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Abstract
Recently machine learning is used in various applications

and has shown success. Machine learning is good at learning
the overall characteristics of massive training data. However, for
real-world applications, training data often include multiple do-
mains, and some domains have higher importance or risks. In this
paper, we first propose a new problem setting: machine learn-
ing with blind imbalanced domains. In the proposed problem,
the domain assignment of samples is unknown and imbalanced in
the training data, and the performance is evaluated for each do-
main in the test data. Second, we propose an approach for that
problem in classification tasks. The proposed approach combines
center loss and weighted mini-batch sampling based on distances
between samples and centroids in the deep feature space. Experi-
ments on one minor domain and two minor domain settings using
three handwritten digit databases (MNIST, EMNIST, and USPS)
show that our proposed approach outperforms possible solutions
using related methods. Remarkably our approach improves the
accuracy in the minor domain by more than 1% on average. Fur-
thermore, it can be inductively estimated that our proposed ap-
proach works on multiple domains given the successful results on
one and two minor domains.

Introduction
Deep learning [1] techniques are rapidly advanced recently

and becoming a necessary component for widespread systems.
Deep networks are usually trained to minimize the average of
sample losses. It means that the optimization process considers
only major domain samples and neglects the minor domain sam-
ples.

In practice, training data contain samples from various do-
mains. Domains include different individuals in handwritten
character recognition, different locations and environmental con-
ditions in automated driving, different translators in translation
tasks, and different speakers with dialects and cadences in the
speech recognition tasks. In industrial applications, small sample
data are sometimes critical. For example, accidents, e.g., in auto-
mated driving and credit authorization, are critical but rare cases.
Those accident samples are much smaller than normal samples.
For example, for automated driving, the data at rainy midnight
are usually smaller than the data at sunny daytime. In contrast,
the accident risk at rainy midnight is presumed to be much larger
than that at the sunny daytime. We refer the minor domains to the
domains associated with the small training samples. The major
domains are the domains corresponding to the dominant training
samples. Thus, it is essential to improve the performance on mi-
nor domains while maintaining that on major domains.

Figure 1 illustrates distributions of major and minor domains
in the deep feature. The minor domain samples distribute far from
the major domain samples in the typical random mini-batch gen-
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Figure 1: Machine learning with imbalanced domains.

eration [2, 3]. Then, the performance on the minor domain sam-
ples tends low. However, in the safety-critical systems, the per-
formance on the minor domains is also essential. If the domain of
each sample is known, then we can easily apply domain-balanced
sampling during the training. However, in many practical situa-
tions, the domain information is blind.

In this work, we first mathematically define the problem of
machine learning with blind imbalanced domains. Many domain
adaptation techniques [4, 5] are only for the non-blind domain
problem, in which we know the domain information of samples.
It follows that we cannot apply such techniques to the blind do-
main problem. On the other hand, as mentioned above, if we can
detect the domain information, we can apply domain-balanced
sampling [6]. However, we will experimentally show that the
minor domain sample detection using anomaly detection [7, 8]
does not work well. Therefore in this work, we apply the center
loss [9] and the deep feature distance-based sampling for a mini-
batch generation to improve the performance of the blind minor
domain samples. Our contributions are twofold:

• We introduce and formalize a new problem setting: machine
learning with blind imbalance domains.

• We identify and empirically show that the combination of
center loss and distance-based sampling is effective for the
machine learning with blind imbalance domains in classifi-
cation tasks.

This paper is organized as follows. First, Related Works sec-
tion introduces center loss, distance-based sampling, and other
related works. Then, we propose and formalize a new problem
setting: machine learning with blind imbalanced domains, and ob-
serve the effect of domain imbalance in Problem Setting and Ob-
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(a) Major domain samples (b) Minor domain samples

Figure 2: Examples of different domains in image processing.

servation section. Based on the observation, we propose an effec-
tive countermeasure specialized for classification tasks in Method
section. Then, Experiments and Discussion section demonstrates
the advantage of our method through thorough experiments. Fi-
nally, Conclusion section summarizes our work and suggests fu-
ture works.

