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Abstract
An image fusion of different modal images, such as visible

and long wavelength infrared (LWIR) images, is an important im-
age processing technique because different modal images have
compensate information for each other. Many existing image fu-
sion algorithms assume that different modal images are perfectly
aligned. However, that assumption is not satisfied in many prac-
tical situations.

In this paper, we propose an image alignment and fusion al-
gorithm with gradient-domain processing. First, we extract the
gradient information from both modality images. Then, assum-
ing disparities between the two gradient maps, candidate gradi-
ent maps for the target fused image are generated by selecting
the gradient having larger power from different modality images
pixel-by-pixel. A key observation is as follows. If the assumed
disparity is wrong, the fused image includes ghost edges. If the
assumed disparity is correct, the single edge is preserved with-
out the ghost edge in the fused image. Therefore, we evaluate the
gradient power in the region-of-interest of the fused image with
different disparities. Then, we can align images based on the dis-
parity associated with the minimum gradient power. Finally, we
apply gradient-based image fusion with the aligned image pairs.

We experimentally validate that the proposed approach can
effectively align and fuse the visible and long wavelength infrared
images.

Introduction
Multi-modal image sensing is becoming common in prac-

tice. Particularly, a combination of visible and long wavelength
infrared (LWIR) images has great potential [17]. The visible cam-
era is a very good tool for bright and clear scenes, while it requires
lighting for a night scene, and it’s difficult to see through the deep
fog. In contrast, the LWIR camera is robust to a low-light con-
dition and a foggy scene. In order to obtain the benefits of both
visible and LWIR images, image fusion is highly demanded.

Figure 1 shows an example of image fusion of visible and
LWIR images. The visible camera cannot capture the environ-
ment for the foggy scene as shown in Fig. 1-(a), while the LWIR
camera can observe the environment through the fog as shown in
Fig.1-(b). Figure 1-(c) is the fusion result which is good for clear
bright scenes, foggy scenes, night scenes, and other scenes.

Many image fusion algorithms have been proposed in the
literature [6].Those existing algorithms assume that input two im-
ages are perfectly aligned. Although a coaxial camera system has
been proposed [18], the alignment is not perfect in many practi-
cal situations because the viewpoints of the visible and the LWIR
cameras are usually different. Therefore, even after applying the
intrinsic and extrinsic camera calibration, there are disparities be-
tween the visible and the LWIR image depending on the depth of

(a) Visible image (b) LWIR image (c) Fused image

Figure 1: Example of visible and infrared image pair and its fusion result.

objects. The misalignment often generates severe artifacts such
as a ghost, a halo, and a discontinuity in the fused image [23].
The alignment between different modal images is a challenging
task because the local properties of the different modal images
are different.

In this paper, we assume the camera calibration for the visi-
ble and thermal cameras has already been performed [22]. Then,
the intrinsic and extrinsic parameters are known. In that situation,
the image alignment equals to estimate depth of target objects.
Even if there is one degree of freedom for the image registration,
the image alignment is still a challenging problem because im-
age properties between the visible and the LWIR images are very
different. In order to solve that difficulty, we propose a gradient-
domain-based approach. The image fused by our algorithm ro-
bustly provides rich information for clear bright scenes, low-light
night scenes, and foggy scenes.

We use the gradient-domain based approach. There are many
applications of gradient-domain approach in computer graphics
and computer vision. Perez et al. [2] presented the gradient-
domain interpolation framework called Poisson image editing.
Image fusion techniques based on the gradient-domain were also
proposed [3][4][5]. In gradient-domain image processing, first,
the gradients are extracted from the input image. Then, the ex-
tracted gradients are manipulated to obtain expected effects. Fi-
nally, the image is reconstructed based on the manipulated gradi-
ents.

We propose a visible and infrared image alignment and fu-
sion method based with gradient-domain processing. The results
fused by the proposed method contain important information from
both images. Experiments showed that the proposed alignment
effectively works. We also demonstrated that the proposed align-
ment and fusion algorithm superiors to existing algorithms.

