
An improved raw image enhancement algorithm
using a statistical model for pixel value error
Henry Gordon Dietz; Department of Electrical and Computer Engineering, University of Kentucky; Lexington, Kentucky

Abstract
When an image is captured using an electronic sensor, sta-

tistical variations introduced by photon shot and other noise in-
troduce errors in the raw value reported for each pixel sample.
Earlier work found that modest improvements in raw image data
quality reliably could be obtained by using empirically- deter-
mined pixel value error bounds to constrain texture synthesis.
However, the prototype software implementation, KREMY (Ken-
tuckY Raw Error Modeler, pronounced “creamy”), was not effec-
tive in processing very noisy images. In comparison, the current
work has reimplemented KREMY to make it capable of credibly
improving far noisier raw DNG images. The key is a new ap-
proach that uses a simpler, but statistical, model for pixel value
errors rather than simple bounds constraints.

Introduction
In normal use, the purpose of a camera is to create an accu-

rate model of scene appearance – which is primarily determined
by the physical properties of the objects in the scene. However,
a camera is limited to using light from the scene to sample the
appearance. Thus, it seems natural to think of accurately mea-
suring photons as the key to producing a higher quality model of
scene appearance. The catch is that photon emission from any
light source is subject to statistical variations over short periods
of time: photon shot noise. Even if the sensor perfectly records
every photon from the scene, that data does not accurately model
the true “average” appearance of the scene, which is what human
observers perceive.

Photon shot noise is not the only way in which the pixel val-
ues can diverge from the ideal. There are a variety of potential
sources of noise within the camera and its electronics. Precisely
characterizing each of the separate noise sources is generally
difficult and often impractical for commercially-available cam-
eras. The complexity is multiplied by the fact that noise depends
on diverse factors including the sensitivity to light selected (the
ISO setting) and the current operating temperature of the camera.
Thus, the current work takes a pragmatic approach: measuring
the combined effect and generating a simplified probability-based
pixel value error model, as detailed in Section .

Earlier work [1][2] has demonstrated that using an appro-
priate model of noise to drive “credible repair” of a raw image
can be very effective. Texture synthesis was the mechanism used
to refine raw pixel values within computed error bounds. While
results were excellent for tight bounds, for noisier images there
are more instances of dramatically wrong pixel values. Bounds
that cover those outliers cause texture synthesis to fail, but us-
ing tighter bounds causes wrong pixel values to be passed un-

Figure 1. Sample pixel value error models, low and high noise

changed. In contrast, the current work does not refine pixel val-
ues within bounds, but replaces each pixel value with a new value
determined using probabilistic texture matches. The new values
are usually close to the originals, but can be arbitrarily different,
so noisier images can be more effectively improved.

The following section describes the pixel value error model
implemented in the new version of KREMY (KentuckY Raw Er-
ror Modeler). Section discusses texture synthesis using that error
model. The improved raw images are compared to those pro-
duced by the original KREMY in Section .

Pixel Value Error Models
In 2015, texture synthesis driven by a pixel value error

model was employed in KARWY[1] to credibly repair compres-
sion artifacts associated with the lossy compression scheme used
in Sony ARW raw image files. KARWY separately computed
error bounds for each individual pixel by essentially reversing
the compression arithmetic to compute the range of true values
that could result in the observed value. For lossy-compressed
ARW files, the bounds are not only due to an approximation to
log compression (which is commonly used in various camera raw
formats), but also due to a clever encoding scheme that scales val-
ues based on the set of all pixel values within the same 32-pixel
block. The result is bounds that very precisely model errors due
to ARW compression, but not other noise sources, such as photon
shot noise. Thus, KARWY’s model is both specific to a particular
raw format and insufficient as a model of total noise.

The most direct way to measure noise from all sources is to
physically fix the camera and capture a sequence of exposures of
the exact same test scene under essentially identical exposure set-
tings and lighting conditions. For each pixel, histogramming the
values obtained over the sequence of c captures defines a proba-
bility density function (PDF) for the value of that pixel. This ap-
proach was first used in TIK[3] for the very different purpose of

IS&T International Symposium on Electronic Imaging 2022
Computational Imaging XX 151-1

https://doi.org/10.2352/EI.2022.34.14.COIMG-151
This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

converting time-sequenced images into time domain continuous
per-pixel waveforms. TIK also encoded the error model in much
the same way used here, although the captures for TIK were not
raw images but a sequence of full color frames from a video of
a completely static test scene. This type of analysis does not un-
ambiguously determine the true value a pixel should have, but
it is a reasonable and common assumption that, given c sample
readings ri, the average value approaches the true value v:

v = ∑
c
i=1

ri
c

Thus, bounds for each ideal value v are simply the minimum and
maximum pixel values ri that were summed to produce each v.

