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Abstract—Rate control is an essential module in video cod-
ing. Rate control strategies strive to deliver a stable playback
experience as well as achieving high compression efficiency for
modern video applications, constrained by restricted bandwidth
and buffer limits. The difficulty of rate control often lies in the
adaptation ability of the underlying algorithm to capture the
variability of content and temporal correlation across frames.
In this paper, we present a rate allocation algorithm to model
the distortion propagation in the hierarchical coding structure
premised on the temporal dependency model at frame level.
Our experiments show that with the information collected from
the temporal dependency model, the proposed rate allocation
algorithm significantly improves the coding efficiency over the
AV1 baseline on a set of variable user generated video clips.

Index Terms—rate control, temporal dependency model, AV1

I. INTRODUCTION

Rate control is an essential module in video coding. It
strives to deliver a stable playback experience for modern
video applications, constrained by restricted bandwidth and
buffer limits. The objective of rate control is often to maximize
the usage of available bandwidth as well as delivering videos
of the highest quality. Rate control is also a crucial research
topic for practical encoders to improve compression efficiency.
In practice, rate control strategies are designed to match the
use case of video applications. For example, for video on
demand (VOD), where out-of-order coding is allowed and a
hierarchical coding structure is adopted, rate control strategies
take advantage of the fact that frames at low hierarchical layers
are typically referenced more often and encodes them with
higher quality accordingly. However, how to quantitatively dis-
tribute bit rates to achieve the optimal compression efficiency
is challenging due to the variability of content, and temporal
correlations across video frames.

Given a target bit rate, a practical rate controller may first
determines rate allocation, followed by a rate-distortion mod-
elling, which aims to select an appropriate quantization pa-
rameter (QP) to approximate the allocated bits. Rate-distortion
modelling has been well studied in literature. The R-Q model
builds a quadratic relation between the rate R and QP [1],
based on the assumption that transform coefficients follow a
Laplacian distribution. Linear regression analysis is used to
estimate model parameters. The R-λ model premises on a
hyperbolic relation between rate and distortion and achieves
a high rate control accuracy in HEVC [2]. A number of
research works of rate control have emerged based on the

R-λ model, where the rate allocation problem draws the most
interest. Both picture-level and basic-unit-level bit allocation
algorithms [3] are proposed as the extension of [2]. A frame
level bit allocation for HEVC low delay is presented in [4].
A bit allocation algorithm at the largest coding unit level is
proposed with recursive Taylor expansion in [5].

Among these bit allocation algorithms, the ability to pre-
cisely model the inter-frame dependency is a major differen-
tiator. For video applications that allows the encoder to collect
look-ahead information, a two-pass encoding scheme empow-
ers richer information and a better approximation of temporal
correlation. [6] refines the R-λ model by pre-encoding with
16x16 coding units to estimate the characteristics of the
largest coding unit. [7] improves rate control of x265 using
information from quarter-resolution motion estimation.

In this work, we propose a frame level rate allocation
method based on a temporal dependency model [8]. We
provide a rate-distortion analysis based on the R-λ model and
approximate the inter-frame correlations with stats collected
from the temporal dependency model. Experiments show that
the proposed method achieves a significant coding gain against
the baseline rate allocation of AV1.

II. ALGORITHM

A. Rate Control Problem

The rate control problem in video coding can be formed as
a constrained optimization problem

min
π

D, s.t. R ≤ RT , (1)

where D, R, RT represents the total distortion, the total
bit rate, and the target bit rate, respectively. π represents
the control policy and parameters that minimize the target
function. A Lagrangian multiplier λ is introduced to convert
it to a unconstrained optimization problem

min
π

D + λR. (2)

The optimal λ is the negative slope of the tangent line to the
R-D curve,

λ = −∂D
∂R

, (3)

assuming the R-D curve is convex and differentiable [9].
In practice, the rate control problem often breaks down to

two major parts: rate allocation and QP selection (Fig. 1).
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Fig. 1. The two-pass encoding workflow of AV1. The rate control module contains rate allocation and QP selection. The rate allocation consists of GOP
level and frame level rate allocation.