Alignment and Fusion Based on Gradient-
Domain Processing

The objective of this paper is image alignment and image
fusion algorithms for multi-modal images. We propose gradient-
domain-based image alignment and fusion algorithms. Figure 2
shows the pipeline of the proposed method. The input of the pro-
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Figure 2: Processing pipeline of fusion method.

(a) Gradient fusion with aligned image pair.

(b) Gradient fusion with non-aligned image pair.

Figure 3: Schematic image of gradient fusion.

posed algorithm is visible and LWIR image pair without align-
ment. The output is the fused image without ghost artifacts.

First, we convert the visible image into HSV color space.
We will only use the value image (V) for fusion. Then, we as-
sume candidate transformation parameters θi. The LWIR image
is warped with those transformation parameters. The gradient of
visible image and gradient of warped LWIR images will be fused.
This gradient fusion is performed by choosing the larger gradient
power of the gradient pixel-by-pixel manner. For each fused gra-
dient map, we evaluate an average gradient power in the region
of interest (ROI). Then, we select the fused gradient map with
the minimum average gradient power of ROI. We reconstruct the
value image from the selected gradient map to obtain the final
fused image. Finally, we reconstruct the RGB image by using H
and S from the input visible image and V from the reconstructed
value image .

Gradient Fusion
Figure 3 shows the schematic image of the proposed gradient

fusion method. Gradient power ξg(x) of an image ξ (x) is given
by

ξg(x) = ξ
2
h (x)+ξ

2
v (x), (1)

Figure 4: Processing pipeline of image alignment based on gradient
power of fused gradient map, where the red box represents the
selected gradient map.

where ξh(x) represents the horizontal derivative of ξ (x), and
ξv(x) represents the vertical derivative of ξ (x).

Let uvis(x) and uir(x) be the intensity of the visible and
LWIR images at position x. The fused gradient map qθ

d (x) with
the transformation parameter θ is given as

qθ
d (x) =

{
uvis

d (x) uvis
g (x)≥ uir

g (T (x;θ))

uir
d (T (x;θ)) uvis

g (x)< uir
g (T (x;θ))

. (2)

where uvis
g (x) represents gradient power of the visible image,

uir
g (x) represents gradient power of the LWIR image, T (x;θ) rep-

resents the warping function with the parameter θ , and d repre-
sents the direction of the horizontal or vertical gradient. This gra-
dient fusion is performed by choosing the larger gradient power
of the gradient pixel-by-pixel manner. This enables to preserve
important edges.

Image Alignment
The image alignment in this paper is to find the suitable

transformation parameter θ for the region-of-interests (ROI). The
transformation parameter θ∗ is given as

θ
∗ = argmin

θ

∫
Ω

(
[qθ

h (x)]
2 +[qθ

v (x)]
2
)

dx, (3)

where Ω represents the region of interest (ROI).
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The main idea behind the proposed algorithm is as follows.
We will obtain ghost artifacts, or duplicated edges, in the fused
gradient map if the assumed depth is wrong as shown in Fig. 3-
(b). On the other hand, if the assumed depth is correct, there are
no ghost artifacts as shown in Fig. 3-(a). Our observation is that
the ghost artifacts increase the gradient power of the ROI. Based
on that observation, we choose the gradient map by evaluating
the average gradient power of the fused gradient map in the ROI.
Figure 4 shows the schematic of the image alignment based on
the gradient power of the fused images.

Image Reconstruction
There are many image fusion techniques based on gradient-

domain. In this paper, we use image reconstruction based on [1].
Image reconstruction is performed by optimizing the energy func-
tional E[u(x)] given as

E[u(x)] = F [u(x)]+R[u(x)], (4)

where F [u(x)] is the the gradient fidelity term, and R[u(x)] is the
the intensity-range constraint term.

