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Abstract
Subjective evaluations are necessary to learn how expected

viewers perceive the quality of a system. Traditionally, non-expert
subjective tests are preferred rather than expert tests. In this
study, we conducted subjective evaluation experiments for non-
experts and experts on compressed 8K videos using the double
stimulus impairment scale (DSIS) method and analyzed the ex-
perimental results expressed in terms of the mean opinion score
(MOS), which is the average of individual scores. Furthermore,
we investigated the differences between non-experts and experts
by considering a new method in P.913 that estimates an improved
MOS and a new experimental method using experts, called expert
viewing protocol (EVP). Our contribution shows advantages of
conducting expert subjective tests, such as EVP: expert tests al-
low to perform experiments with fewer subjects, to distinguish be-
tween original and distorted images, to determine a lower thresh-
old for the image quality, to distribute scores in an appropriate
range, and to constantly gain MOS values equal to improved MOS
values.

Introduction
Subjective evaluations are essential in verifying how ex-

pected observers perceive the quality of a system under consider-
ation. There are some established evaluation methods prescribed
in international standards. For compressed images, the double
stimulus impairment scale (DSIS) method described in Recom-
mendation (Rec.) ITU-R BT.500 [1] is frequently used to assess a
distorted test image relative to the uncompressed original image.
The DSIS method is also called the degradation category rating
(DCR) method as described in Rec. ITU-T P.913 [2]. This method
presents a test image following its corresponding reference image,
and each subject evaluates the deterioration level of the test image
relative to the reference image using a five-Likert scale: 5, imper-
ceptible; 4, perceptible, but not annoying; 3, slightly annoying; 2,
annoying; and 1, very annoying. Then, a subjective result of the
DSIS method is expressed as the mean opinion score (MOS), the
average of individual scores for each test image indicated from
1–5 on a continuous scale, after a screening of subjects. From
BT.500, the number of subjects is at least fifteen.

For selecting observers, the latest version of the recommen-
dation, BT.500-14, allows choosing non-expert or expert view-
ers depending on the objectives of the assessment. However,
the traditional subjective evaluation experiments with non-experts
are preferable as opposed to experts (e.g., BT.500-12 published
in September 2009). Previously [3], we statistically analyzed
MOS values in three subjective evaluation results using the DSIS
method (two non-expert and one expert datasets), investigated the
differences in MOS values between the non-expert and expert
subjects, and showed the benefits of conducting tests by experts.
However, no direct comparison of the differences in MOS val-
ues for the same stimuli was conducted because all datasets were

assessed by either non-experts or experts.
The last couple of years, some descriptions have been added

to standards for subjective evaluations. BT.500-14 [1] Annex 8 to
Part 2 defines the expert viewing protocol (EVP) for conducting
assessments faster than the DSIS method that leverages at least
nine experts. Nevertheless, the effectiveness of conducting exper-
iments by experts has not yet been sufficiently discussed. P.913
[2] section 12.6 explains a calculation method to estimate an im-
proved MOS using the maximum likelihood estimation method
[4]. Although proposed as an alternative to existing screening
methods including BT.500 and P.913, the relationship to a spe-
cific screening procedure described in BT.500-14 section A7-5.3
has not been considered.

Here, we conducted subjective assessments on 8K videos for
the expert and non-expert observers, analyzed the differences in
the MOS values as in our previous study [3], and considered the
usefulness of the newly added methods.

8K Subjective Evaluation Experiments
We conducted the subjective evaluation experiments for the

non-expert and expert viewers using 8K high dynamic range
(HDR) sequences.

Test Sequences
Six 8K 119.88-Hz (120-Hz) HDR sequences were selected

for this study. Experts first evaluated twelve sequences, then six
that showed perceptually detectable deterioration even at a higher
bit rate were used for non-experts. Three of the six sequences
were sports contents (two for swimming and one for athletics),
one contained contemporary dance, and the thumbnails of the
other two sequences are shown in Fig. 1.

RailwayMuseum RiverSurface

Figure 1. Thumbnails of two of the 8K 120-Hz HDR sequences.