A variety of methods for constructing a pixel value error
model were considered in developing the original version of
KREMY[2], all still targeting computation of bounds on the true
value of image pixels. The final method implemented was based
on identifying evenly-shaded patches. Variation of pixel values
within each such patch was used to define minimum and maxi-
mum bounds on the true value v. Portions of the image not iden-
tified as evenly-shaded were ignored in creating the model, and
there is no guarantee that error bounds will be computed for all
pixel values occurring in the image. Thus, pixel values with-
out computed bounds have their minimum and maximum bounds
interpolated from bounds on other values using two smoothing
passes to ensure bounds change monotonically with changes in
the observed pixel value. Empirically, this type of bounds-per-
measured-value model becomes significantly less effective as im-
age noise increases.

The key to good handling of high noise levels seems to be
directly addressing the statistical nature of noise. As an extreme
example, the probability that a pixel that should be white will be
seen as black due to photon shot noise is not high, but neither is it
zero. Put more philosophically, extreme alterations of observed
pixel values should be possible, but should require extreme evi-
dence that the change is appropriate. A probabilistic model can
implement this type of weighting. The current work thus em-
ploys a pixel value error model that associates probabilities with
each possible pair of observed vs. true pixel values.

A Probabilistic Error Model
The error model construction used in the new KREMY is

based on computing a probability density function (PDF). If all
ri involved in producing each value v are histogrammed, simply
dividing by the number of samples yields a PDF for v.

Although the computed v values may be of arbitrary preci-
sion, it is reasonable to map v values into integers of precision
no greater than the precision of a pixel sample ri. If both the
pixel values and probabilities are encoded with b-bit precision,
the complete set of PDFs for all v can be expressed as a matrix of
2b × 2b entries. This probability density map becomes an error
model expressed as a simple square image in which position x,y
encodes the probability that a value v = y was read as x. To main-
tain accuracy, the values for each y are treated separately, so the
error model values are scaled so that the maximum probability
x for each y has the full scale value. If the images contain Red,
Green, and Blue color channels, a color square image can repre-

let m = maximum pixel value, (1<<b)-1;
let f = filter threshold for maximum noise;
for (c = each color channel)

map[c][0..m][0..m] = 0; // clear color c map

// accumulate histogram of neighbor ranges
for (i = each image pixel of color c)

let ri = value of pixel i scaled 0..m;
let rj = value of most similar neighbor;
let d = abs(ri - rj);
// increment square region of map
if (d < f) map[c][ri..rj][ri..rj] += 1;

// normalize to make probabilities
for (y = each row in map) {

// assume diagonal is max probability
let scale = m / map[c][y][y];
for (x = each column in map)

map[c][y][x] *= scale;

Figure 2. Histogram-like algorithm to make probabilistic error model

sent the superposition of the three separate error models, one for
each color.

Figure 1 shows two such error models computed by the new
KREMY. The first is from a very low noise capture, a crop of
which is shown in Figure 4; the second is from the much noisier
capture that produced the crops shown in Figures 13 and 14.

Probabilistic Model from a Single raw Capture
The problem with this type of error model is primarily that

KREMY is intended to reduce noise in a single image without
requiring a training image data set – nor a detailed model of how
parameters like ISO setting and sensor temperature change the
noise. In the current work, the error model is created from the
single capture we are trying to enhance by applying two insights.

The first insight is that a pixel value error model describes
the probability that a given value is observed for a specific true
value. However, this also can be viewed as describing the prob-
ability with which two different pixel samples, ri and r j, ac-
tually represent the same v. This different perspective is sig-
nificant because it removes the need to know the true value v –
which cannot be directly computed using a single capture of an
unknown scene.

The second insight is that, under most circumstances, at
least one same-color pixel near this pixel will differ from this
pixel’s value by little more than noise. This observation does
not really provide a way to estimate v, but it does give a pair of
readings, ri and r j, that are fairly likely to represent the same
v. Of course, this method tends to overestimate noise, but large
errors only come from pixels with no similar values nearby – such
as distant stars in a night sky – and a simple filtering process can
reject recording a pair of readings when the difference is clearly
too large to be caused by noise. This leaves only relatively subtle
gradients to be confused with noise, and the impact of being one
pixel off in a subtle gradient is rarely significant.

