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Abstract
Deep learning technology has made a significant improve-

ment in image recognition performance. Unlike single-labeled
training and inference, multi-labeled classification tasks hardly
characterize individual label in the training of deep neural net-
works due to co-occurrence of the labels. Training data contains
few samples of separated single label and the networks learn
diverse compositions of labels from the data. Contextual bias
caused by the co-occurrence of labels disturbs multi-label clas-
sification. We propose Identical and Disparate Feature Decom-
position (INDeeD) from multi-label data that explicitly learn the
characteristics of individual label. By training a backbone net-
work combined with Identical and Disparate blocks on the in-
stance pairs of partially common and contrastable labels, the net-
work is generalized to decompose and learn individual label fea-
tures. Proposed INDeeD scheme can be simply incorporated in
any type of networks. We use ML-MNIST, ML-CIFAR-10, VOC-
2007, and MS-COCO datasets to evaluate the performance of IN-
DeeD showing improved mAP over baseline.

Introduction
Recent advances in deep learning approaches have demon-

strated excellent performance gain in image based recognition
tasks. Advanced networks [9, 23, 26, 29] significantly improve
single-label classification performance being trained on large
scale data set such as ImageNet [24]. Recent challenging classifi-
cation tasks with compositive and congregated class types require
complex training data sets of larger data size, higher image res-
olution, multiple modalities, and complex structure of semantic
visual components with multiple labels. For example, object de-
tection methods [20, 30, 22, 28] are evaluated on data sets [18, 8,
15]. High-resolution images of the data sets contain multiple class
objects with respective bounding boxes on complex backgrounds
with mixed situations. Unlike single-label instance classification,
however, in the classification task with multi-label instance re-
quires comprehensive and contextual understanding of the exis-
tence of each label. In general there is no explicit guide for multi
label in an instance such as a bounding box in object detection
training. These situations make it difficult to learn features for
precise local locations. In addition, the higher frequency of the
label co-occurrence, the more confusing it is in learning to accu-
rately represent the characteristics of individual categories. For
example in Figure 1 (a), person frequently co-occurred with mo-
torcycle or horse in single instance corresponding ”a person riding
a motorcycle” or ”a person riding a horse” respectively. With such
instances networks learn comprehensive features of such multi-
label cases rather than learning individual object. In other words,
when an object to be recognized is co-occured with other ob-

jects or appears in a specific environment in most cases, networks
tend to have contextual bias and the characteristics of each object
cannot be appropriately expressed. Recently, with the success of
graph convolutional network (GCN)[12], GCN based methods [4,
5, 31, 33] have introduced in multi-label tasks. Chen et al.[5] use
the frequency of instance co-occurrence as training information.
They create a graph structure with each class vector obtained by
training to learn the semantic relationship between classes using
conditional probability. Besides, there have been several studies
that tackle the problem in the perspective of class imbalance. Wu
et al.[32] have made efforts to mitigate data imbalance of rela-
tively less appeared labels in multi-label samples. They propose a
re-sampling method to make class distribution uniform. However,
even though they increase the number of samples by re-sampling
for the classes of multi-label [3, 2, 10, 25], new samples with
still co-occurring labels does not resolve the training problem of
each label. Ben-Baruch et al.[1] propose a loss function to assign
different weights to different labels so that the instance distribu-
tion of each label becomes uniform. Although basic principle is
similar to Focal Loss [17], they achieve meaningful performance
improvement by reducing the dominance of less appeared labels.
However, adapting the loss does not directly mitigate the contex-
tual bias. In addition, Ben-Baruch et al.[1] experimented in an
environment pre-trained with ImageNet [24], and when training
with large data such as ImageNet, contextual bias is less appeared.