The sequences were shot by 8K Hybrid Log-Gamma (HLG)
[5] cameras and slightly compressed by a mezzanine codec for
production. HLG is an HDR standard adopted for 8K broadcast-
ing. Hereafter, HDR will refer to the HLG standard. Each se-
quence was originally 8 s long (960 frames), and 6 s (720 frames)
were clipped after the encoding process described in the next sub-
section, and the statistics of the sequences indicate the results for
that 6 s.

The left of Fig. 2 represents the mean spatial information
(SI) and temporal information (TI) [1] for the six sequences, cor-
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responding to the spatial and temporal complexities, respectively.
The right of Fig. 2 shows the maximum colorfulness (CF) and
dynamic range (DR). Each characteristic was calculated for every
frame using 10-bit precision, and the mean or maximum value of
whole frames was plotted on the graphs. The definition of DR is
shown in eq. (1).

DR = log10(Lmax/Lmin) (1)

where Lmax and Lmin are the maximum and minimum luminance
after excluding 1% of the brightest and darkest pixels, respec-
tively. For calculating the absolute luminance, the peak luminance
denoted by LW in Table 5 of Rec. ITU-R BT.2100 [5] was set as
1,000 cd/m2, which was equal to that of the monitor used for the
subjective evaluations. Eq. (2) describes the formula of CF [6].

CF =
√

σ2
rg +σ2

yb +0.3
√

µ2
rg +µ2

yb (2)

where rg = R−G, yb = 1/2(R+G)−B, and σ2 and µ are the
variance and average of the pixel values, respectively. Although
originally defined on the BT.709 RGB color space [7], we directly
applied the formula to the 8K sequences that used the BT.2020
RGB color space [8], representing more vivid colors than that of
BT.709. From Fig. 2, the characteristics of the selected six se-
quences were widely spread.
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Figure 2. Video characteristics for six test sequences.

Video Encoding
An 8K 120-Hz real-time encoder [9] was used for the com-

pression. The encoder complied with an 8K broadcasting stan-
dard [10]: the video coding scheme was high efficiency video
coding (HEVC)/H.265 [11] Main 10 Profile (4:2:0/10 bits), intra
pictures were inserted every 64 frames (approximately every 0.5
s), and 120-Hz video streams could be played as 59.94-Hz (60-
Hz) videos by decoding every other frame of 120-Hz videos, (i.e.,
a temporal scalable coding).

Five wide-range bit rates of 64, 85, 110, 165, and 240 Mbps
were set for the 8K 120-Hz videos. These bit rates are the mini-
mum bit rate setting of the encoder, bit rate for 8K 60-Hz videos
in an 8K satellite transmission experiment [12], maximum bit rate
for 8K 60-Hz videos defined by the 8K broadcasting guideline
(ARIB TR-B39 ver.2.5), upper bit rate for 8K 120-Hz videos in
the 8K broadcasting standard [10], and bit rate for a high-quality
transmission intended for public viewing [9], respectively. The
8K 120-Hz encoder outputs two streams, an 8K 60-Hz video
stream and a differential stream between 8K 120- and 60-Hz
videos, and automatically allocates bit amounts for them keeping
the total amount to be equal to the bit rate setting. On average,
a bit rate of a differential stream is less than 10% of that for the
corresponding 8K 60-Hz video stream [13].

Experimental Setups
An 8K uncompressed recorder and liquid crystal display

(LCD) monitor that supports the HLG format were equipped for
the experiments. 8K 120- and 60-Hz HDR videos were stored
in the recorder. Table 1 describes the specifications of the 8K
monitor. The monitor was a prototype combined with an LCD
panel equivalent to a consumer-grade 70-inch 8K TV and a high-
precision backlight technology for HDR videos. Thus, it is suit-
able for simulating a home-use viewing condition.

Table 1. specifications of the 8K monitor

Size
70-inch diagonal

(1.55 m wide and 0.87 m high)
Pixel count 7,680×4,320

Frame frequency 120; 60 Hz
Bit depth 10 bits

Peak luminance 1,000 cd/m2

Color coverage 77% of BT.2020 [8]

Before the experiments, we measured the transition time of
the monitor while displaying an 8K 120-Hz video with black and
white frames. The time between black and white was less than
8.34 ms (= 1/119.88 Hz) for both black-white and white-black.
Therefore, we confirmed that the monitor can accurately display
120-Hz videos. In addition, the luminance and contrast of the
monitor were adjusted using the PLUGE signal [14] so that the
peak luminance was set to 1,000 cd/m2.

