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ABSTRACT

Udder ranking is one of the crucial traits and used extensively
in cattle breeding. The analysis of the udder images is chal-
lenging due to the variations in the captured conditions of the
non-rigid nature of the organ, the farm environment, and dis-
turbances in the form of irrelevant segments of other cattle
parts. To this end, we proposed a deep learning-based ud-
der classification algorithm to enhance registrations’ preci-
sion within cattle breeding. We explore a convolution neu-
ral network (CNN), namely the VGG-16 model. The model
is trained and validated on a cattle dataset that is collected
in Norwegian dairy cattle farms. Expert technicians in the
form manually annotate the dataset. We demonstrate that the
VGG-16 model used as the backbone can efficiently give an
acceptable performance with training and validation accuracy
of 97% and 93% respectively on our custom dataset.

Index Terms— Udder classification, Cattle traits, Convo-
lutional neural network, Genetic gain.

1. INTRODUCTION

To improve genetic gain within cattle breeding [1,2], relevant
data needs to be collected on a large number of animals. How-
ever, for some traits data collection requires a lot of manual
work. Thus automation of these processes [3] has the po-
tential to both save costs and improve the genetic gain. Ex-
amples of such registration are conformation traits on dairy
cows. Currently, this is scored via visual inspection by trained
technicians. The international committee for animal record-
ing (ICAR) has developed a list of approved standard traits
for conformation recording [4]. These traits should be scored
by all organizations in the same way to improve harmoniza-
tion of conformation traits globally. Furthermore the standard
contains a list of five traits (linear, standard, genetic, compos-
ite, and general [5]) which are commonly used by organiza-
tions in the dairy and dual-purpose breeds worldwide. Linear
type traits [6] are the foundation of all systems for describing
the dairy cow. Improving linear traits are significantly impor-
tant for dairy industry for several reasons. They can help in
determining individual cow conformation, improving the ge-
netic breeding, and finding characteristics of profitable cows
that have longevity and high milk yield.

The total merit index (TMI) [8] describes the relative im-
portance of different trait groupings [7]. Specifically, in the
Norwegian Red dairy cattle, the udder conformation traits are
contributing with about 20% of the total merit index. There-
fore, to have a meaningful basis for predicting udder con-
formation traits, it is important to filter out the images not
containing udder as a pre-processing step. Some of the most
important udder traits are udder depth, teat placement, rear
udder, udder cleft, fore udder, and udder balance as shown in
Fig. 1. For example, good udder depth represents moderate
depth relative to the hock with adequate capacity and clear-
ance [9]. A good teat placement trait is squarely placed under
each quarter, plumb and properly spaced from side and rear
views. Rear udder should be wide and high, firmly attached
with uniform width from top to bottom and slightly rounded
to udder floor [10]. Good udder cleft is an evidence of a strong
suspensory ligament indicated by adequately defined halving.
Fore udder of productive cattle is firmly attached with mod-
erate length and ample capacity. Teats should be cylindrical
shape and of uniform size with medium length and diameter.
Udder balance and texture of good cattle should exhibit an
udder floor that is level as viewed from the side [5]. Quarters
should be evenly balanced; soft, pliable and well collapsed af-
ter milking. It is worth noticing that most of such traits have
an optimum. For example, intermediate label is good consid-
ering both udder depth and teat length [11]. These traits are
recorded manually by the technicians.

In this paper, we explore a deep learning model for udder
classification. In a nutshell, the contributions of the paper are
the following:

1. We collected cattle udder data at the Norwegian cattle
form and manually annotated the data for training a deep
model.

2. We demonstrated that a convolution neural network
named VGG-16 trained on udder data from scratch gives
acceptable performance for the dairy industry.

The current literature does not explore properly the use of
deep learning based methods for udder classification. How-
ever, some methods have been recently published to analyze
udder traits using classical imaging and more recently, deep
learning based approaches. For example, Nye et al. [12] in-
troduced a composite deep learning based method to estimate
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Fig. 1: Different udder traits [7] are depicted including udder depth, rear udder height, central ligament, rear teat position, and
body condition score.