Computation of the error model is thus based on analysis of

151-2
IS&T International Symposium on Electronic Imaging 2022

Computational Imaging XX

all pairs of most-similar neighbor values, ri and r j, to construct
the three-dimensional probability density function map; the basic
algorithm is shown in Figure 2. The histogram-like construction
is unusual in that a conventional histogram would increment a
single entry, whereas here if δ =abs(ri-rj), then (δ +1)2 map
entries are incremented representing that fact that values in that
range might really represent the same true value. Also note that
the normalized probabilities for a row in the final map do not
sum to 1; the probability ratios are preserved, but the highest
probability is encoded as (1 << b)− 1 so the map can have the
highest accuracy possible while being stored as a small integer
lookup table – or as a PGM image per color channel.

Use of Raw Image Data
Higher-end consumer cameras typically not only provide for

obtaining images in common export formats, particularly JPEG,
but also in a proprietary raw format. These raw formats gener-
ally wrap the unprocessed sensor data in a Tag Image File Format
(TIFF or TIF) wrapper. For example, Sony ARW, Nikon NEF,
Canon CRW, and Adobe DNG, are all TIFF wrappers around raw
sensor data. The main differences are in the compression meth-
ods used and how auxiliary data (image dimensions, exposure
parameters, color balance data, etc.) are encoded.

Most image export formats use only b = 8 data, so a
256×256 model should suffice. The raw sensor data is generally
the result of linear 12-16 bit analog to digital conversion, which
suggests that an error model should have 216 × 216 entries. Ex-
perimentally, the noise levels are usually such that moving from
a 256 × 256 to 512 × 512 or larger model increased execution
time with the higher-precision probabilities merely making noise
reduction slightly less aggressive.

More complex adjustments are needed because each raw
pixel typically samples only one color channel. This is because
the sensels themselves are sensitive to a broad spectrum, but do
not distinguish colors. To distinguish colors, a color filter ar-
ray (CFA) pattern is imposed on the sensor. Most commonly, the
CFA is a repeating 2×2 pattern of red and green over green and
blue (RG/GB), also known as a Bayer filter, but a wide variety of
other patterns have been used. Most alternative patterns still use
red, green, and blue, but many cell phones and Fujifilm cameras
use larger repeating patterns. Some alternative color sets aim at
improving low-light performance; for example, some older cam-
eras (e.g., Canon G1) used cyan, magenta, yellow, and green to
lets twice as much light pass for 3/4 of the colors, and patterns
using red, green, blue, unfiltered (often called white) lets about
three times as much light pass to the unfiltered pixels. It also
is common that two slightly different green filters are used in a
Bayer pattern either deliberately or as a side effect of the manu-
facturing process.

In the interest of simplicity, the new KREMY represents the
error model as a set of four PGM images, one for each of the
four color channels assumed to be repeating in a 2× 2 pattern.
Thus, there are four nearest same-color pixels, which for the pixel
at (x,y) would be found at (x,y− 2), (x− 2,y), (x+ 2,y), and
(x,y+ 2). A CFA pattern that uses two identical green filters is
accepted and treated as having two different green filters. The
same simplified model of CFA patterns also is used in the syn-

let r = texture synthesis radius;
for (i = each image pixel)

let val = 0, sum = 0;
for (j = each color(i) pixel within r of i)

for (p = each pixel offset in a patch)
let w = map[color(j+p)][*(i+p)][*(j+p)]/m;
w = pow(w, 1/strong) * distweight(i, j);
sum += w;
val += (w * *j);

new *i = (val / sum);

Figure 3. Simplified probability-weighted texture synthesis algorithm

thesis of textures. However, when the html-interfaced version of
KREMY is used, the error model is returned as a single, more
browser-friendly, color JPEG file in which the two green chan-
nels are averaged together – as shown in Figure 1.

Texture Synthesis
Normally, enhancement of image quality for noisy im-

ages is modeled as a combination of smoothing and sharpen-
ing algorithms. However, earlier work[1][2] found that texture
synthesis[4] can effectively enhance both smoothness and sharp-
ness simultaneously, and the current approach uses it even more
aggressively in this way.