In this work, we introduce a novel training method on multi-
label data, proposing identical and disparate feature decompo-
sition (INDeeD) to alleviate contextual bias for individual label
even in online learning situation. INDeeD training scheme gen-
eralizes a backbone network to learn features for individual label
explicitly via identical and disparate blocks. Identical and dis-
parate blocks extract individual class features through similarity-
based masking training on instance pairs of both sharing and non-
conflict labels named ”partial-coco pairs”. The detailed defini-
tion is in the section . For example, suppose that the ”partial-
coco pair” images Xa and Xb contain {person, motorcycle} and
{person, horse}, respectively. In order to decompose the features
corresponding to each class in the two samples, the similar and
dissimilar parts in the two images are to be decomposed. So, the
Identical block extracts features with high similarity (features cor-
responding to person) from Xa and Xb, and the disparate block
extracts features that are not similar (features corresponding to
motorcycle or horse) from Xa and Xb. Extracting features for indi-
vidual labels in this way makes the classifier more robust provid-
ing augmented training sample for individual labels in the feature
space. INDeeD training is a kind of constraint alleviating the con-
textual bias described above. In other words, it restricts the parts
with high similarity to express the same class in the ”partial-coco
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pairs” image features and force the features with low similarity to
express different classes.

The contributions of our work includes: 1) a novel INDeeD
training method with Indentical and Disparate blocks that decom-
pose individual label representation from multi-label data 2) Two
types of multi-label toy sets (ML-MNIST and ML-Cifar-10) for
analytical evaluation for multi-label classification tasks and 3) Ex-
tensive evaluation on 8 variations of our own toy sets, VOC-2007
and MS-COCO data sets.

Method
Figure 1 illustrates overall structural flow of our INDeeD

training. Xa and Xb are multi-labeled input images with respective
label set ya,yb ⊂ Y, where y = {y1,y2, ...,yc} is all class labels
and c is total number of class labels in data set. fa, fb ∈ R1×n are
n-dimensional feature vectors of images Xa and Xb in the latent
space where identical and disparate blocks are operated. In order
to learn individual class representation from multi-label data, our
INDeeD need to partial-coco pair. Partial-coco pair (Xa,Xb) is
randomly chosen from all samples of mini-batch that satisfy:

(ya∩yb) 6=∅ (1)

((ya−yb)∪ (yb−ya)) 6=∅ (2)

If there is no remaining such pair in mini-batch, default pair
(Xa,Xa) is used.

Identical and Disparate Blocks
Feature vectors fa, fb ∈R1×n of chosen image pairs (Xa,Xb)

are fed to identical and disparate block respectively. Detailed
structure of identical, disparate block is illustrated in Figure 1(b).
To represent individual class feature, we need to define the iden-
tical map m for the extraction of identical features as follows.

m =
fa⊗ fb

‖ fa⊗ fb ‖2
(3)

where operator⊗ indicates element-wise multiplication and ‖ . ‖2
is L2 normalization. Alternative optional normalization is min-
max defined as follows.

m =
( fa⊗ fb)−min( fa⊗ fb)

max( fa⊗ fb)−min( fa⊗ fb)
, (4)

min(·) returns minimum value and max(·) returns maximum
value from input vector. The reason of using two different nor-
malization, the normalized identical map attributes are effects bit
different way to learn individual class. L2 normalization gener-
ally produces a smooth identical map, whereas min-max normal-
ization produces relatively sharp map. These differences in at-
tributes affect training. The influence of the min-max normaliza-
tion method on the feature space has a more whirlwind influence
than L2. However, min-max normalization is more sensitive to
outliers than L2. So, you can decide which normalization to use
depending on the quality of the data. Since fa, fb is a value that
has passed through an activation function such as ReLU, no matter
which norm method is used, m has a consisting of values between
0 and 1.

Identical map m∈R1×n produced by (3) or (4) that expresses
how similar each element of fa and fb. Similar common feature

elements of fa and fb are boosted and other elements are sup-
pressed in two outputs fa∩b = m⊗ fa, fb∩a = m⊗ fb of identical
block. The features fa∩b and fb∩a obtained by the identical block
are explicitly represent to the common category in the partial-coco
pair Xa and Xb. For this reason, the labels ya ∩ yb is assigned to
fa and fb.