conformational traits in dairy cattle. They automatically ex-
tracted useful phenotypic information for 14 morphological
features. Using pedigree and image information, they esti-
mated high heritability, indicating that meaningful biological
information has been extracted automatically from imaging
data. Porter et al. [13] used transfer learning to fine-tune In-
ception Net [14] for mastitis analysis in Holstein cattle. In
total, they collected 398 images from 2 commercial farm and
tuned the parameters of [14] with 75% of the data. Using
classical image processing, Qian et al. [15] come up with
a tools to make dairy cow type linear appraisal convenient,
swift, and being able to replace manual appraisal. Simiarly,
Getu et al. [16] found that the functional conformation traits
that influence or facilitate the longevity and reproduction sta-
tus of dairy cows are the appearance of udder conformation,
feet and leg conformation, thoracic and abdominal body con-
formation, and rump and loin structure. Using 3D scanning
technology, Salau et al. [17] presented the concept of a 3D
cow scanning by combining the fields of view of six Kinect
cameras. Their motivation is to remove if possible, the in-
fluence of human operators from conformation recording by
gathering data on linear descriptive traits using image analy-
sis. Poppe et al. [18] explored the geometric features of udder
and proposed that cartesian teat coordinates measured by au-
tomatic milking systems (AMS) provide new opportunities to
record udder conformation traits and to study changes in ud-
der conformation genetically and phenotypically within and
between parities. They estimated heritability and repeatabil-
ity of AMS-based udder conformation traits within parities,
genetic correlations between parities for AMS-based udder
conformation traits, genetic correlations between AMS-based
udder conformation traits and classifier-based udder confor-

mation traits, longevity, and udder health. Likewise, Uribe et
al. [19] introduced a model to estimate breeding values con-
sidering eight conformation traits. These traits include rear
udder width, rear udder height, udder depth, and fore udder
attachment of cows. They found that additive genetic merit
for conformation traits changed with the age of the animal.
They found that the single trait, single record model and the
simple repeatability model were not appropriate in predicting
breeding values at mature ages for rear udder width and rear
udder height. More recently, Sinha et al. [20] used principal
component analysis to investigate 17 linear udder type traits
representing udder and teat conformation and to identify those
components having strongest relationship with milk produc-
tion traits. Correspondingly, Soeharsono et al. [21] predicted
daily milk production based on linear body and udder mor-
phometry of Holstein Friesian (HF) dairy cows. We organize
the rest of this paper as follows. Section 2 describes our pro-
posed method in details. We provide the datasets description,
the experimental results, and discussion in Section 3. Finally,
we present the conclusion in Section 4.

2. DEEP BASED UDDER CLASSIFICATION

Deep learning based approaches have presented outstanding
performance in many application areas, including computer
vision [22], information theory [23], natural language pro-
cessing [24], and more recently animal breeding [25, 26].
Due to their hierarchical nature, such models have substantial
generalization capabilities, especially when trained on proper
data considering a specific problem before hand. Inspired by
their hierarchical structures, it is viable to explore deep neu-
ral networks (DNNs) for the development of automatic udder
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classification system, considering the particular challenges re-
lated to this problem. It is worth noticing that no application
based on such approach have yet made it into industrial use.

In this work, we present a deep learning based method for
udder classification. In fact, deep neural networks are train-
able multi-layer architectures consisting of various feature-
extraction phases, followed by a fully connected classifica-
tion layer [27]. Deep neural networks essentially composed
of many layers, and their architectures can be feed-forward or
recurrent, having different types of layers and activation func-
tions, and the training can be performed through different op-
timization techniques. A deep neural network can be modeled
from various combinations of fully connected, convolutional,
maxpooling, or recurrent layers. Due to their internal archi-
tecture and deep nature, they are often trained on large data
for extended time, and in general are able to present lower
generalization errors.

A deep learning model efficiently extracts and learns multi-
level features from the input. The most common type of DNN
is the convolution neural network (CNN). CNN is essentially
inspired by biological processes in that the connectivity pat-
tern between functions resembles the organization of the an-
imal visual cortex. Furthermore, a convolution neural net-
work [14] [28] [29] is a feed-forward network compose of
only convolution layers, maxpooling layers, and fully con-
nected layers. A CNN [30] is the type of deep neural net-
work which is generally used to analyze visual information.
In the convolutional layers, a CNN extracts features from the
input image in a hierarchical way by exploiting multiple fil-
ters. Each filter is made of a set of weights, which are it-
eratively updated and optimized using an optimization tech-
nique. These filters are used to perform a convolution opera-
tion on an input image to create a feature map that character-
izes the presence of detected features in the input image. The
CNN learns the filter coefficients during training depending
on the nature of the specific task, and exploits maxpooling
layers to sub sample the output. This process propagates the
dominant pixels to the next layer in the architecture, dropping
the rest.

We explore the VGG-16 model [28] which is one of the
most popular deep convolution neural network and commonly
used as the backbone architecture for feature extraction in
many computer vision problems. It consists of 16 layers
where each layers learns different abstract features. The level
of abstraction increases from start to the end where earlier
layers low level features like edges, colors, arcs and high
level layer learns class specific abstract features. In the train-
ing stage, we feed the udder and non-udder images to the
model. Therefore, during the training stage, the VGG-16
model learns these input images and their corresponding fea-
tures. In the VGG-16 model, the layers are permitted to be
heterogeneous and to deviate widely from biologically in-
spired connectionist models, for the sake of efficiency, train-
ability and understandability. There are three types of lay-

ers in the VGG-16 model, namely convolutional layers, max-
pooling layers, and fully connected layers. A convolutional
layer uses a convolution operation to multiply a set of weights
with the input. The purpose of the max-pooling layer is to
progressively reduce the spatial size of the feature maps to re-
duce the amount of parameters and computations in the net-
work. A fully connected layer takes the output of the previous
layers and flattens them into a single vector as an input for the
next step. In total, there are 13 convolution layers, 5 max-
pooling layers, and 3 fully connected layers in the VGG-16
model. Only convolutional and fully connected layers con-
tain trainable parameters.