The gradient fidelity term is defined as

F [u(x)] =
∫

∑
d=h,v

|ud(x)−qθ ∗

d (x)|2dx. (5)

This term minimizes the gradient residual between the target and
the reconstructed gradients in the same manner as the existing
gradient-domain approach.

The gradient intensity-range constraint is defined as

R[u(x)] =
∫

γ (u(x))dx, (6)

γ(η) =


∞ η < Rmin

0 Rmin ≤ η ≤ Rmax

∞ η > Rmax

, (7)

where Rmax and Rmin is the upper and lower bound defined by
a fixed target range. This term prevents the output image being
overexposed or underexposed.

Experiments
We have taken several scenes with the visible and LWIR

cameras. The intrinsic and extrinsic calibrations were performed
beforehand [22]. We will show qualitative and quantitative com-
parisons.

Qualitative comparison
Figure 5 shows a comparison of fused images with and with-

out alignment. Figure 5 (a) and (b) are observed visible and LWIR
images. From those images, we can find the disparity between
those images. Then, we apply the proposed gradient-based im-
age alignment. Figure 5 (c) is the LWIR image aligned by the
proposed method. We can find the position of the fence in the
zoomed region of the aligned LWIR image is moved to that po-
sition of the LWIR image. Figure 5 (d) and (e) are fusion results
without alignment and with the proposed alignment. We can see
the ghost artifact in Fig. 5 (d), while there are no ghost artifacts in
Fig. 5 (e) of the image fused by the proposed method.

(a) Visible image (b) LWIR (non-aligned) (c) LWIR (aligned)

(d) Fused (non-aligned) (e) Fused (aligned)

Figure 5: Input images and fusion results by proposed method. Red
boxes represent zoomed regions.

(a) Visible image (b) LWIR image (c) Fused image

Figure 6: Example of visible and infrared image pair and its fusion result
at a hazy scene.

We applied the proposed algorithm for several practical
scenes. Figure 6 shows an example of a hazy scene, which has
a sand storm at a construction site in a mountain. The visible im-
age of Fig. 6 (a) shows a whiteout in which we can see nothing.
Even the human eye cannot see anything. However, we can rec-
ognize pit gravel through the haze from the LWIR image of Fig. 6
(b). Fig. 6 (c) shows the image fused by the proposed algorithm.
From that fused image, we can also observe pit gravel through the
haze. Figure 7 shows an example of a night scene.

The proposed alignment and fusion algorithm outputs the
image for the bright and clear scene as in Fig. 1 (e). For the
dense haze scene, the result of the proposed algorithm is Fig. 6
(c). For the night scene, the result of the proposed algorithm is
Fig. 9 (c). Those results demonstrate that the proposed alignment
and fusion algorithm robustly provide good information for clear,
haze and night scenes.

Figure 8 shows the visual result comparison with other meth-
ods. The input images are not aligned. The visible camera and
LWIR camera were placed in a row. Camera calibration was done
and results are used in our method. We compared with 3 other
methods, CNN [19], GTF [20] and MST SR [21]. We can see
that our method effectively align images.

Quantitative comparison
In the proposed algorithm, we fuse the gradient map with as-

suming disparity candidates. If the assumed disparity candidate
is wrong, the resultant fused gradient map includes ghost edges.
Then, those ghost edges increase the average gradient power of
the ROI. Figure 9 shows examples of visible and LWIR images
warped with wrong and correct disparities and their associated
gradient maps. We can find ghost edges from Fig. 9 (h) of the
gradient map fused with wrong disparity, while ghost edges are
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(a) Visible image (b) LWIR image (c) Fused image

Figure 7: Example of visible and infrared image pair and its fusion result
at a night scene.

(a) Visible image (b) LWIR image (c) CNN

(d) GTF (e) MST SR (f) Ours

Figure 8: Visual results comparison between different methods.

suppressed in Fig. 9 (g) of the gradient map fused with correct
disparity. We also quantitatively evaluate the average gradient
power of Fig. 9 (h) and (g). Those values are 0.0407 and 0.0365,
respectively. Based on this simple observation, we can estimate
the disparity by finding the minimum gradient power of the fused
gradient map.

