table 2 shows the obtained results for Tampere17 set for 
different noise levels and different σb characterizing correlation 
between neighbor noise values [11]. PIXPNet shows good 
efficiency providing in average only 1 dB smaller PSNR than 
NLNet.  

Table 2. Suppression of spatially correlated noise, PSNR, dB 

σb=0.5 σb=0.65 σb=0.8
 σ=5 σ=10 σ=20 σ=5 σ=10 σ=20 σ=5 σ=10 σ=20
Noisy 34.2 28.1 22.1 34.2 28.1 22.1 34.2 28.1 22.1
DRUNet+ 
NLNet 40.3 36.7 32.7 39.4 35.7 31.8 38.5 34.8 31.0

DRUNet+ 
PIXPNet 39.2 36.3 33.1 39.1 34.5 31.0 37.6 34.0 29.5

 
Fig. 7 shows an example of noisy and processed images. 

PIXPNet estimates noise levels for three scales as 13.2 (smallest 
scale), 8.4, and 2.5 (full size). 

 

Conclusions 
This paper describes a novel algorithm of blind noise level 

estimation based on pixels values prediction. The pixels values 
predictor does not need to be pre-training for any specific noise 
(even noise-free images can be used for training).  This allows to 
apply the proposed algorithm to estimate levels of various types of 
real-life noises.  

It is shown that the proposed CNN PIXPNet provides a state-
of-the-art efficiency of pixels values predictions. It can be used to 
recover pixels corrupted by impulse noise with a probability 1%-
15%. It is also shown that the proposed algorithm can be used for 
both AWGN and ACGN levels estimation in image denoising 
providing the results close to an ideal or state-of-the-art denoisers. 

152-4
IS&T International Symposium on Electronic Imaging 2022

Computational Imaging XX



 

 

 

References 
[1] J. Astola, P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering, 

CRC press, 288 p., 1997. 

[2] K. Zhang, Y. Li, W. Zuo, L. Zhang, L.Van Gool, R. & Timofte, “Plug-
and-play image restoration with deep denoiser prior”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 17 p, 2021. 

[3] N. Ponomarenko, V. Lukin, O. Eremeev, K. Egiazarian, J. Astola, 
"Sharpness metric for no-reference image visual quality assessment", 
Image Processing: Algorithms and Systems X and Parallel Processing 
for Imaging Applications II. International Society for Optics and 
Photonics, vol. 8295, 11 p, 2012. 

[4] O. Ieremeiev, N. Ponomarenko, V. Lukin, J. Astola, K. Egiazarian, 
Masking effect of non-predictable energy of image regions, 
Telecommications and Radio Engineering, 76 (8), pp. 685-708, 2017. 

[5] S.G. Bahncmiri, M. Ponomarenko, K. Egiazarian, Deep Convolutional 
Autoencoder for Estimation of Nonstationary Noise in Images, In 2019 
8th European Workshop on Visual Information Processing (EUVIP), 
pp. 238-243, 2019.  

[6] V. Lukin, S. Abramov, N. Ponomarenko, M. Uss, M. Zriakhov, 
B. Vozel, K. Chehdi, J. Astola, Methods and automatic procedures for 
processing images based on blind evaluation of noise type and 
characteristics, Journal of applied remote sensing, 5(1):053502, 2011. 

[7] M. Ponomarenko, N. Gapon, V. Voronin, K. Egiazarian, “Blind 
estimation of white Gaussian noise variance in highly textured 
images”, Proceedings of International Conference Image Processing: 
Algorithms and Systems, 5p., 2018. 

[8] S. Pyatykh, J. Hesser, and L. Zheng, "Image Noise Level Estimation 
by Principal Component Analysis", IEEE Transactions on Image 
Processing, pp. 687-699, 2013. 

[9] X. Liu, M. Tanaka and M. Okutomi, "Noise Level Estimation Using 
Weak Textured Patches of a Single Noisy Image", IEEE International 
Conference on Image Processing, 2012, pp. 665-668. 

[10] N. Ponomarenko, V. Lukin, K. Egiazarian, J. Astola, A method for 
blind estimation of spatially correlated noise characteristics, 
Proceedings of SPIE Conference Image Processing: Algorithms and 
Systems VII, 2010. 

[11] M. Ponomarenko, O. Miroshnichenko, V. Lukin, K. Egiazarian, “Blind 
Estimation and Suppression of Additive Spatially Correlated Gaussian 
Noise in Images”, European Workshop on Visual Information 
Processing, 6 p., 2021. 