We have previously defined the condition for partial-coco
pair as in (1) and (2). Identical block can be executed even if
only condition (1) is satisfied. However, the Disparate block can
extract meaningful features only when both conditions (1) and
(2) are satisfied. The Disparate block extracts features corre-
sponding to different categories from the partial-coco pair, which
has the opposite role of the Identical block. Therefore, (1−m),
which is the opposite map of the identical map, is used: fa−b =
(1−m)⊗ fa, fb−a = (1−m)⊗ fb. A label ya− yb is assigned
to the feature fa−b extracted in this way, and a label yb− ya is
assigned to fb−a. Note that fa−b and fb−a are completely dif-
ferent feature, because those two feature represents completely
different categories. Finally, Identical and Disparate blocks add
four new feature vectors building subdivided descriptions on the
class labels (feature vectors F(Xa,Xb) below are fed to following
classifier).

F(Xa,Xb) = { fa, fb, fa∩b, fb∩a, fa−b, fb−a} (5)

Objective Function
Loss function of our classification is defined as follows.

L = LO +λ (LI +LS) (6)

where loss terms LO, LI , and LS are calculated from classification
based on original features ( fa, fb), identical features ( fa∩b, fb∩a),
and disparate features ( fa−b, fb−a) respectively.

LO = BCE(pa,ya)+BCE(pb,yb) (7)

LI = BCE(pa∩b,ya∩b)+BCE(pb∩a,yb∩a) (8)

LS = BCE(pa−b,ya−b)+BCE(pb−a,yb−a) (9)

where logits pa, pb, pa∩b, pb∩a, pa−b, pb−a are from corre-
sponding feature fa, fb, fa∩b, fb∩a, fa−b, fb−a and binary cross-
entropy(BCE) of a classifier is defined as follows.

BCE( f , l) =−∑
i

li log(σ(pi))+(1− li) log(1−σ(pi)) (10)

with using sigmoid σ(x) = (1 + exp(x))−1. Vector p contains
classifier logits and l denotes the vector of binary labels, and i
is class index. In this classification, based on the (feature, corre-
sponding label) ( fa,ya) and ( fa,ya), new labels ya∩b, yb∩a, ya−b,
yb−a for new four feature vectors fa∩b, fb∩a, fa−b, fb−a are de-
fined as follows.

ya∩b = yb∩a = ya∩yb

ya−b = ya−yb = ya∩yb

yb−a = yb−ya = yb∩ya

(11)

INDeeD leverages backbone networks to extract fa, fb features
good to extract following identical features ( fa∩b, fb∩a) and dis-
parate features ( fa−b, fb−a).
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Figure 1: (a) Overall diagram of proposed method: fa∩b, fb∩a, fa−b and fb−a features are extracted by Identical and Disparate blocks
from features fa and fb of input images Xa, Xb. Classification is conducted based on the six feature vectors. (b) Detailed structure of
Identical and Disparate blocks: ⊗ stands for element-wise product and N indicates normalization. L2 norm or min-max is used as N. R
indicates (1-m).

Figure 2: Sample images of ML-MNIST and ML-CIFAR-10 data sets cunstructed for multi-label classification evaluation: Number of
labels are 2, 3, 5, and 7.

Figure 3: Confidence maps of the tests on ML-MNIST and ML-CIFAR-10 data sets: Vertical axis of confidence map corresponds to label
index of test data. Horizontal-axis is average output probability value of corresponding test instances of vertical-axis.

Experimental Evaluation
We evaluate proposed method on MNIST[16], CIFAR-

10[13], PASCAL VOC-2007[8] and MS-COCO[19] data sets.

