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Abstract
Our central goal was to create automatic methods for se-

mantic segmentation of human figures in images of fine art paint-
ings. This is a difficult problem because the visual properties
and statistics of artwork differ markedly from the natural pho-
tographs widely used in research in automatic segmentation. We
used a deep neural network to transfer artistic style from paint-
ings across several centuries to modern natural photographs in
order to create a large data set of surrogate art images. We then
used this data set to train a separate deep network for semantic
image segmentation of genuine art images. Such data augmenta-
tion led to great improvement in the segmentation of difficult gen-
uine artworks, revealed both qualitatively and quantitatively. Our
unique technique of creating surrogate artworks should find wide
use in many tasks in the growing field of computational analysis
of fine art.

Introduction and background
Semantic segmentation is an important step in many tasks in

the analysis of natural photographs (e.g., captioning, question an-
swering, search), medical images (identifying tumors or cancer-
ous lesions), remote sensing (identifying land and water forms,
foliage and vegetation), and autonomous driving (lane following,
obstacle identification and avoidance). Currently the most accu-
rate segmentation methods rely on deep neural networks trained
with large corpora of photographs or stills from videos—up to
hundreds of thousands of examples.[12, 2]

Segmentation is also a key early step in many techniques
of automatic art analysis, including the analysis of compositional
styles, identifying figures or “actors” as a step to inferring the
story, moral, or meaning expressed by an artwork,[17] and oth-
ers. For a number of reasons, semantic image segmentation of art
images has proven difficult for machine learning methods based
on deep networks trained with photographs.[3] First, art images
in the Western canon vary widely in style—color palettes, marks,
contours, and so forth. Second, art images often include imagi-
nary or non-existent objects, such as dragons, halos, satyrs, and
nymphs. Third, even realist art often includes objects that vio-
late physical constraints, such as flying putti and dripping pocket
watches. None of these attributes have counterparts in the natural
photographs generally used for training deep neural networks. As
a result, existing deep networks for segmentation perform quite
poorly on stylized fine art images, as we shall confirm in the fol-
lowing sections.

Given the abilities of deep networks to learn complex func-
tions and relationships from adequately large training sets, the
central problem in the development of such networks for art anal-
ysis would appear to be that there are too few art images for

training such networks for tasks such as semantic segmentation.
The largest image datasets used in deep learning use millions—
or in private datasets up to hundreds of millions—of natural
photographs.[5, 18] By contrast, the total number of relevant fine
art images is several orders of magnitude smaller. Estimates of
completed painting by leading artists—including the most prolific
artists—are much lower: Picasso (13500), Pierre-Auguste Renoir
(4000), Jean-Baptiste-Camille Corot (3000), Vincent van Gogh
(900), Paul Cézanne (900), Johannes Vermeer (34), and Leonardo
da Vinci (18). Even a collection of the artworks of thousands of
artists yields a dataset far smaller than the minimum corpora of
photographs used in accurate deep network systems.

Overall approach and compute environment
Our approach to this problem is to create a large corpus

of new images by transferring a learned art style to natural
photographs.[7, 8, 6] The images in the resulting dataset will be
referred to as surrogate artworks and might include an image of a
jumbo jet rendered in the style of Monet. We then use this corpus
of surrogate artworks to refine or transfer train an existing deep
network for segmentation to better reflect the properties of target
genuine artworks. We then apply this transfer-trained deep net-
work to the problem of segmenting genuine artworks, ones not in
the training set. As we shall see, this two-step approach leads to
great improvement in the segmentation of particularly difficult,
non-realistic genuine artworks as we specify both qualitatively
and quantitatively, below.

In general, the task of transferring domain knowledge from
a source domain to a target domain is referred to as domain adap-
tation [15, 10]. Recent work [1] shows that adaptation tech-
niques based on neural style transfer can outperform state-of-the-
art GAN-based image translation approaches [11, 14] on seman-
tic segmentation and object recognition tasks. To the best of our
knowledge, this work is the first to demonstrate the use of neu-
ral style transfer to generate a large-scale surrogate dataset and
to demonstrate its effectiveness in training and applying semantic
segmentation models to the analysis of artworks.

