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Abstract
Estimating the pose from fiducial markers is a widely re-

searched topic with practical importance for computer vision,
robotics and photogrammetry. In this paper, we aim at quantify-
ing the accuracy of pose estimation in real-world scenarios. More
specifically, we investigate six different factors, which impact the
accuracy of pose estimation, namely: number of points, depth off-
set, planar offset, manufacturing error, detection error, and con-
stellation size. Their influence is quantified for four non-iterative
pose estimation algorithms, employing direct linear transform, di-
rect least squares, robust perspective-n-point, and infinitesimal
planar pose estimation, respectively. We present empirical results
which are instructive for selecting a well-performing pose estima-
tion method and rectifying the factors causing errors and degrad-
ing the rotational and translational accuracy of pose estimation.

Introduction
Pose estimation is an extensively studied topic in computer

vision, robotics and photogrammetry and there is notable number
of findings in the literature. The problem of estimating an ob-
ject pose with respect to a reference pose from 3D- and 2D-point
correspondences is referred to as the Perspective-n-Point (PnP)
problem. The used set of points can be redundant (n ≥ 5) or non-
redundant (n = 4) [8]. Both redundant and non-redundant point
sets have been studied and various solutions have been presented.
A general conclusion is that in the presence of noise, the higher
the number of points is, the higher the accuracy [1].

A particular case of interest is when the corresponding points
are representation of markers in real-world use cases [2], partic-
ularly circular fiducial markers in this study. To be detected by
an image sensor, the markers, which are simple physical objects,
are manufactured and placed in a 3D world scene. The number of
markers and the area filled by markers; the manufacturing, place-
ment and detection processes affect the accuracy of pose estima-
tion. Thus far, in the literature, the overall detection error has
been the most frequently considered error factor. Our motivation
in this study is the need of quantification of the various factors
which form the detection error alongside their impact on the ac-
curacy. This should bring an informative insight into the selection
of an appropriate method for pose estimation depending on the
particular use case and how to optimize the factors.

Previous works have focused on the impact of the configura-
tion of points on the accuracy [1] and [3], or have studied either
the effect of the number of point sets [4], or the impact of noise
levels on accuracy [5].

Pose estimation algorithms are generally categorized into
two groups: iterative and non-iterative. Whereas iterative meth-
ods consider the PnP problem as a non-linear least squares prob-

lem; non-iterative methods convert it into a large system of equa-
tions [1]. The two groups have their own drawbacks; while it-
erative approaches have the instability of the cost function due
to local minima and great cost of computation; non-iterative ap-
proaches are unstable in the presence of noise [8]. The pose esti-
mation methods used in this study fall into the non-iterative group
and are as follows: Direct Linear Transformation (DLT) [6], Di-
rect Least-squares (DLS) [7], Robust Perspective-n-point (RPnP)
[8] and Infinitesimal Planar Pose Estimation (IPPE) [9].

DLT has been considered one of the most accurate methods
for pose estimation. DLT is based on homography estimation be-
tween model and image plane and minimizing the reprojection
error utilizing the Levenberg-Marquardt algorithm. A variant,
referred to as Normalized DLT aims at improving the condition
number in the system of equations [6].

DLS has been proposed with the aim to find all possible so-
lutions and select a solution which minimizes the cost function
based on nonlinear least-squares. DLS defines the rotation matrix
through so-called Cayley parameterization [7].

Unlike other non-iterative solutions, RPnP has been demon-
strated to be stable for the case of non-redundant points, i.e.,
n = 4. It is considerably less time-consuming, having compu-
tational complexity of O(n), while working for 3D, planar and
quasi-singular cases [8].

IPPE is a recently proposed method, which utilizes the ob-
servation that true transformation between the world scene and
image is better at certain areas on the scene than at other areas,
when the homography is estimated through noisy point correspon-
dences. The method is based on determining a point on the world
scene in which the transformation is best estimated, next solving
the pose with a local non-redundant first order partial differential
equation [9].

Experimental Methodology
The first step in the pipeline is to detect the circular fiducial

markers represented in Figure 1. A set of markers, which are ba-
sically points, in the 3D world scene and their corresponding 2D
points in the image are used for pose estimation algorithms to es-
timate the pose of the camera. The point set is projected onto the
image plane and it gets imaged into discrete pixels. After pro-
jection, but before the point coordinates are readily available for
pose estimation, the projected points are exposed to various image
processing operations. Since the markers are circular, they are de-
tected as blobs in the image, and due to perspective projection, the
circles are formed as ellipses in the image. Thus, operations, such
as thresholding, blob detection and ellipse fitting are required and
can result in an error while detecting the projected points, which
forms the factor called detection error in our model.
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In addition to detection of the markers, the number of mark-
ers and how much space they fill in the scene are important factors
to investigate, since the application region can have constraints on
size. These factors are called number of markers and constellation
size. To clarify, constellation is a term used to describe the set of
markers and constellation size refers how much space markers in-
vade in the scene. Another factor results from the positions of
the world points in the scene in these experiments. As the world
points are actually represented by physical items in any real-world
use case, i.e., markers, the manufacturing method utilized to build
them affects their positions. Those stochastic situations are in-
evitable, since all manufacturing methods have a manufacturing
tolerance. For instance, we assume our markers are manufactured
by a CNC machine, which is known to be a precise manufacturing
method.