MNIST [16] and CIFAR-10 [13] are configured for single la-
bel classification task. For an analytic evaluation, we con-
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ML-MNIST-N Methods zero one two three four five six seven eight nine mAP

N=2
Baseline 99.67 99.29 95.34 97.01 97.70 95.47 99.05 98.08 84.92 88.66 94.04

INDeeD (L2) 99.81 99.70 97.43 98.24 98.67 97.64 98.99 98.86 93.13 93.87 97.66
INDeeD (Min-max) 99.82 99.78 98.02 98.42 98.72 97.91 99.39 98.73 94.69 94.07 98.38

N=3
Baseline 99.13 99.63 97.14 94.20 93.29 92.76 99.08 95.20 74.02 88.83 92.47

INDeeD (L2) 99.68 99.73 98.09 97.13 96.28 98.62 99.06 96.54 92.50 94.97 97.72
INDeeD (Min-max) 99.80 99.91 99.26 98.05 97.47 99.12 99.44 97.78 96.83 96.62 98.31

N=5
Baseline 99.34 97.85 96.38 96.37 93.99 91.56 97.57 88.61 87.29 60.24 86.40

INDeeD (L2) 99.70 99.51 97.88 97.00 96.41 98.56 98.47 96.66 92.55 94.71 95.14
INDeeD (Min-max) 99.70 99.35 97.79 95.87 96.37 96.97 97.95 92.79 92.18 66.20 94.56

N=7
Baseline 97.70 95.85 78.52 75.72 52.48 84.30 92.15 86.76 57.38 67.61 78.84

INDeeD (L2) 99.47 99.79 94.90 95.22 96.07 98.17 99.34 98.43 98.39 96.07 97.73
INDeeD (Min-max) 99.76 99.84 96.53 96.34 97.84 98.05 99.49 97.96 95.75 95.90 97.69

Table 1: ML-MNIST test results of Baseline(simple CNN) and INDeeD normalized by min-max and L2 and evaluated by average
precision (AP) and mean of AP (mAP)

Figure 4: Confidence maps of the tests on VOC-2007 All and Split data sets
ML-CIFAR-10-N Methods plane car bird cat deer dog frog horse ship truck mAP

N=2
Baseline 97.59 91.03 77.57 93.38 85.95 91.42 93.16 94.98 95.17 88.66 89.64

INDeeD (L2) 92.00 97.86 92.36 79.33 94.11 91.25 96.78 95.21 97.59 96.06 93.23
INDeeD (Min-max) 93.51 97.96 92.35 81.37 95.14 89.35 96.81 96.77 96.71 96.61 93.67

N=3
Baseline 90.48 98.66 91.33 81.92 92.04 74.19 94.66 93.96 97.33 93.57 90.81

INDeeD (L2) 88.88 98.60 93.72 85.34 89.82 89.73 96.78 95.05 97.01 96.44 93.14
INDeeD (Min-max) 92.54 98.65 92.75 83.81 91.83 89.41 96.98 95.83 97.27 96.46 93.61

N=5
Baseline 92.52 98.00 64.28 31.02 77.51 83.67 32.25 94.70 94.48 95.76 76.61

INDeeD (L2) 89.18 98.21 69.88 65.10 85.26 71.15 29.06 95.38 97.24 95.83 79.63
INDeeD (Min-max) 94.09 97.45 78.73 67.88 84.79 83.84 30.16 97.08 97.04 96.59 82.55

N=7
Baseline 82.57 98.06 39.17 23.12 19.42 17.02 48.96 94.37 96.49 85.02 60.73

INDeeD (L2) 30.56 96.92 79.49 68.71 61.45 16.63 29.62 94.49 96.32 96.57 67.07
INDeeD (Min-max) 80.86 98.21 89.99 35.25 20.72 19.58 84.84 94.57 97.33 90.89 71.22