Our base dataset of photographs[19] and our Deeplab v3
segmentation network[4] have been described elsewhere, have
been used in several studies, and are well understood. The back-
bone of our segmentation network was ResNet50.[9] We used the
well-tested VGG19 network for feature extraction[16] in the style
transfer process.[7] In all cases, we used the network architectures
as described in the references; it is our overall system architecture
and creation of surrogate database for transfer training that are
novel.
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Figure 1. Example of baseline segmentation performance on Alice Neel’s

portrait Dana Gordon, oil on canvas (1972). This is a particularly challeng-

ing segmentation problem because of the artist’s style avoids strong lighting

clues, both color and line design in the shirt and chair are similar and employ

somewhat unnatural colors. Notice the segmentation omission errors at of

the arms, neck, and forehead, and the commission errors beneath the sub-

ject’s foot. Additional baseline examples appear in the middle row of Fig. 3.

Baseline performance: Semantic segmenta-
tion of art images by networks trained on nat-
ural photographs

Throughout our work, the corpus of art images consists of
105 full-color paintings from the Western canon, scraped from
online databases and scaled to 320 × 320 pixels, a convention
that speeds batch processing of images in our work. We use a
Deeplab v3 [4] segmentation network with a ResNet [9] back-
bone with 50 layers, where the baseline segmentation network
was trained on natural photographs. The network is pretrained on
the COCO train2017 [12] dataset which features 21 classes, in-
cluding a person class. As we are only interested in the segmen-
tation of persons the detection head is reduced to a single output
channel for our binary segmentation problem. The baseline net-
work is then finetuned on a subset of the Baidu People Segmenta-
tion Dataset[19] consisting of 5209 half-body and full-body shots
of people with varied backgrounds. Annotation is provided in the
form of accurate binary segmentation masks. We split the dataset
into a training set and a validation set in a roughly 4:1 ratio.

Figure 1 shows sample baseline segmentation of a modern
portrait by the network trained with only natural photographs.
Notice the numerous segmentation errors. As we shall see in the
results section, such errors arise in part because the styles (colors,
textures, and so on) of the artworks differs from that of the natural
photographs used for training.

The segmentation performance can be quantified by the stan-
dard IoU metric:

U =
1
N

N

∑
i=1

IoU(Ti,Pi). (1)

where N = 21 is the number of independent art images used for
testing, Ti and Pi are the sets of pixels of target and predicted
segmentation masks, respectively, and IoU is the intersection

Figure 2. Natural photograph before and after application of style transfer

from our art data set. Notice the somewhat unnatural ochre and brown tones

in the surrogate artwork.

over union metric defined as IoU(A,B) = |A∩B|
|A∪B| .[13] Of course

0 ≤U ≤ 1, where the higher the value of U , the higher the quality
of segmentation. We find that for this baseline case Ub = 62.1%.

Neural transfer of artistic style to
natural photographs

We created our surrogate training set by style transfer of 60
paintings randomly selected from our corpus to the baseline train-
ing set of 4146 natural photographs, using a VGG-19 network for
feature extraction and the style-transfer protocols to combine the
content of natural photographs with the style of artworks.[7] A
surrogate validation set of 1063 images was generated in anal-
ogous fashion. Both content and style images used to generate
the surrogate training and validation sets are disjoint. Further-
more, the final test set of real artworks consists of 21 additional
unseen artworks. Figure 2 shows typical style transfer results.
Notice, informally, that the transferred style is not a single one
from the history of art, but some form of mixture of many styles,
as is appropriate given we will be applying our system to art from
throughout the full period, and hence a variety of styles.

We took the base segmentation network that had been fine-
tuned on 4146 natural photographs and transfer trained it with the
same number of surrogate paintings to maximal IoU score on the
surrogate validation set of 1063 images. The same learning pro-
tocols as in the base network was used.

We then applied the resulting network to the task of segment-
ing 21 genuine artworks—none of which were used to transfer
style to the surrogate database. As is proper protocol, images in
our test set were not used in any way in the training of our overall
system.

All models were run on a system with an Intel Xeon E5-
2697v3 CPU (14 cores), 128GB RAM and 4 Nvidia GeForce
GTX Titan X GPUs, using PyTorch 1.6.0.
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a) b) d) d) e)

Figure 3. Top row: paintings, middle row, segmentation with baseline network, bottom row, segmentation after network transfer trained with surrogate art

images. a) Pablo Picasso’s Child with dove, b) Alice Neel’s Kenneth Dolittle, c) Amedeo Modigliani’s Jeanne Hebuterne (aka In Front of a Door), d) Alexej von

Jawlensky’s Schokko with Wide-Brimmed Hat, and e) Alex Katz’s Daniel. In all these challenging cases, the network transfer trained with surrogate art images

performs better than the baseline case based on just natural photographs.