Related Works
Center loss [9] is a regularizer to make samples and cen-

troids (class means) in the deep feature closer. Contrastive center
loss [10] is an extended center loss to maximize the deep feature
variance between classes. Contrastive loss [11] selects positive,
e.g., same class, sample pairs and negative sample pairs. Triplet
loss [12] selects triplets of 1) anchor samples, 2) positive samples,
and 3) negative samples that make up positive sample pairs (1 and
3) and negative sample pairs (1 and 4). Then, contrastive loss
and triplet loss minimize and maximize the distances between the
deep features of the positive and the negative sample pairs, re-
spectively. This paragraph shows that it is common to minimize
and maximize the deep feature variance for similar and dissimilar
samples, respectively. However, we are interested only in mini-
mizing the deep feature variance in this work, and we use center
loss.

Weighted sampling and loss weighting control the number of
samples and significance of losses based on the characteristics of
each sample, respectively. Hard negative mining [13] is a method
to backpropagate only the selected hard samples. SMOTE [14] is
a data augmentation [15] technique for imbalanced classes [16].
Hard negative mining aggressively selects real hard samples with
large losses, whereas SMOTE generates augmented samples to
compensate the class imbalance. However, selecting and gener-
ating only hard or minority samples in high-dimensional spaces
suffer from concentration on the sphere [17] and noises [18].
Distance weighted sampling [18] directly addressed this problem
by selecting negative samples at various distances. It uses sam-
pling weight based on the inverse of sample probability. A loss
weighting technique of focal loss [19] originally addresses the
foreground-background imbalance in training object detectors by
down-weighting already well-classified examples.

Domain adaptation [4, 5] is a research area to address the per-
formance degradation when a machine learning model is trained
in a source domain and tested in another target domain. In domain
adaptation, we know the domain labels of samples, i.e., training
samples are always from the source domain, and test samples
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Figure 3: Imbalanced domains in different numbers of minor sam-
ples.

are always from the target domain. We call such conditions a
non-blind domain setting, and it does not apply to our blind do-
main setting. Deep supervised domain adaptation [4] is a super-
vised (class known) approach. It optimizes the feature extractor
to minimize the distance between source and target samples with
the same class closer and maximize that with different classes.
Maximum classifier discrepancy [5] is an unsupervised (class un-
known) approach. It assumes two classifiers for a shared feature
extractor and optimizes the classifiers and the feature extractor to
maximize and minimize the discrepancy between these classifiers,
respectively.

Problem Setting and Observation
Here, we formalize the machine learning with blind imbal-

anced domains. Let a training sample, a label, and a domain label
of the sample be x, y, and z, respectively. The joint probability
of the training sample and the label with multiple domains can be
expressed by a mixture distribution:

p(x,y) =
Nz−1

∑
z=0

p(z)p(x,y|z) , (1)

where Nz is the number of domains. We say the non-blind do-
main if p(z) is known. If p(z) is unknown, then it is a blind
domain problem. If the variance of p(z) is small, then the dis-
tribution of domains is balanced. We say the imbalanced do-
mains for the large variance of p(z). In simple two-domain cases,
p(z = 0)� p(z = 1) is the imbalanced domain problem. If the
domains are balanced, then p(z = 0)' p(z = 1). To evaluate the
machine learning with blind imbalanced domains, we introduce
the domain-wise performance PERFz, which is the performance
on a domain z.