We depict our method in Fig. 2, where all the blue rectan-
gles represent the convolution layers along with the non-linear
activation function which is a rectified linear unit (ReLU).
The red rectangles represent the max-pooling layers and the
circles represent the fully connected layers. The total number
of layers having trainable parameters is 16 of which 13 are
for convolution layers and 3 for fully connected layers. The
last fully connected layer performs the binary classification
in the form of udder or non-udder images. To optimize the
parameters of the VGG-16 on our dataset, we used the binary
cross-entropy cost function. Our binary cross-entropy func-
tion is defined as:

= −[t log(p) + (1− t) log(1− p)] (1)

Where t is the true label (either 0 or 1) and p is the probability
given by the network. Ideally, the value of p should coincide
with t but practically, it is always between 0 and 1. We cal-
culate the binary cross-entropy as the average cross-entropy
across all training images defined as:

L = − 1

N
[

N∑
j=1

[tj log(pj) + (1− tj)log(1− pj)]] (2)

Where ti is the truth value taking a value 0 or 1 and pi is
the corresponding softmax probability for the ith class. The
VGG-16 network transforms the original image via it’s layer-
ing processing from the original pixel values to the final class
scores.

3. EXPERIMENTAL RESULTS

When it comes to the training of the VGG-16 model, it is
worth noticing that there is no publicly available udder clas-
sification dataset. Therefore, in our work, we train and val-
idate our method using a dataset that we have carefully col-
lected ourselves, with the support of experts in dairy farm.
The dataset consists of 232 images for training and 62 im-
ages for validation. All images are taken vertically from floor
view. Microsoft kinect is used to acquire the images but for
the analysis, only the RGB data is used. The resolution of
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Fig. 2: We feed udder and non-udder images to the network during training. The network consists of convolutional, maxpooling,
and fully connected layers. There are 13 convolutional layers and three fully connected layers.

the captures images is 1920x1080. We rescaled the images
to 150x150 at the input layer for faster processing. In Fig.
3, sample images for udder and non-udder are shown. The
top row shows three sample images representing udders and
the bottom row shows three sample images representing non-
udder images.

We present the training and validation accuracies in Fig.
4. The red and green graphs show training and validation ac-
curacy, respectively. Both graphs show stable accuracy over
time. The best validation accuracy we obtained with the val-
idation data is 93%. We also present the training and valida-
tion losses in Fig. 5 by the red and green graphs, respectively.
Both validation and training losses converge after epoch num-
ber 50. Therefore, the model properly learns without facing
the problems of overfitting or underfitting. In Table 1, we re-
port the validation and training accuracies by taking into ac-
count different values for the hyperparameters: learning rate
and momentum. As can be seen, the variations in the accu-
racy are not significant by changing the values of these hyper-
parameters. Which shows the robustness of our method.

4. CONCLUSION

In this paper, we explored a deep learning based model for ud-
der classification using the VGG-16. Our method shows ac-
ceptable performance when trained with udder and non-udder
images. The reason is that our method learns useful infor-
mation from both types of images during the training stage.
Therefore, our method can be extended to several other appli-
cations involving cattle traits analysis. It is important to men-
tion here that our method has been tested considering only
udder and non-udder classification. The situation could get
challenging when we have more classes in the form of differ-
ent cattle traits. Therefore, in our future work, we would like

Table 1: We report validation and training accuracies by
taking into account different values for the hyperparameters:
learning rate and momentum.

No Learning rate Momentum Validation Training
accuracy accuracy

1 0.1 0.2 93 97

2 0.2 0.3 92 96

3 0.3 0.4 93 97

4 0.4 0.5 91 95

4 0.6 0.6 92 96

5 0.8 0.7 91 95

to extend our work to multi-class classification for other cattle
traits related applications. We will also take into account dif-
ferent augmentation techniques in case we face the problem
of the unavailability of sufficient amount of data to train the
model.
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Fig. 3: Udder and non-udder images. The top row shows three sample images representing udders and the bottom row shows
three samples of non-udder images.

Fig. 4: Training and validation accuracies. The red and green
graphs show training and validation accuracies, respectively.
Both the graphs show stable accuracies over time.
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