Table 2: ML-CIFAR-10 test results of Baseline(VGG-16) and INDeeD normalized by min-max and L2 and evaluated by average precision
(AP) and mean of AP (mAP)

struct multi-label MNIST (ML-MNIST) and multi-label CIFAR-
10 (ML-CIFAR-10) data sets. We make new composite images
(of size 3H×3W ) including 2, 3, 5, and 7 MNIST or CIFAR-
10 images (of size H×W ) of different labels as shown in Fig-
ure 2. These new multi-label data sets enable us to control the
number and composition of multi-label in each sample. VGG-
16 [26], ResNet-50 [9], TResNet [23], and simple convolutional
Neural Nets are used as backbone networks. For fair comparison
between the baseline and proposed method, all experiments are

performed in the same setup. Since INDeeD aims to generalize a
backbone network, Indentical and Disparate blocks are not used
in the inference step.

Evaluation on ML-MNIST
MNIST is handwritten image data set that consists of 60,000

training and 10,000 test samples divided into 10 digit categories.
Image Size of MNIST is 28×28 and ML-MNIST image size with
multiple labels is 84× 84. ML-MNIST-2, ML-MNIST-3, ML-
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Figure 5: Class activation maps of INDeeD and Baseline: INDeeD CAM shows better localization and higher confidence scores.

Method
Scratch Pre-trained

All Split All Split
single entire single entire single entier single entire

Baseline 54.19 58.34 29.73 39.90 95.15 94.59 88.89 89.11
INDeeD (min-max) 55.23 59.66 29.68 39.81 95.29 94.46 91.40 89.41
INDeeD (L2) 55.76 60.04 29.77 40.71 95.21 94.37 91.64 90.60

Table 3: VOC-2007 test results of scratch and pre-trained (on ImageNet): Evaluation metric is mean average precision(in %). ’Scratch’
baseline is TResNet-M and ’Pre-trained’ baseline is TResNet-XL.

MNIST-5, and ML-MNIST-7 are multi-label MNIST with 2, 3, 5,
and 7 multiple labels in one instance respectively (Figure 2 (a)).
With ML-MNIST we investigate robustness and varying perfor-
mance of INDeeD along the increasing complexity of multiple
labels. Simple CNN[14] with three convolutional layers and two
fully-connected layers is baseline network. Adam Optimizer [11]
with learning rate of 0.001 and reduced learning rate by 0.5 for
each epoch is used and trained for 30 epochs. Test data consists
of images with single class label.

Figure 3(a) shows average confidence score maps of single
class classification test trained on various ML-MNIST data sets.
Vertical-axis of confidence map represents each single class of test
data. Horizontal-axis is average output probability value of corre-
sponding test instances of vertical-axis. Baseline network shows
seriously decreasing classification performance as the number of
multi-label increases. Confidence maps in the second and third
rows of proposed INDeeD with L2 and min-max normalization,
respectively. Both min-max and L2 normalization cases show
clearly improved average probability over baseline. Probability
of correct label class (on the diagonal line of the confidence map)
becomes more distinct in the map. Especially in min-max normal-
ization case with the most complex multi-label case (ML-MNIST-
7), all of test classes show best and outstanding test probability in
correct label class (on the diagonal line of the confidence map)
compared to others. Table 1 compares mean average precision
(mAP) of the tests. Proposed method outperforms baseline in
most cases. Performance gain of our method over baseline in
mAP increases as the number of multi-label increases (from 3.98
to 18.85 in Min-max case). Furthermore, mAP of our proposed
method is stable regardless of the number of multi-label. Over all
in the test, min-max normalization represents an individual class
more distinctly than L2 normalization.