Texture synthesis normally is used for inpainting[5]: the
process of creating credible replacements for missing, damaged,
or unwanted regions of an image. In KARWY[1] and the original
KREMY[2], texture synthesis is instead used to adjust the value
of each pixel within its computed bounds. For each pixel, the
texture synthesis processing examined up to 1089 nearby same-
color pixels in a spiral order, creating a weighted average value
as a function of:

• The bounded range for the pixel value.
• The bound-overlap similarity of each of the nine pixels in

the patch centered at the pixel to the patch centered at the
pixel to be improved.

• The base distance weighting for that position in the spiral,
which smoothly decreases as the distance from the pixel
being adjusted increases.

A confidence metric was computed as each position in the
spiral is evaluated, and the spiral evaluation is terminated early if
sufficient confidence is achieved. Random noise bounded by half
the remaining uncertainty in the value was added to the weighted
average value to further discourage posterization, and the pixel
value was adjusted toward this weighted sum.

This approach worked extremely well for KARWY’s repair
of ARW2 compression artifacts. With the error model computed
somewhat differently (as discussed earlier) and addition of two
final extra steps, it also was effective for improving moderately
noisy raw images in the original KREMY. The first extra step at-
tempts to keep the overall brightness of the image from dramat-
ically changing, and the second attempts to keep local contrast
similar to the original. Based on ability to remove deliberately-
added noise, noise was reduced by up to approximately 3EV

IS&T International Symposium on Electronic Imaging 2022
Computational Imaging XX 151-3

without any smoothing... but higher noise levels obtained little
improvement.

The main difference in the new version of KREMY is that
synthesis is not constrained by bounds, but by probabilities. All
similar pixel within a fixed radius are always incorporated in
the probabilistically-weighted average value (which is computed
faster due to allowing a better memory access ordering than the
spiral), no pixel value bounds are enforced, and the two addi-
tional steps are removed. A simplified approximation to the new
texture synthesis algorithm is given in Figure 3.

In effect, the new KREMY is individually removing every
pixel and replacing it with a texture-synthesized replacement.
Except for the fact that the original pixel value is included in com-
puting patch match weights, this is literally using inpainting to
replace each pixel individually. The strong parameter is used to
control the sharpness of the probability decay, with larger values
decaying slower because w values are probabilities between 0 and
1. The distweight() function smoothly decreases in value as
the distance between points i and j increases, giving slight em-
phasis to nearer patch matches. Thus, arbitrarily large changes
can be made to individual pixel values – and the results generally
are better, especially for very noisy images.

Results
The new KREMY was implemented in C, with the core

logic taking approximately 800 lines of code. There are two main
versions that function nearly identically. The original KREMY
was implemented inside dcraw[6], and one new version does
the same, in-place editing the raw image data within an uncom-
pressed DNG. However, the most recent version of DCRAW was
released in 2018. The version using raw2dng[7] is self-contained
and directly creates a DNG output file from any of the raw input
formats it understands, but it does not understand as many raw
formats as some DNG converters. The HTML form interface
is another 1100 lines of C code, using Adobe Digital Negative
Converter[8] to prepare raw input files for the dcraw-based ver-
sion.

The work here improves raw data – which is not directly ob-
servable. To avoid applying other improvements during raw con-
version, dcraw version 9.28 [6] was used to produce PPM files,
which were then scaled so that each pixel became an 8×8 pixel
block to help individual pixels remain distinguishable in the pub-
lished paper. Note that the captures in Figures 6, 9, 10, 12, 13,
and 14 are from the DPReview Studio scene[9]; all other expo-
sures were made by the author.

Performance on KREMY 2017 Test Images
Given that the new KREMY is intended to be an improve-

ment over the original KREMY, it is important to confirm that
it does not produce poorer results for any of the test cases used
with the original. There were no cases found for which the new
KREMY did worse than the 2017 version, although the new ver-
sion could be made excessively aggressive by poor choice of pa-
rameters.