The experiments were conducted with reference to BT.500
[1] and were evaluated using the DSIS method, Variant I. An
original video (6 s), mid-gray at approximately 50 cd/m2 (3 s),
the corresponding video to be evaluated (6 s), and mid-gray with
”VOTE” (5 s) were presented. Subjects graded using a five-
Likert score (5, imperceptible; 4, perceptible, but not annoying;
3, slightly annoying; 2, annoying; and 1, very annoying) from
the beginning of the evaluation video to the end of the display of
”VOTE.” The determined duration of the videos was 6 s from a
previous study on the optimal presentation duration for subjective
evaluations [15].

The viewing conditions were compliant with Table 3 of
BT.2100 [5], the viewing distance was set to 0.75 times the pic-
ture height (approximately 0.65 m), and the luminance of the sur-
rounding was 5 cd/m2. We prepared two viewing points, the left
and right in front of the monitor, in the same manner as other 8K
subjective evaluations [16] because its viewing field was designed
as a small area of a screen to provide an immersive experience.

The experiments were conducted in two batches. The first
batch from December 2020 to February 2021 was with fifteen
video experts who are familiar with 8K videos for research pur-
poses. The second batch in March 2021 was with twenty-four
non-experts with a visual acuity of at least 20/20 and a normal
color vision.

At first, an instruction for the assessment was given to each
viewer, showing a video for a test session. We suggested that
viewers should mainly evaluate a part in front of them. The test
session including the highest and lowest quality of the 8K 120-
Hz videos that are different from the six test sequences was held
before formal sessions. Then, two sessions were conducted with
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different frame rates (120 or 60 Hz). Between the sessions, eval-
uators took a break of at least 20 min. The evaluation was con-
ducted individually. For experts, each session was divided into
two parts, and they changed their viewing positions after the first
part; however, non-experts assessed videos from a fixed position.
Considering the order effect, the orders of the sessions, videos,
and positions were altered depending on the evaluators. The same
66 videos ((5 bit rates × 6 sequences + 3 original sequences) × 2
frame-rates) were evaluated by non-experts and experts.

Experimental Results
First, we calculated MOS values for non-expert and expert

observers after a screening process and similarly analyzed these
values as our previous study [3] to demonstrate differences be-
tween non-experts and experts.

Screening of Subjects
We applied a screening method described in BT.500-14 [1]

section A7-5.3. Since the screening procedure was originally pro-
posed for the subjective assessment of multimedia video quality
(SAMVIQ) method, it is called the SAMVIQ screening. Tradi-
tionally, BT.500 defines another screening procedure using Kur-
tosis coefficient, as described in BT.500-14 section A1-2.3, it was
not applied in this study because of the note: use of the procedure
should be restricted to cases in which there are relatively few ob-
servers (e.g. fewer than 20), all of whom are non-experts.

Here, we describe how to calculate the SAMVIQ screen-
ing. For each evaluation item j, we computed the mean score
of all observers, xj = ∑

N
i=1 yij/N, where N is the number of ob-

servers and yij denotes an individual score for observer i on item
j. Then, for each observer i, we calculated the Pearson linear
correlation coefficient (PLCC) pi and the Spearman rank order
correlation coefficient (SRCC) si between xj and yij for all items,
respectively. Finally, we derived the rejection threshold (RT) us-
ing ri = min(pi,si). If the max correlation threshold (MCT) is
less than [mean(ri)−SD(ri)], where SD signifies the standard de-
viation, then RT = MCT and MCT = 0.7 for the DSIS method,
else RT = [mean(ri)−SD(ri)]. If ri ≤ RT, evaluation results of
the subject i are discarded.

We conducted the SAMVIQ screening for 24 non-experts
and 15 experts, respectively. Fig. 3 shows PLCC pi and SRCC
si on the horizontal and vertical axes, respectively, for all 39
evaluators. Non-experts and experts were plotted in orange and
red, respectively. Note that pi and si for non-expert and ex-
pert viewers were separately computed. The rejection threshold
RT = [mean(ri)−SD(ri)] was 0.432−0.147 = 0.285 for non-
experts and 0.720−0.133 = 0.588 for experts, and the three non-
experts and two experts represented by triangles in Fig. 3 were
discarded.