Results: Segmentation after transfer training
with photographs styled by artworks

Figure 3 shows typical segmentation results for difficult art-
works, both before and after transfer training by the surrogate
art data set. Our base network was trained only on natural pho-
tographs. Nevertheless, for Pablo Picasso’s ”Child with Pigeon”
(see column a), it generates a largely accurate segmentation mask
with an IoU score of 88.7% and small false positive region at the
child’s feet. In comparison, our improved network generates a
nearly perfect mask at an IoU score of 97.4%. Generally notice
that qualitatively the segmentations are superior to the base case,
in some cases significantly so, most notably Alice Neel’s Kenneth
Dolittle (IoU improvement of 27%). Informally, numerous ob-
vious segmentation errors—of both omission and commission—
arising in the base system are eliminated by training with the
surrogate artworks. The improvements in segmentation quality
achieved with our method are most evident in Alexej von Jawlen-

sky’s Schokko with Wide-Brimmed Hat shown in column d. The
baseline network only succeeds in capturing small parts of the
face of the woman, which is rendered by the artist in an unnatu-
ral yellow skin tone. Our enhanced network captures the entire
face and neck area, leaving only the chest largely unrecognized.
The last example of Alex Katz’s Daniel represents a special case.
None of Katz’s artworks were used in the generation of our sur-
rogate dataset, i.e., neither the baseline network nor our improved
network was trained on styles found in Katz’s artworks. What is
remarkable about this example is its reduced style and overall flat
appearance – compared to the previous examples and artworks
used in the creation of our surrogate dataset, fine structures are
much less pronounced. Nonetheless, and although the segmenta-
tion errors in the final Daniel are quite severe, the segmentation is
still far better than in the base case, as shown in column e. Finally,
Figure 4 represents a case where neural style transfer produces un-
convincing surrogate artworks. The floral and fabric patterns of
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Figure 4. An example of poor fusion of content (top left) and style images

(top right) into a surrogate artwork (bottom).

Claude Monet’s Camille Monet and a child in the artist’s garden
in Argenteuil, which serve as the style component, are incorrectly
transferred to the subject’s face and arms. These effects can be
caused by unexpected image features, e.g. if the image is black
and white, as is the case in this example, but they can also be
due to a lack of semantic understanding of the network used for
feature extraction in the style transfer process.

There is a quantitative benefit from the use of our surrogate
training set, as expressed by the performance measure in Eq. 1.
The final system has a performance of Ut = 74.9%, which is of
course superior to the baseline Ub = 62.1%, as measured on 21
independent artworks.

Conclusions and future directions
We have demonstrated that deep network transfer of artistic

style to a large corpus of readily available natural photographs can
produce large data sets of surrogate art images. A baseline deep
network architecture for semantic segmentation, transfer trained
with this large data set of surrogate art images, leads to signif-
icantly greater accuracy on segmentation of difficult art images.
Our work strongly suggests that it is the style, not the diversity of
shapes, is the key factor in segmentation of art images.

Future work could focus on training segmentation networks
with larger sets of both genuine and surrogate artworks, and alter-
ations of network architecture and training protocols tailored to art
problems. Similarly, we can extend this work to non-binary seg-
mentation, that is, to semantic segmentation of numerous classes
relevant to art analysis. Likewise, we expect that the imposition of
priors and focused data sets relevant to a specific task improves re-
sults. Thus for instance if our ultimate task is to automatically seg-
ment images of Impressionist artworks, we should transfer style
from just Impressionist artworks to create a surrogate data set.

Likewise for other periods, such as Mannerist, Expressionist and
so forth. In some cases, this technique might apply restricted to
artists with sufficiently large oeuvre and distinctive style, possibly
Vincent van Gogh or Georges Seurat.

We believe the methods presented in this paper should find
use in computational approaches to art scholarship, particularly
higher-level interpretation tasks such as extracting simple mean-
ings from artworks.[17] Our technique of training neural networks
with surrogate photographs is not limited to the task of seman-
tic segmentation and could facilitate the transfer of image analy-
sis tools that already exist for natural photographs to the domain
fine art paintings. Conceivable examples include art conservation
and analysis through digital inpainting of paintings based on deep
networks trained with surrogate artworks from the relevant style.
Similarly, visual search tools could facilitate indexing and search
of large catalogue records of collections.
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