To simplify the discussion, we consider only two domains,
i.e., a major domain and a minor domain. We focus on classifica-
tion tasks as an example and emulate the multi-domain data with
three handwritten digit databases MNIST [20], EMNIST [21], and
USPS [22], with all images resized to 32× 32. From those three
datasets, we can generate six pairs of the major and minor do-
mains. Figure 2 depicts an example pair of the major domain
(MNIST) and the minor domain (EMNIST), for which we can
observe different handwriting. For each domain pair, we train
LeNet [23] with the activation function ReLU [24, 25] for hand-
written digit recognition (classification task). The domain-wise
accuracy ACCz is an example of PERFz in classification tasks.
Figure 3a shows the average of six pairs of major and minor accu-
racies for the number of the minor domain samples while fixing
the number of the major domain samples as 500.
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fθ ,φ (x) = (hφ ◦ gθ )(x) denotes a trained network separated
into a feature extractor gθ and a classifier hφ . We use LeNet as
fθ ,φ , and the network from input to the second last full connection
(F6) layer of LeNet as gθ . Let gθ (x) and µy = Ex∼p(x|y) [gθ (x)]
be a sample deep feature and the centroid deep feature of class
y, respectively. We define the distance between a sample deep
feature and the centroid deep feature as d = ‖gθ (x)− µy‖2. We
know the class y for a training sample x. Therefore, the above
centroid distance d of a training sample x is computed based on
the centroid deep feature of class y. Figure 4 shows three density
plots for the number of the minor domain samples while fixing
the number of the major domain samples as 500. Each plot is
the density of centroid distance on major domain samples from
MNIST, minor domain samples from EMNIST, and all samples.

Figures 3a and 4 show that the minor performance increases
and the minor domain samples locate close to the centroid when
the number of the minor domain samples increases. Therefore,
minor performance and the distance between the minor domain
sample and the centroid are correlated. We define domain separa-
tion τ2

z to evaluate the closeness of domain samples as the normal-
ized second order central moment [26] for domain z. We define
the relative domain separation of the domain z as

τ
2
z =

Ex,y∼p(x,y|z)
[
‖gθ (x)−µy‖2

2
]

Ex,y∼p(x,y)
[
‖gθ (x)−µy‖2

2
] (2)

for classification tasks. Figure 3b shows the average of six pairs
of major and minor domain separations for the number of the mi-
nor domain samples while fixing the number of the major domain
samples as 500. Figures 3a and 3b show a clear negative correla-
tion between the performance and the domain separation.

Method
As the previous section shows, balancing major and minor

samples is critical in the imbalanced domain cases. In the non-
blind situation, we can apply weighted data sampling to balance
the imbalanced domains. However, in the blind imbalanced do-
main cases, we cannot apply the balanced sampling directly be-
cause the domain of each sample is unknown. The straightfor-
ward approach is a combination of anomaly detection and bal-
anced sampling. In such an approach, samples are classified into
the major and minor domains by anomaly scores. Then, we can
apply balanced sampling based on classified domains. However,
this straightforward approach does not work well, to be shown
in Experiments and Discussion section, since anomaly detection
of minor domains is not easy. This section builds a practical ap-
proach for machine learning with blind imbalanced domains in
classification tasks.

The previous section also showed a negative correlation be-
tween the performance and the domain separation, i.e., variance.
Thus in our approach, we minimize the variance of deep features
instead of classifying the domains. For that purpose, we use cen-
ter loss and distance-based sampling [27]. Center loss reduces
the variance in the deep feature as introduced in Related Works
section. The purpose of distance-based sampling is to pick up
many samples in minor domains. We saw that the minor domain
samples locate far from centroids in Problem Setting and Obser-
vation section. We assume that the samples far from the centroid
in the deep feature have high probabilities of being in the minor

domain. With higher weights for the samples far from the cen-
troid in the deep feature, distance-based sampling generates mini-
batches expected to contain such samples [28]. For that purpose,
we first model sample probability q(d) as a function of centroid
distance d. Then, we hold the centroid distance d for all samples
throughout training and estimate the model parameters of q(d)
based on it. If we select Gaussian distribution, we estimate the
sample mean d̄ and the sample variance s2

d from d; if we select ex-
ponential distribution, we estimate the rate parameter λd from d.
Then, we generate a mini-batch B with sample weights q(d)−1,
the inverse of sample probability, so that we uniformly select sam-
ples both from major and minor domains under the blind domain
setting. Finally, we update only a specific part of d corresponding
to B avoiding recalculation of entire d. In typical machine learn-
ing, if the domains are imbalanced, then τ2

z slowly decreases for
small p(z) because p(x,y|z) is discounted. In our method, cen-
ter loss decreases τ2

z regardless of domains; then, distance-based
sampling increases p(z) to decrease τ2

z for minor domains z.