Assessment Results
We calculated MOS values for non-experts (represented as

NE in equations) and experts (represented as EX in equations)
from 21 and 13 viewers, respectively. The MOS values for the
8K 120-Hz and 60-Hz are denoted in Fig. 4. The horizontal axis
holds sequence names and bit rate settings for 8K 120-Hz videos
in Mbps or the original video described as ”Org.” Non-experts’
and experts’ MOS values (left-hand vertical axis) are respectively
shown in orange squares and red diamonds, and pairs of black-
bordered plots denote the statistical differences on Welch’s t-test
at a 5% significance level. The error bars denote 95% confidence

Figure 3. Correlation coefficients of 39 subjects.

interval (CI), CI(MOS) = MOS±1.96×
√

s2/N, where s2 is the
unbiased variance of the individual scores and N denotes the num-
ber of subjects. The blue cross marks (right-hand vertical axis)
show the absolute values of effect sizes (ESs), which report the
magnitude of the difference between MOS values. Cohen’s d is
defined by eq. (3) [17].

d =
MOSNE−MOSEX√

(NNE−1)SD2
NE+(NEX−1)SD2

EX
NNE+NEX−2

(3)

(a) Results for 8K 120-Hz videos

(b) Results for 8K 60-Hz videos

Figure 4. MOS and ES for 8K 120- and 60-Hz videos.

Score Distribution per MOS
Fig. 5 shows the relationship between the MOS values (hor-

izontal axis) and the percentages of scores (vertical axis), plotted
as circles.
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(a) Non-experts (N=21)
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(b) Experts (N=13)

Figure 5. Score distribution per MOS values.
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From the left to right, the circles in orange, red, blue, and
green correspond to the score ranges of 2 or greater (2–5), 3 or
greater (3–5), 4 or greater (4–5), and 5, respectively. The dotted
line indicates the fitted curve of a logistic function for each score
range using the least-squares method:

ŷX =
1

1+ exp(−aX(x−bX))
(4)

where x and ŷX denote a MOS value and a predicted pro-
portion of scores X or greater, respectively. The true propor-
tion yX corresponding to x exists and is plotted as a circle in
the graphs. The variables aX and bX are selected to minimize
∑allconditions i(yXi− ŷXi)

2. When the variance of the scores for
each MOS value is always at its minimum, aX, which determines
the distribution width of the scores, should be 4, and bX, which in-
dicates the MOS value that results in ŷX = 0.5, should be X−0.5
(see [3]). The specific values of the variables are shown in Table
2, and the figures in bold show that the value is closer to that of the
lowest score variance case, i.e., aX = 4 and bX = X−0.5. Addi-
tionally, the coefficient of determination R2, which measures the
goodness of fit (the closer to 1, the better fitting), for each logistic
function ŷX can be seen in Table 3. Eq. (5) shows the definition
of R2 where ȳX is the mean of yXi.

R2 =
∑i(ŷXi− ȳX)

2

∑i(yXi− ȳX)2 (5)

Table 2. Variables of the logistic functions

a2 a3 a4 a5

Non-experts 2.20 2.36 2.01 2.22
Experts 2.10 2.31 2.27 3.03

b2 b3 b4 b5

Non-experts 1.75 2.76 3.43 4.35
Experts 1.55 2.55 3.45 4.38

Table 3. Coefficient of determination for each logistic function

ŷ2 ŷ3 ŷ4 ŷ5

Non-experts 0.530 0.809 0.874 0.927
Experts 0.921 0.914 0.956 0.922

Score Variance per MOS
Fig. 6 shows the distribution of MOS values and the unbi-

ased variance of individual scores for each 0.2 range of the MOS
values, e.g., 1.6 on the horizontal axis is equivalent to MOS values
between 1.4 and 1.6. In Fig. 6 (a), bars in orange and red denote
the proportion of the MOS value range for non-expert and expert
viewers, respectively. In Fig. 6 (b), plots in orange and red, re-
spectively, represent the unbiased variance s2 of non-experts and
experts, error bars show 95% CI of the population variance σ2

calculated using eq. (6) for sample size n, a pair of black-bordered
plots denote the statistical difference in σ2 at 5% significance
level, and blue cross marks (right-hand vertical axis) show ESs
η2

p = r2 defined by eq. (7) [17].