Markers are settled on a surface and besides the relative er-
rors inside the constellation, the related world points are likely
to have a planar misalignment on the plane as an entity. An im-
precise measurement process can cause planar misalignment, re-
ferred to as planar offset in this study, which subsequently causes
erroneous placement of the markers when they are mounted on
the surface. The erroneous placement of the plane where markers
are settled is called depth offset in this study. Both planar offset
and depth offset are modelled as bias.

In this study, we investigate the impact of six different fac-
tors on the accuracy of pose estimation by quantifying four non-
iterative methods for pose estimation from fiducial markers. Of
these six factors, two are constant elements, which are referred to
as planar offset and depth offset; the two are modelled as additive
Gaussian noise, which are called manufacturing error and detec-
tion error; and the other two are the properties of the markers,
number of points and constellation size.

Figure 2 depicts the end-to-end pose estimation and errors
affecting the process. In the beginning, the designed constellation
model is materialized into a physical object, i.e., the markers. Al-
though the illustration of the error caused by discretization of the
image is individual in Figure 2, discretization is encompassed by
detection error in our model, as discretization is tightly coupled
with detection error and it is difficult to separate them.

In Figure 3, error factors in question are visualised. Whereas
depth offset ∆z occurs only along one direction; planar offset, ∆x
and ∆y, occur along two directions. Thus, total displacement
vector, ∆t, as observed in Figure 3 is defined as

∆t =
[
∆x ∆y ∆z

]⊺
. (1)

The image points obtained by the projection of the world

Figure 1: Circular pattern fiducial markers illustrated.

points are calculated as follows
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In Equation 2, R is the orthogonal rotation matrix and t is the
translation vector. While fx, fy represents the focal length, px,py
represents the principal point of the camera, and that whole ma-
trix including these components is called intrinsic matrix. More-
over,

[
u v

]⊺ in Equation 3 and
[
X Y Z 1

]⊺ in Equation 2
are image points and world points, respectively. Since the world
points are co-planar, Z in Equation 2 is zero. Taking perspective
projection of the world points into consideration, the image points[
u v

]⊺ in Equation 3 are in PnP terminology the 2D correspon-
dences.

The components of the total displacement ∆t from Equation
1 are added to X , Y and Z in Equation 2 respectively as constant
values.

Stochastic processes with Gaussian distribution, N (µ,σ2)
are assumed for modelling various imperfections
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1
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2

(
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)2
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In our simulations, we assume zero mean µ = 0, thus the
noise component is essentially defined by the variance, σ2.

Manufacturing error is added to
[
X Y Z 1

]⊺ in Equa-
tion 2 as additive Gaussian noise, which is defined as

∆m = N (0,σ2
m). (5)

After adding the manufacturing error, Equation 2 takes the
form

u′m
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Likewise, detection error is also modelled as additive Gaus-
sian noise as

∆p = N (0,σ2
p). (7)

The resulting noisy image points become

[
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. (8)
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Figure 2: Modelling of the factors and their impact on the pose estimation.

Experimental Results
Experiments are conducted in MATLAB by simulating a sce-

nario with parameters derived from a real-world use case [2]. The
camera is set to a translation range of 300 to 500 millimetres
through z-axis, and range of −100 to 100 millimetres through x-
and y-axis. Camera resolution is 1920×1200, the focal length is
set to 1090 to correspond to a 6 millimetres C-mount lens, and the
principal point of the camera is assumed to be ideal, which makes
it half of the camera resolution.

For each experiment, the algorithms are executed 500 times,
and average errors of rotation and translation and their standard
deviations are calculated. The absolute translational error is com-
puted as the Euclidean distance between the ground truth and esti-
mated translation from the algorithms. For the rotational error, ro-
tation matrices are converted into axis-angle rotation form and the
error is computed as the difference between estimated and ground
truth rotation.

Four pose estimation algorithms explained in the Introduc-
tion are tested: DLT [6], DLS [7], RPnP [8] and IPPE [9]. The
point set is formed by 8 points, of which both x- and y- coor-
dinates are randomly selected within the range of [−250 250]×
[−250 250] mm2.

The experimental results reveal the relation between the pose
estimation accuracy and the number of points, depth offset, planar
offset, manufacturing error, detection error and constellation size.
The results are plotted as lines with vertical error bars represent-
ing the standard deviations of the average rotational and transla-
tional errors.

Figure 3: Manufacturing error, detection error and resulting cam-
era pose error visualised.

Number of Points

The first factor quantified is the number of points, i.e., mark-
ers. As indicated in [1], escalating number of points raises the
accuracy pose estimation, which is validated in Figure 4. For this
experiment, the standard deviations of both manufacturing error
and detection error are set to 0.2, which are feasible values for
real-world use cases; and depth and planar offsets are set to 0.
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Figure 4: Mean rotational and translational error with respect to
number of points.