Given the target bit rate, a practical rate controller first allo-
cates bits to different frames, or blocks. A QP determination
mechanism then selects the appropriate QP to approximate the
allocated bits for each frame, or block. In this paper, we focus
on the rate allocation.

B. AV1’s Two-pass Rate Allocation Algorithm

AV1’s rate allocation algorithm is based on two-pass en-
coding. In the first pass, a simplified and fast encoding run
is executed with fixed partition, transform sizes, and limited
coding tools. A set of parameters are collected per frame to
aid the rate control decisions in the second pass.

As shown in Fig. 1, the rate allocation process is divided
to two stages: group of picture (GOP) level and frame level
rate allocation. First pass stats are used to determine the rate
allocation in each stage. The complexity measure of a frame,
denoted as Mi, i = 1, 2, ..., N , is the aggregation of block
errors for frame i, where the block error is the minimum of
motion compensated error and intra prediction error. N is the
number of frames.

The allocated bit rate of the m-th GOP, RGm
, is linearly

proportional to the accumulated complexity measure of each
frame with respect to the total complexity of the video clip,

RGm
=

∑
i∈Ωm

Mi∑N
i=1Mi

·RT , (4)

where RT is the target bit rate; Ωm is the set of frames in the
m-th GOP.

Within each GOP, the rate allocation of each frame is based
on a heuristic measure. Taking into the consideration that
frames at low hierarchy are referenced more often than those
at high hierarchy, a boost score Si of frame i is calculated to
reflect its importance in the hierarchical structure. And the bit
budget of frame i is then determined as

Ri =
Si∑

i∈Ωm
Si
·RGm . (5)

The boost score Si is the accumulated ratio of intra prediction
error (P ) over motion compensated error (Q),

Si =

i+∆∑
j=i−∆

Pj
Qj

, (6)

Fig. 2. An example of the hierarchical structure and GOPs.

in its neighbour frames [i − ∆, i + ∆], where ∆ is the size
of the neighbourhood, which aims to approximate how far the
current frame has influence on other frames. For example, as
shown in Fig. 2, ∆ is set as the distance from the current
frame to the neighbour frame at the previous level minus one.
∆ of frames at the top level is 0.

C. A New Frame-level Rate Allocation Algorithm
Within a GOP Gm, the optimization problem (Eqn. (2)) can

be written as

min
π

∑
i∈Ωm

Di + λ
∑
i∈Ωm

Ri, (7)

where λ is the global Lagrangian multiplier. To find the
optimal rate allocation for each frame, we take derivative of
Eqn (7),

∂(
∑
i∈Ωm

Di + λ
∑
i∈Ωm

Ri)

∂Rj
= 0, (8)

for any j ∈ Ωm. It can then be further derived as

∂
∑
i∈Ωm

Di

∂Rj
+ λ

∂
∑
i∈Ωm

Ri

∂Rj
= 0, (9)

and
∂
∑
i∈Ωm

Di

∂Rj
+ λ = 0, (10)

where we can safely assume Rj and Rk (j 6= k) are
independent of each other. By multiplying ∂Rj

∂Dj
= − 1

λj
on

both sides, we get

∂
∑
i∈Ωm

Di

∂Rj
· ∂Rj
∂Dj

+ λ · ∂Rj
∂Dj

= 0, (11)
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∂
∑
i∈Ωm

Di

∂Dj
− λ

λj
= 0. (12)

By denoting
∂
∑

i∈Ωm
Di

∂Dj
as θj , we obtain

λj =
λ

∂
∑

i∈Ωm
Di

∂Dj

=
λ

θj
. (13)

θj measures the distortion propagation along with the refer-
ence relations in the hierarchical structure.