[12] S.G. Bahnemiri, M. Ponomarenko, K. Egiazarian, “Learning-based 
Noise Component Map Estimation for Image Denoising”, submitted to 
IEEE Signal Processing Letters, 2022. 

[13] M. Uss, B. Vozel, V. Lukin, K. Chehdi, NoiseNet: Signal-Dependent 
Noise Variance Estimation with Convolutional Neural Network, In 
International Conference on Advanced Concepts for Intelligent Vision 
Systems, pp. 414-425, 2018.  

[14] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, J. Astola, 
Reconstruction of missing pixels in images using entropy of DCT 
coefficients, In Information, Telecommunication and Sofware Tools of 
Digital Signal Processing, pp. 5-20, 2008. 

[15] J. D'Errico, Inpaint_nans, MATLAB Central File Exchange,  
https://www.mathworks.com/matlabcentral/fileexchange/4551-
inpaint_nans), 2012. 

[16] F. Golchin, K. Paliwal, A context-based adaptive predictor for use in 
lossless image coding, Proceedings of IEEE Region 10 Annual 
Conference Speech and Image Technologies for Computing and 
Telecommunications, pp. 711-714, 1997. 

[17] Y. Zeng, J. Fu, H. Chao, B. Guo, Learning pyramid-context encoder 
network for high-quality image inpainting, In Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(pp. 1486-1494), 2019. 

[18] S. Esedoglu, J. Shen, Digital inpainting based on the Mumford-Shah-
Euler image model, European Journal of Applied Mathematics, 13(04), 
353-370, 2002. 

[19] Shen, J., & Chan, T. F. Mathematical models for local nontexture 
inpaintings. SIAM Journal on Applied Mathematics, 62(3), 1019-1043, 
2002. 

[20] J. Ren, L. Xu, Q. Yan, W. Sun, Shepard convolutional neural networks, 
Advances in Neural Information Processing Systems, pp. 901-909, 
2015. 

[21] V. Caselles, J. Morel, C. Sbert, An axiomatic approach to image 
interpolation, IEEE Transactions on Image Processing, 7(3), pp. 376-
386, 1998. 

[22] B. Turan, ANN Based Removal for Salt and Pepper Noise, Global 
Conference on Engineering Research, GLOBCER'21, 2021. 

[23] H. Zhang, Y. Zhu, H. Zheng, NAMF: A Non-local Adaptive Mean 
Filter for Salt-and-Pepper Noise Removal, arXiv preprint 
arXiv:1910.07787, 2019. 

[24] J. Tropp, A. Gilbert, Signal recovery from random measurements via 
orthogonal matching pursuit, IEEE Transactions on Information 
Theory, 53(12), pp. 4655–4666, 2007. 

[25] S. Enginoğlu, U. Erkan, S. Memiş, Adaptive cesáro mean filter for salt-
and-pepper noise removal, El-Cezeri Journal of Science and 
Engineering, 7(1), pp. 304-314, 2020. 

[26] S. Memiş, U. Erkan, Different Adaptive Modified Riesz Mean Filter 
For High-Density Salt-and-Pepper Noise Removal in Grayscale 
Images, Avrupa Bilim ve Teknoloji Dergisi, (23), 359-367, 2021. 

[27] V. Singh, Vikas, et al. "Adaptive type-2 fuzzy approach for filtering 
salt and pepper noise in grayscale images." IEEE Transactions on 
Fuzzy Systems 26.5 (2018): 3170-3176. 

[28] P. Kocsis, I. Shevkunov, V. Katkovnik, H. Rekola, K. Egiazarian, 
“Single-shot pixel super-resolution phase imaging by wavefront 
separation approach”, Optics Express, 29(26):43662-43678, 2021. 

[29] M. Ponomarenko, S.G. Bahnemiri, K. Egiazarian, "Deep 
Convolutional Network for Spatially Correlated Rayleigh Noise 
Suppression on TerraSAR-X Images", in Proceeding of IEEE 
Ukrainian Microwave Week (UkrMW), pp. 458-463, 2020. 

[30] Weinberger, M.J., Seroussi, G. & Sapiro, G. The LOCO-I lossless 
image compression algorithm: Principles and standardization into 
JPEG-LS. IEEE Transactions on Image processing, 9(8):1309-1324, 
2000. 

IS&T International Symposium on Electronic Imaging 2022
Computational Imaging XX 152-5