Figures 4 and 5 show how base-ISO images from two Bayer
CFA cameras, a Canon Digital Rebel XT and a Canon PowerShot
S70, are handled; in each figure, corresponding crops are shown

Figure 4. Canon Digital Rebel XT @100; raw, KREMY 2017, new(3,12)

Figure 5. Canon PowerShot S70 @50; raw, KREMY 2017, new(3,12)

Figure 6. Olympus E-M1 Mark II @400; raw, KREMY 2017, new(3,12)

Figure 7. Canon PowerShot G1 @50; raw, KREMY 2017, new(3,12)

Figure 8. Sony DSC F828 @64; raw, KREMY 2017, new(3,12)

151-4
IS&T International Symposium on Electronic Imaging 2022

Computational Imaging XX

Figure 9. Apple iPhone 7; raw, KREMY 2017, new(3,12)

Figure 10. Nikon D810 @1600; raw, KREMY 2017, new(3,12)

from the original raw, the raw improved by KREMY 2017, and
the raw improved using the new version of KREMY. The notation
new(3,12) indicates that the images were processed by the new
algorithm with a strength setting of 3 and a texture search radius
of 12 pixels, which also sufficed for a medium-ISO image from a
Bayer CFA Micro Four Thirds mirrorless Olympus E-M1, shown
in Figure 6.

Both versions of KREMY also work with non-Bayer CFAs,
provided that the pattern is a 2×2 repeat. Figure 7 shows a base
ISO capture taken using a Canon PowerShot G1, which uses a
cyan, magenta, yellow, green CFA. A red, green, emerald, blue
CFA is used in the Sony DSC F828, with the result shown in
Figure 8. There does not seem to be any difficulty associated
with non-Bayer patterns; the enhancement is as effective using
the same parameters applied to Bayer CFA cameras.

Figure 9 shows that small sensors, such as the Apple iPhone
7, can produce significant noise even at base ISO, but can be
repaired well. In comparison, the full-frame Nikon D810 (Fig-
ure 10) is only a little noisier at the relatively high ISO of 1600 –
and becomes disturbingly noiseless using the same new(3,12) set-
ting used for the other examples, also partially repairing moiré.
Slightly stronger settings are useful for very noisy images. An
underexposed high-ISO image from a Bayer CFA APS-C mirror-
less Sony NEX-7 is shown in Figure 11. The cropped area (trees

Figure 11. Sony NEX-7 @1600; raw, KREMY 2017, new(5,12)

Figure 12. Sony A7C @1600 raw; @204800 raw, new(5,24)

below Mount Rushmore at night) is also significantly underex-
posed, compounding the noise problem. However, new(5,12)
produces a far better result than KREMY 2017.

Community Evaluation
One of the best ways to evaluate this type of tool is to have a

large user community compare results with other tools using their
own photos. Although a WWW browser-interfaced version was
posted and announced in DPReview forums, and feedback was
positive, insufficient reviews of the tool were recorded to draw
any conclusions.

Very High ISO Tests
Although the NEX-7 image in Figure 11 certainly had a lot

of noise, since 2017, many cameras have added support for much
higher ISOs. These ISOs are commonly seen as choices to be
used only in desperation, and are handled very poorly by most
raw processing pipelines – although some cameras are surpris-
ingly effective producing JPEGs at these ISOs.

Sensors in high-end cameras have been switching from front
to back illumination (BSI), which tends to improve SNR. For ex-
ample, the Sony A7C’s 24MP BSI full-frame sensor produces
visibly cleaner output at ISO 1600 (leftmost image in Figure 12)
than the 36MP FSI sensor in Nikon D810 (upper left image in
Figure 10). Thus, the A7C allows pushing the ISO two stops
higher than the maximum of the D810, to 204800. A similar
level of improvement can be seen in the Canon R5, which Figure
13 shows is quite clean at ISO 1600, and reaches a maximum of
102400. The new algorithm is quite effective at reducing noise at
these high maximum ISO settings; noise is comparable to a raw
shot at roughly 3-4EV lower ISO, but image sharpness remains
significantly poorer than at lower ISOs.

Although tools directly improving raw images, rather than
improving images in the process of producing a rendered JPEG,

IS&T International Symposium on Electronic Imaging 2022
Computational Imaging XX 151-5

Figure 13. Canon R5 @1600 raw; @102400 raw, new(5,48)

are not common, there are many denoising algorithms and
tools[10] – most now are based on neural networks. A rep-
resentative sampling of how three of them handle the Canon
R5 ISO 102400 image is given in Figure 14. Most denois-
ing tools do almost nothing with images this noisy. A better-
than-average example is Remini Professional[11], which only
seems to accomplish a modest increase in sharpness and con-
trast. AI Image Denoiser[12] is much more aggressive, signif-
icantly enhancing details, but also applying heavy smoothing.
DxO PureRAW[13], which directly improves the raw image us-
ing deep learning trained on “millions of images analyzed by
DxO over 15 years,” was easily the most effective of the many
denoisers tested. Compared to the method presented in this pa-
per, PureRAW was arguably better overall, producing purer col-
ors and more contiguous edges and lines. However, it smeared
some fine details affected by moiré, slightly decreasing resolution
obtained from test chart images, and GPU acceleration was re-
quired to give comparable execution time to that of our approach
running on a single processor core.