As shown in literature [2], [10], [11], the rate-distortion
relation can be modelled as

D = CR−K , (14)

where C and K are parameters that relate to the characteristics
of the video clip. The corresponding Lagrangian multiplier can
be written as

λ = −∂D
∂R

= C ·K ·R−(K+1). (15)

Combining Eqn. (13) and (15) we get

Rj = θ
1

K+1

j R. (16)

Bit rates of all frames within the GOP Gm sum up to the
target rate budget RGm

,∑
j∈Ωm

Rj = RGm . (17)

Finally, combining Eqn. (16) and (17), the rate allocation for
individual frame is

Rj =
θ

1
K+1

j∑
j∈Ωm

θ
1

K+1

j

RGm
. (18)

In this model, frame level rate allocation depends on the
distortion propagation factor θ and parameter K. To verify
that the relation between λ and R matches the hyperbolic
model (Eqn. (15)) in AV1, we fit R-λ curves, as shown in
Fig. 3. It captures the relation extremely well with correlation
coefficient r2 > 0.995. We can also notice that K varies
significantly for different video clips. However, it is hard to
get an accurate estimation without encoding the video. For this
study, we universally set K = 0.5. The approximation of θ is
based on the temporal dependency model as illustrated below.

D. Temporal Dependency Model

Inspired by prior research work of inter-frame dependency
analysis [12], [13], the temporal dependency model in VP9
and AV1 [8], referred to as TPL hereinafter, captures the
temporal correlation across frames by tracing block-based
motion trajectories along the reference structure.

Similar to the first pass encoding, TPL runs a simplified
encoding process for a GOP, conducting motion search and
collecting information such as intra prediction error and mo-
tion compensated error. Nevertheless, the major difference
is that TPL builds upon the full frame referencing system
(Fig. 2) and fully reconstructs frames for referencing, while

Algorithm 1: Frame-level rate allocation algorithm.
Input: target bit rate RT , GOP set Ω, complexity

measure M , K
Output: bit rate budget Rj for each frame j
Method:

1 foreach m ∈ Ω do
2 Compute rate budget RGm

according to Eqn. (4).
3 foreach j ∈ Ωm do
4 Run TPL and collect stats: intra costj ,

inter costj , and propagation costj .

5 foreach j ∈ Ωm do
6 Compute θj according to Eqn. (19).

7 foreach j ∈ Ωm do
8 Compute Rj according to Eqn. (18).

the first pass encoding only uses the last source frame as
reference without transform, quantization, or reconstruction.
As demonstrated in [8], the use of reconstructed frames as well
as accounting for the quantization effect successfully captures
temporal dependency information.

In this work, we estimate the distortion propagation factor
θ with TPL stats. Specifically, we calculate the intra pre-
diction cost, inter prediction cost, and the propagation cost,
which represents how much information the current frame
carries for this GOP, denoted as intra cost, inter cost and
propagation cost in [8], respectively. The estimation of the
distortion propagation θj is formulated as

θj =
inter costj ∗ propagation costj

intra costj
. (19)

The complete rate allocation algorithm is summarized in
Algorithm. 1.

As compared to the baseline, TPL builds upon the full
reference structure for the current GOP, and well captures
the information flow and distortion propagation. While the
baseline algorithm uses heuristic terms, for example ∆, to
indirectly measure the information propagation.

III. EXPERIMENTAL RESULTS

The proposed frame level rate allocation algorithm was im-
plemented in libaom [14], the reference software of AV1 [15].
We evaluated the compression performance of the proposed
method against the baseline, which depends on the first pass
stats, as described in section II-B.

In this work, we focus on the rate allocation. Other rate
control constraints, for example the QP selection constraint as
shown in Fig. 1, are relaxed in the experiment. Specifically, we
allow the encoder to encode a frame multiple times in order
to select the QP that best approximates the allocated rate for
each frame.