Table 1 shows the comparison of fusion results by non-
aligned image pairs and aligned image pairs using proposed
method. We used images from [7], which contains 21 pairs of
alinged visible and LWIR images [8][9][10]. In order to make
non-aligned images, we assumed that the optic axes of two cam-
eras are aligned as parallel, and shifted all LWIR images [-10, 0].

We employed 6 evaluation methods, cross entropy (CE) [11],
mutual information (MI) [12], PSNR [13], QAB/F [14], QCV [15],
and SSIM [16]. We used [7] to calculate these methods. Non-
shifted LWIR images are used for source images. Cross entropy
(CE) shows the similarity between source images and fused im-
age. Mutual information (MI) are used to measure the amount
of information that is transferred from source images to the fused
image. PSNR indicates the ratio of peak value power and noise
power in the fused image. QAB/F shows the amount of edge in-
formation that is transferred form source images to fused image.
QCV is a quality factor obtained based on human vision system.

Table 1: Comparison of fusion results on non-aligned images and aligned
images with proposed method. The better results are highlited in
bold.

Method CE MI PSNR QAB/F QCV SSIM
Non-Aligned 1.28 1.92 57.30 0.54 1052.92 1.17

Aligned 1.25 2.05 57.48 0.59 852.90 1.30

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9: Examples of visible and LWIR images warped with wrong and
correct disparities, and their associated gradient maps, where
the brighter (white) represents the larger gradient power.

SSIM models image loss and distortion. Table 1 shows that the re-
sults with alignment are better than those without alignment. Es-
pecially, QAB/F got better after alignment. This result means that
edge information are transferred from the source images to the
fused result, which suggests that alignment is effectively done.

Conclusion
In this paper, we proposed image alignment and image fu-

sion algorithm based on gradient-domain processing. The output
fused images are easy to recognize and have fewer ghost artifacts.
The proposed algorithm is robust to many scenes such as bright
scenes, low-light night scenes, and hazy scenes.

References
[1] Shibata, Takashi and Tanaka, Masayuki and Okutomi, Masatoshi,

Gradient-Domain Image Reconstruction Framework With Intensity-
Range and Base-Structure Constraints, Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2016.

[2] P. Perez, M. Gangnet, and A. Blake, Poisson image editing, ACM
Trans. on Graphics (TOG), 22(3), pg. 313–318, 2003.

[3] R. Raskar, A. Ilie, and J. Yu, Image fusion for context enhancement
and video surrealism, Proc. of Int. Symp. on NonPhotorealistic Ani-
mation and Rendering (NPAR), 7, pg. 85–152, 2004.

[4] D. Connah, M. S. Drew, and G. D. Finlayson, Spectral edge image fu-
sion: Theory and applications, Proc. of European Conf. on Computer
Vision (ECCV), pg. 65–80, 2014.

[5] J. Sun, H. Zhu, Z. Xu, and C. Han, Poisson image fusion based on
markov random field fusion model, Information Fusion, 14(3), pg.
241–254, 2013.

366-4
IS&T International Symposium on Electronic Imaging 2022

Image Processing: Algorithms and Systems XX



[6] Jiayi Ma, Yong Ma, Chang Li, Infrared and visible image fusion
methods and applications: A survey, Information Fusion, 45, pg. 153-
178, 2019.

[7] X. Zhang, P. Ye, G. Xiao, VIFB: A visible and infrared image fusion
benchmark, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, IEEE, 2020.

[8] C. Li, X. Liang, Y. Lu, N. Zhao, and J. Tang, Rgb-t object tracking:
benchmark and baseline, Pattern Recognition, p106977, 2019.

[9] J. W. Davis and V. Sharma, Background-subtraction using contour-
based fusion of thermal and visible imagery, Computer vision and
image understanding, vol. 106, no. 2-3, pp. 162–182, 2007.