The first outcome of Figure 4 is that increasing number of
points brings about a decline in both rotational and translational
error for all algorithms. Even though the algorithms appear to
jump at certain number of points, in fact, general trend is follow-
ing a gradual reduction in both error types. Unlike other algo-
rithms, DLS depicts high standard deviations, especially at 5 and
8 points in the constellation. For all algorithms, particularly after
8 points in the world scene, accuracy is not notably affected by
the increasing number of points.
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Depth Offset
One error factor discussed above is the depth offset, which

is the dislocation of the whole point set through the z-axis. Thus,
depth offset becomes a bias added to point set in the world scene.
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Figure 5: Mean rotational and translational error with respect to
depth offset.

Translational error of all algorithms in Figure 5, excluding
DLS, appears to noticeably and indistinguishably enlarge with re-
spect to growing depth offset. The behaviour of DLT, RPnP and
IPPE are utterly similar or same at certain values; therefore, they
look like a single turquoise line. DLS follows a linear trend re-
gardless of the high standard deviation at certain depth offset val-
ues. The linear escalation results from the depth offset being a
constant value added to world points. At the same time, the rota-
tional error against increasing depth is practically zero.

Planar Offset
As discussed above, the planar offset characterizes the mis-

alignment of the whole point set in the world scene on the x− y
plane. Figure 6 reveals the response of each algorithm to increas-
ing planar offset values.

The rotational error is not affected by the misalignment in
question. Similarly to Figure 5, DLT, RPnP and IPPE yield prac-
tically the same results for the translational error, which is expec-
tantly linear, since planar offset values are only constant values
added to world points. Excluding DLS, as in the depth offset ex-
periment, all algorithms identically respond to increasing planar
offset for translation error. The tendency is similar to the case of
depth offset. To illustrate, displacing the plane, in which the point
set is placed, by 1.5 mm leads to approximately 2 mm transla-
tional error for all algorithms, as shown in Figure 6.
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Figure 6: Mean rotational and translational error with respect to
planar offset.

Manufacturing Error
Manufacturing error accounts for inevitable defects during

the manufacturing process of the markers and is modelled as zero-
mean additive Gaussian noise, which impacts the pose estimation
accuracy.
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Figure 7: Mean rotational and translational error with respect to
manufacturing error.
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As shown in Figure 7, rising manufacturing error causes
higher rotational and translational errors . The most accurate
performance in terms of mean error is depicted by DLS, albeit
high standard deviations. Additionally, all methods provide con-
sistency with respect to rising manufacturing error values.

Detection Error
Detection error is frequently considered in the literature for

pose estimation applications and is the type of error formed after
the points are imaged by a sensor.
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Figure 8: Mean rotational and translational error with respect to
detection error.

Figure 8 depicts the impact of the detection error on rota-
tional and translational errors. The trends of translational error
graphs in Figure 7 and Figure 8 are similar, due to the way how
the influencing factors are similarly modelled by additive Gaus-
sian noise (manufacturing error expressed in millimetres, detec-
tion error expressed in pixels). In contrast, the rotational error
behaviour is different. the detection error has relatively lower im-
pact on the rotational accuracy compared to that of manufacturing
error. DLT demonstrates the best performance in both rotational
and translational accuracy with respect to the detection error.

Constellation Size
The final factor evaluated in this study is the area occupied by

the constellation. In this experiment, the effect of the proportion
of the area occupied by the constellation on the rotational and
translational accuracy is investigated.

For this experiment, maximum area (100%) is set to 1000×
1000 mm2; the standard deviations of detection error and manu-
facturing error are both set to 0.3 pixels and mm, respectively; the
planar and depth offset are both set to 0. Figure 9 illustrates the
accuracy of algorithms with respect to the frame size the constel-
lation fills. We configure the markers to spread in 500x500 mm2

area, which corresponds to 50% of constellation size in Figure
9. With 8 markers, and 0.3-standard deviation manufacturing and
detection error, less than 0.05-degree error in rotation is acquired.
In a real scenario, owing to lower standard deviation values, bet-
ter accuracy can be achieved. Figure 9 demonstrates that raising
constellation size causes a slight decrease in rotational error and
slight increase in translational error.
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Figure 9: Mean rotational and translational error with respect to
constellation size.

Conclusion
We have presented an empirical study of pose estimation ac-

curacy of a group of methods with respect to a set of factors. We
have specifically considered the case of fiducial markers placed
on a plane. If the markers are manufactured by high-tolerance
methods, DLT or RPnP are the best to work with. DLT is also the
most advantageous option if a low-resolution camera is involved.
If the settlement process of the markers to scene is not precisely
performed, i.e. causing bias, DLT provides the highest accuracy.

DLS has demonstrated high accuracy in several experiments,
however, it is also the method with highest number of outliers.
The reason behind these outliers is believed to be the degeneracy
caused by the Cayley parameterization. Cayley parameterization
is known to degenerate when the rotation around x-, y- or z-axis is
180 degrees and the accuracy of pose estimation worsens if it gets
closer to these singularities [11–13]. DLS is furthermore reported
to be unstable when the points are co-planar [14].
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