Algorithm 1: Combining center loss and distance-
based mini-batch sampling for the machine learning
with blind imbalanced domains in classification tasks.

Input: training data {(xi,yi)}, network fθ ,φ = hφ ◦gθ ,
momentum coefficient α

Output: network parameters θ (feature extraction) and
φ (classification)

1 initialize θ and φ

2 initialize centroid deep feature {µc}
3 initialize centroid distance {di}
4 repeat
5 estimate parameters of distribution q(d) from {di}
6 sample mini-batch B = {(x j,y j)} with weight

q(d j)
−1

7 update θ and φ w.r.t. classification loss and center
loss on B

8 update µc w.r.t. center loss on B
9 update d j← αd j +(1−α)‖gθ (x j)−µy j‖2 for each

(x j,y j) ∈B

10 until training ends;

Now i, j, and c denote the indices of all training samples,
the indices of the training samples in the mini-batch B, and the
indices of classes, respectively. In a training iteration, we update
network parameters θ and φ , centroid deep features for all classes
{µc}, and the centroid distances {d j} only for the samples in the
mini-batch B. First, we update the network parameters θ and
φ by backpropagating classification loss, e.g., softmax [29] cross
entropy loss, and center loss 1

2 ∑ j∈B ‖gθ (x j)− µy j‖2
2. Next, we

update {µc} through backpropagation of center loss. Then, we
update {d j} only for the samples in B based on ‖gθ (x j)−µy j‖2

2
with momentum. We apply momentum with coefficient α to the
centroid distance to avoid oscillations. We show the pseudo code
of our method in Algorithm 1.

Regular SGD (stochastic gradient descent) algorithm is sam-
pling without replacement [30] where once samples are selected,
the sampler will not select these samples again. SGD also ensures
the selection of all samples in an epoch. On the other hand, our
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(a) 5 minor samples (b) 50 minor samples (c) 500 minor samples

Figure 4: Number of minor samples and transition of centroid distance.

Table 1: Results in the two-domain setting.

M/E E/M M/U U/M E/U U/E Average

Random Major 0.9835 0.9839 0.9832 0.9647 0.9849 0.9655 0.9776
Minor 0.6153 0.6148 0.9342 0.9186 0.7141 0.6466 0.7406

Input LOF sampling Major 0.9822 0.9837 0.9842 0.9639 0.9851 0.9636 0.9771
Minor 0.6276 0.6420 0.9332 0.9223 0.7115 0.5911 0.7380

Feature LOF sampling Major 0.9838 0.9844 0.9844 0.9657 0.9845 0.9644 0.9779
Minor 0.6219 0.6393 0.9321 0.9089 0.7136 0.5998 0.7359

Cross entropy sampling Major 0.9817 0.9850 0.9852 0.9635 0.9853 0.9630 0.9773
Minor 0.6319 0.6292 0.9331 0.9135 0.7228 0.6079 0.7397

Distance-based sampling Major 0.9834 0.9834 0.9828 0.9639 0.9846 0.9604 0.9764
Minor 0.6287 0.6188 0.9231 0.9050 0.6908 0.6065 0.7288

Focal loss Major 0.9834 0.9818 0.9820 0.9641 0.9848 0.9644 0.9768
Minor 0.6186 0.6225 0.9321 0.9162 0.7204 0.6324 0.7404