(n−1)s2

χ2
0.025

≤ σ
2 ≤ (n−1)s2

χ2
0.975

(6)

where χ2
α is the upper 100×α-th percentile of the chi-square dis-

tribution with the degree of freedom n−1.

r =
d√

d2 + N2−2N
nNE nEX

(7)

where d can be calculated from eq. (3) and N = nNE +nEX.

(a) Distribution of MOS values

(b) Unbiased variance and ES for each range of MOS values

Figure 6. Analysis of score distribution for each 0.2 range of MOS values.

Discussion
This section discusses the experimental results.

Relationship between the New P.913 Method and
the SAMVIQ Screening

In June 2021, a new method to estimate an improved MOS
under challenging test conditions using the maximum likelihood
estimation method [4] was added to P.913 [2] section 12.6. In this
method, Uij, representing an individual score of subject i for the
evaluation item j, is modeled as eq. (8).

Uij = ψj +∆i +viX (8)

where ψj is a true quality score, called an improved MOS, of the
item j, ∆i is the bias of the subject i and ∑i ∆i = 0, vi > 0 is the
inconsistency of the subject i, and X∼ N(0,1) is i.i.d. Since this
method is proposed as an alternative to traditional screening pro-
cedures using Kurtosis coefficient in BT.500 [1] and the bias of
observers in P.913 [2], we calculated ψj for non-expert and ex-
pert viewers from the experimental results of all participants, i.e.,
24 non-experts and 15 experts. For the calculations, we used a
reference Python implementation introduced in Appendix III of
P.913.

Next, we investigated the relationship between a MOS after
the SAMVIQ screening MOSj (horizontal axis) and an improved
MOS ψj (vertical axis) for non-experts and experts, as shown in
Fig. 7. The dashed line in each graph denotes a fitted linear func-
tion. We describe the specific function and the coefficient of de-
termination R2 calculated from eq. (5).
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(a) Non-experts
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(b) Experts

Figure 7. Relationship between MOS and improved MOS.

Results show that improved MOS values for the experts are
almost equal to the corresponding MOS values after the SAMVIQ
screening since the fitted function is similar to y = x, whereas that
is untrue for non-experts.

Furthermore, we also conducted the same analyses on
three datasets (two non-experts, namely, NE1 [18] and NE2
[19] with 24 and 14 participants, respectively, and one expert,
namely, EE [20] with 16 participants) used previously [3]. For
NE2, we calculated scores in the five-Likert scale, such that
b(OriginalScore−1)/20c+1 where 1≤ OriginalScore≤ 100.
One subject who did not assess all evaluation items was excluded.
We applied the SAMVIQ screening procedure to each dataset
and confirmed that the rejection threshold RT = MCT = 0.7 (i.e.,
[mean(ri)−SD(ri)]> MCT) and no subjects were rejected in all
datasets. This can be attributed to the difficulty level of the assess-
ments. Since HDR still images were assessed in these subjective
evaluations, the difficulty of evaluations was much lower than that
of videos, and the variance of individual scores may have become
small even in non-experts. Then, we calculated improved MOS
values ψj and MOSj and derived a fitted linear function for each
dataset. All three fitted functions resulted in y∼ x.

From all analyses, if the mean(ri) after the SAMVIQ
screening is sufficiently large (empirically, 0.75 or greater),
then ψj ∼MOSj. Furthermore, experts constantly mark large
mean(ri), and do not require the new method of P.913.

Figures 8 (a) and (b) describe the relationship between the
scores of non-expert (vertical axis) and expert (horizontal axis)
subjects for MOSj and ψj, respectively. Since the score differ-
ences between non-experts and experts in 120-Hz videos were
more extensive than those in 60-Hz videos as shown in Fig. 4, we
used the color-coded plots for each framerate for better visibility.
Given ψj ∼MOSj for experts, the variance of ψj in non-experts
is smaller than that of MOSj, and that is an advantage of the new
P.913 method.
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(a) MOS after the SAMVIQ screening
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(b) improved MOS (Ψj)

Figure 8. Relationship between scores of non-experts and experts.