Evaluation on ML-CIFAR-10
CIFAR-10 [13] consists of 60,000 color images of 10 classes

(6,000 images per class). 50,000 images are for training and
10,000 images are for test. Original CIFAR-10 image size is

32 × 32 and ML-CIFAR-10 image size with various number
of multiple labels becomes 96× 96. ML-CIFAR-10-2, ML-
CIFAR-10-3, ML-CIFAR-10-5, and ML-CIFAR-10-7 are multi-
label CIFAR-10 data sets with 2, 3, 5, and 7 multiple labels in
one instance, respectively (Figure 2 (b)). We use VGG-16 [26]
as a backbone network and Adam [11] as an optimizer. Learning
rate is 0.001. Baseline method and INDeeD are trained for 300
epochs and learning rate is adjusted to SGDR [21] and used well
known augmentation [7, 6] methods. Figure 3 (a) shows confi-
dence maps of single class classification test results trained on
various ML-CIFAR-10 data sets. Proposed INDeeD (in the sec-
ond and third rows) shows improved classification results over the
baseline. Compared to ML-MNIST, ML-CIFAR-10 with real ob-
ject images show limited single class classification performance
as the number of multi-label increases. This tendency is more ob-
vious in mAP scores shown in Table 2. In all cases, our proposed
method shows mAP gains(4.02%, 2.79%, 5.94%, and 10.49% im-
provement). Similar to ML-MNIST, ML-CIFAR-10 also shows
better results with min-max normalization than L2 norm. This
is because that ML-MNIST and ML-CIFAR-10 are composed of
relatively clean images of multiple objects in line located in pre-
determined locations.

Evaluation on VOC-2007 and MS-COCO
Pascal Visual Object Classes Challenge (VOC 2007) [8] for

multi-label recognition contains images of 20 object categories.
Each image falls in around 2.5 categories in average. Pascal-VOC
is divided into 5,011 trainval images and 4,952 test images. We
define two training schemes: All and Split. All uses entire trainval
set (5,011 images). Split uses multi-label images only (2208 im-
ages). Split training verifies the effectiveness of individual class
classification purely only on multi-label Class Data. We define
two test schemes: single and entire. single scheme tests only on
single labeled instances (2848 images). entire scheme uses entire
test data of VOC-2007 (4,952 images). We use TResNet [23] M
and XL sizes as backbone networks. All experiments conducted
by TResNet-M begin with learning rate of 0.001 on Adam opti-
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Block Normalization ML-MNIST-N ML-CIFAR-10-N
N=2 N=3 N=5 N=7 N=2 N=3 N=5 N=7

Idenctical Min-max 96.73 97.52 93.34 90.42 92.51 94.12 83.51 57.17
L2 97.19 95.55 90.15 90.03 92.59 93.29 77.12 52.74

Disparate Min-max 97.78 97.76 91.75 94.07 93.13 92.60 84.92 73.93
L2 97.88 97.64 94.09 88.58 92.05 91.42 67.90 63.69

Table 4: Ablation Study: mAP(in %) with either identical or disparate block on ML-MNIST and ML-CIFAR-10

mizer. Learning rate is adjusted with OneCycleLR [27] scheduler
for 400 epochs.

Figure 4 shows confidence maps of TResNet-M and
TResNet-XL compared with INDeeD results normalized by min-
max and L2 normalization using both All and Split training
schemes. INDeeD improves the class separation in confidence
maps for both networks over baseline. Table 3 ”Scratch” shows
that INDeeD (normalized by L2) shows 1.7% higher mAP for All
scheme (1.57% higher for single-label tests) and 0.81% higher
for Split scheme (0.04% higher for single-label tests) than base-
line. In VOC-2007, L2 norm shows higher mAPs than min-max.
In general, L2 norm is less sensitive to out-liers than min-max.
VOC-2007 is composed of natural images of high resolution with
irregular object positions with increased variations in many as-
pects. Overall performance gain of VOC-2007 is smaller than
ML-MNIST and ML-CIFAR-10. Yet INDeeD efficiently learns
individual label. We also conduct experiment on pre-trained on
ImageNet. In this experiment we use TResNet-XL as baseline.
Each experiment trained for 80 epoch and over all setups are same
as TResNet-M experiment. Confidence maps and mAP scores are
shown in in Figure 4(b) and Figure 4(b) respectively. Using entire
training data, there is no significant performance differences be-
tween baseline and INDeeD. However, INDeeD show mAP gain
in Split data (see Table 3 ”Pre-trained” 1.49% in entire , 2.75%
in single). The reason is that the first class (person class) confi-
dence score is much higher than the correct class in Figure 4(b)
Split. On the other side first class(person class) confidence score
is reduced in Figure 4(b) Split. In other words, pre-training alle-
viates the contextual bias of the first class (person class). Exces-
sive growth of other class confidence scores than the correct class
confidence score is prevents the effective of extract meaningful
identical and disparate features. It means that INDeeD alleviates
contextual bias in high co-occurred situation.