Center loss Major 0.9903 0.9909 0.9911 0.9692 0.9907 0.9706 0.9838
Minor 0.6976 0.7046 0.9377 0.9424 0.8002 0.7621 0.8074

Center loss + distance-based sampling
(proposed)

Major 0.9910 0.9911 0.9903 0.9711 0.9906 0.9709 0.9842
Minor 0.7330 0.7372 0.9363 0.9493 0.8242 0.7632 0.8239

approach uses weighted sampling to intend a single minor sample
selected multiple times, and we opt for sampling with replace-
ment [31]. Thus Algorithm 1 does not consider batch and epoch
numbers. Instead, we define the number of iterations for an epoch
as the training dataset size divided by the batch size to track the
training progress.

Experiments and Discussion
As shown in Method section, our method consists of center

loss and distance-based sampling. In this section, we compare our
proposed method with combinations of existing approaches. We
configure the combinations of loss methods and sampling meth-
ods. Loss methods include focal loss [19] and center loss [9];
sampling methods use local outlier factor (LOF) [7] on input and
deep feature, cross entropy loss, and centroid distance. Finally,
we confirm the overall performance of our method and the effect
of center loss and distance-based sampling through experiments.

Besides the blind domain setting, we use a similar experi-
mental setting in Problem Setting and Observation section. We
train LeNet with ReLU for handwritten digit recognition (classifi-

cation task) and use the deep feature gθ (x) at the F6 layer. We per-
form experiments in pairwise and triplet domains in MNIST, EM-
NIST, and USPS datasets abbreviated as M, E, and U. An example
pairwise domain M/E and an example triplet domain M/E,U de-
note a major domain MNIST with a minor domain EMNIST and
a major domain MNIST with two minor domains EMNIST and
USPS, respectively. We select the M/E pair as the representative
domain setting for drawing figures. Major domains have 500 sam-
ples/class, and minor domains have 5 samples/class, i.e., we have
approximately 5,000 images in total. We measure the accuracy
after 100 epochs with batch size 128, i.e., the number of iterations
is approximately 5,000/128 per epoch.

Now we describe the hyperparameters and design alterna-
tives of compared methods. We empirically selected exponential
distribution to model q(d) in distance-based sampling. Exponen-
tial distributions also model LOF scores and cross entropy losses.
We use momentum with coefficient α = 0.9 to update d(x). We
compute the input LOF scores on the inputs (samples) x only once
at the beginning of training. In contrast, we compute the feature
LOF scores on the deep features gθ (x) for each epoch because θ
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Table 2: Results in the three-domain setting.

M/E,U E/M,U U/M,E Average

Random Major 0.9827 0.9841 0.9646 0.9771
Minor 0.6294 0.9250 0.6810 0.7332 0.8939 0.6556 0.7725

Input LOF sampling Major 0.9831 0.9848 0.9644 0.9774
Minor 0.6109 0.9180 0.6871 0.7393 0.8768 0.6149 0.7664

Feature LOF sampling Major 0.9818 0.9835 0.9625 0.9759
Minor 0.6150 0.9230 0.6616 0.7242 0.8855 0.6390 0.7619

Cross entropy sampling Major 0.9822 0.9849 0.9621 0.9764
Minor 0.6283 0.9219 0.6960 0.7415 0.8868 0.6340 0.7749

Distance-based sampling Major 0.9821 0.9842 0.9623 0.9762
Minor 0.6233 0.9250 0.6648 0.7373 0.8900 0.6246 0.7681

Focal loss Major 0.9831 0.9838 0.9634 0.9768
Minor 0.6063 0.9198 0.7122 0.7514 0.8934 0.6507 0.7766

Center loss Major 0.9904 0.9906 0.9704 0.9838
Minor 0.7070 0.9331 0.7493 0.8077 0.9336 0.7526 0.8261

Center loss +distance-based sampling
(proposed)