Differences between Non-Experts and Experts
Overall, the experts tended to grade lower scores for com-

pressed videos and higher scores for original videos than the non-
experts, as shown in MOS values in Fig. 4. Comparing the re-
sults of 120 and 60 Hz, 24 of 33 conditions of 120-Hz videos
showed statistical differences, whereas 11 of 33 conditions of 60-
Hz videos did. This can be attributed to two reasons. First, the
non-experts were not familiar with high-frame-rate (HFR) videos,
such as the 120-Hz videos, thereby having difficulty finding dete-
rioration. Second, the experts who were familiar with HFR videos
felt annoyed with HFR noise flickers in dark parts, especially for
the ChairDance and RailwayMuseum sequences.

For the fitting curves in Fig. 5, expert variables were gener-
ally close to the lowest score variance case than the non-experts
except for a2 and a3, as shown in Table 2. From Fig. 5 (a) and
Table 3, the goodness of fit for ŷ2 and ŷ3 of the non-experts was
too small, R2 << 0.9, due to lack of low MOS values less than
3. Thus, the variance of experts was smaller than that of the non-
experts as a general trend, as seen in Fig. 6 (b).

Previously [3], we confirmed the advantages of conducting
subjective evaluation experiments with experts including:

1. Experts are useful to determine the lower threshold of image
quality.

2. Experts better distinguish the differences between original
and compressed images.

3. Experts help conduct experiments with fewer subjects and
still see a general trend.

Items 1 and 2 were again confirmed by the experimental re-
sults in Fig. 4. Regarding Item 2, the variance in MOS∼ 5 of
the non-experts was smaller than that of the experts as with our
previous study, meaning that the non-expert subjects were unable
to detect a subtle difference from the original image and they had
a tendency to grade 5. Item 3 was rediscovered from Fig. 3:
the correlations of the non-experts are relatively low and widely
spread, while those of the experts are consistently high. Also, the
smallness of the variance in experts’ MOS in Figs. 5 and 6 (b) are
useful for conducting tests with fewer observers. Moreover, from
Fig. 6 (a), the MOS range for experts was much wider than that
of non-experts especially in MOS values less than 3, showing the
capability of experts to adapt the quality of test images to scores
1–5.

In October 2019, EVP, which allows conducting a quick sub-
jective evaluation with fewer experts, was added to BT.500-14 [1]
Annex 8 to Part2. In this protocol, two test images A and B are
presented after the corresponding reference image. Then, each
evaluator scores both A and B using an eleven-grade scale. That
is, a skill to immediately evaluate images and grade scores with
an appropriate scope are required. These findings strengthen the
availability of such novel evaluating method.

So far, we have discussed the advantages of using experts
for subjective assessments to dispel a traditional belief: conduct-
ing tests with non-experts is preferable rather than experts. We
suggest that the type of viewers, non-experts or experts, should
be selected depending on the objectives of the assessment as de-
scribed in BT.500-14 [1]. For example, if we want to know the
response of end-users, conducting an assessment by non-expert
subjects would be desirable.
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Conclusions
In this study, we conducted subjective evaluation experi-

ments by non-experts and experts using 8K HDR videos. Also,
we applied subject screening using the SAMVIQ screening, an-
alyzed MOS values included in the meta analyses, and consid-
ered the differences between non-expert and expert viewers for
the new methods adopted in BT.500 and P.913. Furthermore, we
discussed the benefits of conducting experiments using experts
as suggested in our previous study including determining lower
threshold of the image quality, distinguishing between original
and compressed images, and conducting experiments with fewer
subjects and still finding a general trend. Additionally, we dis-
covered the ability of experts to adapt the image quality into an
appropriate range of scores as directly compared with MOS val-
ues for the same test videos. All these advantages justify the use-
fulness of EVP. Compared with MOS values after the SAMVIQ
screening and improved MOS values estimated by the new P.913
method, applying the new method to subjective results of experts
may be unnecessary due to the consistently high correlation be-
tween MOS values and individual scores.

For future work, we will continue to study the differences be-
tween non-expert and expert observers including subjective eval-
uation methods other than the DSIS method.
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