We test the effectiveness of INDeeD method on the large
scale dataset MS-COCO. MS-COCO is primarily built for object
recognition in the context of scene understanding. Training set
is composed of 82,783 images containing common objects in the
scenes. The objects are categorized into 80 classes with about
2.9 object labels per image. Since the ground-truth labels of
test set is not available, we evaluate all methods on the valida-
tion set (40,504 images). We use ResNet-50 as baseline trained
200 epochs with Adam optimizer and learning rate of 0.001 (ad-
justed with OneCycleLR scheduler). Similar to VOC-2007, L2
norm shows a higher mAP (71.56 for Single and 71.20 for Entire)
than min-max (71.01 for Single and 70.15 for Entire) and baseline
(69.21 for Single and 69.11 for Entire).

Ablation Study
Identical and disparate blocks are added separately to our ex-

periments on ML-MNIST, ML-CIFAR-10, and VOC-2007 data
sets to analyze the effects of identical and disparate blocks, re-

spectively. With ML-MNIST data sets, min-max shows better
performance than L2 by average 1.19% for identical and 0.78%
for disparate, respectively (Table 4 ML-CIFAR-10). Also with
ML-CIFAR-10 data sets, min-max shows better performance than
L2 by average 1.89% for identical and 7.13% for disparate, re-
spectively (Table 4 ML-MNIST).

Methods Normalization All Split
single entire single entire

Identical Min-max 54.21 58.01 27.47 38.09
L2 56.53 59.29 28.91 40.13

Disparate Min-max 53.53 56.79 27.98 38.69
L2 44.31 51.01 28.30 38.98

Table 5: Ablation Study: mAP(in %) with either identical or dis-
parate block on VOC-2007

In VOC-2007 dataset, the identical block with L2 normaliza-
tion shows 1.66% better performance than min-max normaliza-
tion and the disparate block with min-max normalization shows
2.75% better performance than L2 normalization (see Table 5).

We compare not only mAP but also how much INDeeD al-
leviates contextual bias through visualization of class activation
map (CAM). Looking at the baseline CAM in Figure 5(a), the
CAM corresponding to ”bicycle” covers both ”bicycle” and ”per-
son” area, and the cam corresponding to ”person” is activated in
the background(not related person). That is, the baseline method
is learned to express comprehensively focusing on the character-
istics of people, bicycles and backgrounds rather than individual
characteristics of people and bicycles. As a result contexts are bi-
ased. However, look at the results of training with the INDeeD
method in Figure 5(a), the areas corresponding to ”bicycle” and
”people” are precisely activated. In addition to this, look at Figure
5(b), you can see that the baseline method extracts inaccurate fea-
tures when there is non co-occurring category. However, it can be
seen that our method accurately represents the individual features
even for non-co-occurred samples.

Conclusion
In this paper, we introduced INDeeD, a training method that

alleviates the problem of contextual bias caused by co-occurrence.
Through the experimental results conducted on the ML-MNIST,
ML-CIFAR-10, VOC-2007, and MS-COCO data sets, it was con-
firmed that our method is effective in alleviating contextual bias.
However, as the data diversity and pattern complexity increase,
the performance increase decreases, but it is still effective. We
leave these issues as a task to be addressed in the future.
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