The evaluation dataset is collected from YouTube’s user
generated content (UGC) [16], a large scale dataset intended
for video compression and quality assessment research. Forty
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Fig. 3. Some examples of the hyperbolic model of λ and R (bit per pixel). Correlation coefficient r2 indicates the model captures the correlation between
λ and R very well.

360p videos are encoded at various target bit rates (from 50
kbps to 1000 kbps), which covers the typical PSNR range from
30 dB to 40 dB. These videos contain various types of content,
from animation and lyrics video, to challenging content with
camera motion, and scene changes, such as vlog, music video,
etc.

The first 150 frames of each video was encoded at speed
setting 2 (–cpu-used=2), using the variable bit rate mode
(–end-usage=vbr). The compression efficiency improvement
was measured in terms of BD rate reduction in PSNR and
VMAF. A negative value indicates better coding performance.

The result is summarized in Table I. The averaged gain
over the baseline is 6.15% and 6.54%, for PSNR and VMAF
respectively. Whilst some clips or classes of content exhibited
much larger gains, including animation, gaming, music videos
and vlogs, in natural videos with slow motion, such as TV 1-5,
the baseline rate allocation in AV1 works well. For animation
videos and some gaming videos, even those that are relatively
static, the temporal relationship between frames differs from
natural videos and the proposed method is better to model
the correlation. For clips with frequent scene changes (music
video) and large camera motion (vlogs), the proposed method
also captures temporal correlation better and leads to a better
rate allocation.

It is worth noting that TPL has already been used in libaom
to adjust QPs at superblock level [8]. The proposed algorithm
takes advantage of TPL stats without introducing extra com-
putation to the encoder. The encoding time difference with
respect to the baseline is negligible for VOD applications.

IV. CONCLUSION

In this paper, we present a new frame level rate allocation
method for AV1. Based on the R-λ model analysis and
temporal dependency model, the proposed algorithm simulates
the temporal correlation in the hierarchical coding structure
and allocates bits accordingly at frame level. We present
evidence that the proposed method captures the temporal
correlation better than the baseline, especially for videos with
large motion and frequent scene changes. The proposed rate
allocation algorithm improves compression efficiency for the
rate control system in AV1.

TABLE I
CODING PERFORMANCE GAINS OF OUR METHOD OVER THE BASELINE.

Clip PSNR
(%)

VMAF
(%)

Animation 1 -17.40 -12.62
Animation 2 -17.86 -19.42
Animation 3 -4.46 -10.52
Gameplay 1 -3.49 -4.99
Gameplay 2 -2.25 -2.06
Gameplay 3 -0.28 -2.12
Gameplay 4 -15.23 -17.79
Lecture 1 -4.64 -5.47
Lecture 2 4.15 3.83
Lecture 3 0.60 2.89
Lecture 4 -2.82 -1.72
Lecture 5 -0.47 -1.33
Lecture 6 0.14 -0.04
LiveMusic 1 -15.65 -15.03
LiveMusic 2 -3.65 -5.87
LiveMusic 3 -17.65 -15.35
Lyrics 1 2.65 2.92
Lyrics 2 -2.73 -4.56
Music 1 -3.15 -5.23
Music 2 -2.28 -2.60
Music 3 -1.67 -2.60
Music 4 -8.27 -13.06
Music 5 -29.03 -21.80
Music 6 -11.60 -13.31
Music 7 -9.76 -2.12
News 1 -3.26 -3.35
News 2 -4.23 -5.38
News 3 -8.76 -12.33
News 4 0.15 -0.04
TV 1 -3.40 -2.46
TV 2 -0.29 -2.34
TV 3 -1.77 -4.38
TV 4 -0.68 -0.56
TV 5 3.30 0.66
TV 6 -18.54 -21.02
UgcVert 1 2.66 1.47
UgcVert 2 -18.29 -17.12
UgcVert 3 -2.87 -3.42
Vlog 1 -21.37 -18.42
Vlog 2 -2.09 -2.84
OVERALL -6.15 -6.54
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