Conclusion
Although the algorithms used here to make the new ver-

sion of KREMY are extremely simple, the effectiveness in si-
multaneously reducing noise and retaining or improving sharp-
ness was consistently better than the original version of KREMY
and comparable to the best software currently available. This per-
formance was achieved not through use of machine learning with
large training datasets, but by very straightforward computation
creating and using a pixel value probability density function to
guide texture synthesis.

The serial implementation here is not fast, but it is easily
parallelized, and it also could be re-cast in a form suitable for ex-
ecution as an optional step in a camera’s raw processing pipeline.
Combining this type of pixel value error model with camera-
model-specific tweaks or AI methods will surely produce better
results. It also is significant that the output here is an improved
raw file, and additional improvements can be applied in demo-
saicing and rendering final images in formats like JPG, PNG,
HEIF, etc.

Additional information, and a link to the live WWW form
version, are available at http://aggregate.org/DIT/KREMY.

Figure 14. Remini Professional, AI Image Denoiser, and DxO PureRAW

References
[1] Henry Gordon Dietz and Paul Selegue Eberhart, “Sony ARW2 Com-

pression: Artifacts And Credible Repair,” Electronic Imaging 2016,
Visual Information Processing and Communication VII, pp. 1-10
(2/14/2016); DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-227

[2] Henry Gordon Dietz and Paul Selegue Eberhart, “Refining raw
pixel values using a value error model to drive texture synthesis,”
Electronic Imaging 2017, Image Processing: Algorithms and Sys-
tems XV, pp. 56-66(11) Visual Information Processing and Com-
munication VII, pp. 1-10 (1/29/2017); DOI: 10.2352/ISSN.2470-
1173.2017.13.IPAS-084

[3] Henry Dietz, Paul Eberhart, John Fike, Katie Long, Clark Demaree,
and Jong Wu. “TIK: a time domain continuous imaging testbed using
conventional still images and video,” Electronic Imaging 2017, Digi-
tal Photography and Mobile Imaging XIII, pp. 58-65(8) (1/29/2017);
DOI: 10.2352/ISSN.2470-1173.2017.15.DPMI-081

[4] A. A. Efros and T. K. Leung. “Texture synthesis by non-parametric
sampling,” Proceedings of the Seventh IEEE International Con-
ference on Computer Vision, 1999, pp. 1033-1038 vol.2, DOI:
10.1109/ICCV.1999.790383

[5] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma
Ballester. “Image Inpainting,” SIGGRAPH 00: Proceedings of the
27th annual conference on Computer graphics and interactive tech-
niques, July 2000, pp. 417-424, DOI: 10.1145/344779.344972

[6] Dave Coffin, “Decoding raw digital photos in Linux,”
https://www.dechifro.org/dcraw/ (accessed 1/30/2022)

[7] https://github.com/Fimagena/raw2dng (accessed 1/30/2022)
[8] https://helpx.adobe.com/camera-raw/using/adobe-dng-

converter.html (accessed 1/30/2022)
[9] Digital Photography Review (DPReview) Studio shot com-

parison, https://www.dpreview.com/reviews/image-comparison (ac-
cessed 1/30/2022)

[10] Linwei Fan, Fan Zhang, Hui Fan, and Caiming Zhang. “Brief re-
view of image denoising techniques,” Vis. Comput. Ind. Biomed. Art
2, 7 (2019) DOI: 10.1186/s42492-019-0016-7

[11] Remini AI Photo Enhancer, https://remini.ai/ (accessed 1/28/2022)
[12] AI Image Denoiser, https://imglarger.com/Denoiser (accessed

1/28/2022)
[13] DxO PureRAW, https://www.dxo.com/dxo-pureraw/ (accessed

1/28/2022)

151-6
IS&T International Symposium on Electronic Imaging 2022

Computational Imaging XX