Major 0.9910 0.9907 0.9705 0.9840
Minor 0.7340 0.9307 0.7796 0.8236 0.9279 0.7818 0.8392

is updated. Focal loss uses a focusing parameter γ = 2.
Tables 1 and 2 show the accuracy for each pair and triplet

in the two-domain setting, i.e., one major domain and one minor
domain, and the three-domain setting, i.e., one major domain and
two minor domains, respectively. All single experiments are ex-
ecuted 4 times and averaged. In minor accuracy, our proposed
approach performs best with significant improvements (2.0% to
3.5%) on more than half of pairs and triplets in the two- and
three-domain settings; it is comparable (within ±0.6% to the best
method) in the rest settings. In major accuracy, we achieved the
best major accuracy except for 2 pairs in the two-domain setting
(degradation was only 0.01% and 0.08% for these 2 pairs). Al-
though distance-based sampling, which discounts major samples,
is superficially regarded as harmful to the major accuracy, experi-
mental results confirm no significant performance loss for the ma-
jor domains. Also, on average, our approach outperformed all the
other methods in minor accuracy by a large margin (1.65% in the
two-domain setting and 1.57% in the three-domain setting) and in
major accuracy. Therefore, experiments show that our approach
is effective in machine learning with blind imbalanced domains.
It can be inductively estimated that our proposed approach works
for multiple domains, given the experimental results on the two-
and three-domain settings. We discuss the detail of the experi-
mental results in the following paragraphs. Experiments ensure
that the simplest approach using LOF sampling to detect minor
domains for domain-balanced sampling does not work.

In Table 1, our proposed approach outperformed all other
methods on M/E, E/M, and E/U with significant minor accuracy
improvements of 3.5%, 3.2%, and 2.4%, respectively. On M/U,
U/M, and U/E, our proposed approach performs comparably to
other methods with minor accuracy deviation between −0.2%
and 0.7%. In Table 2, our approach outperformed all other meth-
ods on E/M,U with considerable minor accuracy improvements of
3.1% and 1.6%. On M/E,U, and U/M,E, the accuracy of one mi-
nor domain is substantially improved (2.7% and 2.9%), but that
of the other minor domain was slightly degraded (−0.24% and

−0.57%).
We confirmed the effects of center loss and distance-based

sampling separately. In the averaged results at the rightmost
columns in Tables 1 and 2, center loss performs best among base-
line (random sampling with classification loss only) and focal
loss. On the other hand, in most conditions, distance-based sam-
pling is not better performed among other sampling methods, i.e.,
input LOF sampling, feature LOF sampling, and cross entropy
sampling. However, in our proposed approach, the combination
of center loss and distance-based sampling outperforms all other
methods on average for major and minor domain accuracy. No-
tably, applying distance-based sampling in addition to center loss
improves average minor domain accuracy by more than 1.5%. We
observe that distance-based sampling works very well only after
bringing samples closer together for a sharp contrast.

Conclusion
This paper introduced a new problem setting, machine learn-

ing with blind imbalanced domains, and formalized it. In that
problem, we assume that the training data consist of imbalanced
samples from different domains. The practical problem is to im-
prove the performance on minor domains as well as that on ma-
jor domains because high-risk minor domains have importance in
specific kinds of applications, e.g., safety-critical systems. Then,
we proposed an effective approach for the problem on classifi-
cation tasks, the combination of center loss and distance-based
mini-batch sampling. Our approach outperformed other relevant
approaches in the accuracy on minor domains with significant im-
provement for more than half of the experimental settings without
hurting that on major domains.

Future works include 1) building theorem-proof of the ana-
lytical advantage of our proposed approach in machine learning
with blind imbalance domains, 2) causal analysis on the datasets
where our approach worked very well, and it just performed com-
parably, 3) adding relevant data augmentation in distance-based
mini-batch sampling instead of simply oversampling minor sam-
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ples, and 4) experiments using more realistic datasets such as mi-
nor accident samples in major regular driving samples for auto-
mated driving systems.
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