[10] C. O’Conaire, N. E. O’Connor, E. Cooke, and A. F. Smeaton, Com-
parison of fusion methods for thermo-visual surveillance tracking,
9th International Conference on Information Fusion, IEEE, pp. 1–7,
2006.

[11] D. M. Bulanon, T. Burks, and V. Alchanatis, Image fusion of visible
and thermal images for fruit detection, Biosystems Engineering, vol.
103, no. 1, pp. 12–22, 2009.

[12] G. Qu, D. Zhang, and P. Yan, Information measure for performance
of image fusion, Electronics letters, vol. 38, no. 7, p. 313–315, 2002.

[13] P. Jagalingam and A. V. Hegde, A review of quality metrics for fused
image, Aquatic Procedia, vol. 4, no. Icwrcoe, pp. 133–142, 2015.

[14] C. S. Xydeas and P. V. V., Objective image fusion performance mea-
sure, Military Technical Courier, vol. 36, no. 4, pp. 308–309, 2000.

[15] H. Chen and P. K. Varshney, A human perception inspired quality
metric for image fusion based on regional information, Information
fusion, vol. 8, no. 2, pp. 193–207, 2007.

[16] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., Image
quality assessment: from error visibility to structural similarity, IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[17] Soonmin Hwang and Jaesik Park and Namil Kim and Yukyung Choi
and In So Kweon, Multispectral Pedestrian Detection: Benchmark
Dataset and Baselines, Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

[18] Yuka Ogino, Takashi Shibata, Masayuki Tanaka and Masatoshi
Okutomi, Coaxial visible and FIR camera system with accurate geo-
metric calibration, Proceedings of SPIE Defense + Commercial Sens-
ing (DCS2017), Vol.10214, pp.1021415-1-6, April, 2017.

[19] Yu Liu, Xun Chen, Juan Cheng, Hu Peng, and Zengfu Wang, In-
frared and visible image fusion with convolutional neural networks.
International Journal of Wavelets, Multiresolution and Information
Processing, 16(03):1850018, 2018

[20] Jiayi Ma, Chen Chen, Chang Li, and Jun Huang, Infrared and visible
image fusion via gradient transfer and total variation minimization,
Information Fusion, 31:100–109, 2016.

[21] Yu Liu, Shuping Liu, and Zengfu Wang, A general framework for
image fusion based on multi-scale transform and sparse representa-
tion, Information Fusion, 24:147–164, 2015.

[22] T. Shibata, M. Tanaka, and M. Okutomi, Accurate Joint Geometric
Camera Calibration of Visible and Far-Infrared Cameras, Electronic
Imaging, Image Sensors and Imaging Systems, pp. 7-13(7), 2017.

[23] T. Shibata, M. Tanaka, and M. Okutomi, Misalignment-Robust Joint
Filter for Cross-Modal Image Pairs IEEE International Conference on
Computer Vision (ICCV), 2017.

Author Biography
Ayaka Tanihata received her bachelor’s degree from Tokyo Univer-

sity of Science, Tokyo, Japan, in 2020. She is currently a master’s student
at Tokyo Institute of Technology.

Masayuki Tanaka received his Ph.D. degree from Tokyo Institute of
Technology, Tokyo, Japan in 2003 and joined Agilent Technology. He was
a research scientist at Tokyo Institute of Technology from 2004 to 2008, a
visiting scholar at Stanford University from 2013 to 2014. He is currently
an associate professor at Tokyo Institute of Technology.

Masatoshi Okutomi received his master’s degree from Tokyo Insti-
tute of Technology in 1983 and joined Canon Inc., Tokyo, Japan. He was
a visiting research scientist at Carnegie Mellon University, PA, USA from
1987 to 1990. He received his Ph.D. degree from Tokyo Institute of Tech-
nology in 1993. He is currently a Professor at Tokyo Institute of Technol-
ogy.

IS&T International Symposium on Electronic Imaging 2022
Image Processing: Algorithms and Systems XX 366-5


