
Volumetric Segmentation for Integral Microscopy with Fourier
Plane Recording
Sergio Moreschini, Robert Bregovic, Atanas Gotchev; Tampere University; Tampere, Finland

Abstract
Light Field (LF) microscopy has emerged as a fast growing

field of interest in the last two decades for its undoubted capacity
of capturing in-vivo samples from multiple perspectives. In this
work we present a framework for Volumetric Segmentation of LF
images created following the setup of a Fourier Integral Micro-
scope (FIMic). In the proposed framework, we convert the FIMic-
captured LF into a three-dimensional Focal Stack (FS) to be used
as an input to machine learning models with the aim to get the 3D
locations of the specimen of interest. Using a synthetic dataset
generated in Blender, we train three neural networks based on
the U-Net architecture and merge their outputs to achieve the de-
sired volumetric segmentation. In our main test results we achieve
a precision of more than 95%, while in the related tests we still
achieve a value higher than 80%.

Introduction
LF is a formal representation of the bunch of directional rays

in space, parameterized most often by the ray coordinates on two
parallel planes [1]. LF capture principles can be traced back to
the original work on integral cameras [2], aimed at multiplexing
angular and spatial ray information on a 2D sensor. Such LF im-
ages are instrumental for computational post-processing, such as
refocusing and depth estimation. Therefore, LF has been consid-
ered an attractive 3D microscopy alternative for imaging in-vivo
samples in reduced time and lower phototoxicity. The first LF
microscopy setup proposed in [3] comprises a microlens array lo-
cated at the intermediate image plane of the objective followed by
a sensor at the rear focal plane of the microlenses [3]. The part
of the sensor image behind a microlens, referred to as an Elemen-
tal Image (EI), captures a different perspective of the specimen of
interest. The compound image of all EIs multiplexes angular and
spatial information in a two-plane parameterized LF [1].

An alternative of this setup is the Fourier Integral Micro-
scope (FIMic) [4], where the microlens array is placed at the aper-
ture stop of the microscope objective. This results in EIs with ex-
tended depth of field and enhanced lateral resolution for the price
of reduced angular resolution. While high lateral resolution is re-
quired for observing small object details, a high angular resolution
is desired for resolving dense depth planes trough computational
refocusing [5]. The goal of refocusing in LF microscopy is to
compute the image that would be visible if a microscope would
be focused at a specific depth. Such an image shows both the
sharp objects in focus (i.e. at the targeted depth) and the blurred
objects out of focus (being at different depths). However, there
might be applications demanding segmentation of only objects at
a particular depth and excluding the ones at other depths.

In classical (confocal) microscopy [6], [7], images are cap-
tured by selectively exciting a 3D sample located at the specific

depth plane by fluorescence, and changing the focal lengths ac-
cordingly. When stacked together, the images form the so-called
ZStack (or Z-Scan) [8] [9]. While instrumental for excluding the
undesired blurred image regions, the process is slow and photo-
toxic for in-vivo samples.

In this work we aim at describing a specimen volume through
computationally segmenting the ZStack into object pixels of in-
terest, making use of our previous work on refocusing [5]. The
possibility of fully reconstructing a volume from an LF micro-
scope image has been investigated in [10] and [11]. Both works
utilize single-shot LF microscope images with high angular res-
olution. On the contrary, in our work, we aim at exploiting the
computationally reconstructed densely-sampled LF as an input to
a volumetric segmentation machine learning model.

Background

Consider a semitransparent specimen within a volume
V (u,v, p), where p is the depth axis. The ensemble of 2D sec-
tions V (u,v, pk) at different depths pk within a range [pmin, pmax]
is referred to as ZStack Z(u,v, pk) as shown in Figure 1 (a)).

The LF formalism is applicable for sensing the specimen
within the volume V (u,v, p). Consider an LF L(u,v,s, t) parame-
terized by two parallel planes (s, t) and (u,v) at a focal distance
p f , as illustrated in Figure 1 (a) [1]. By locating a matrix of pin-
hole cameras on the camera plane (s, t), one gets EIs from dif-
ferent perspectives on the image plane (u,v). The 4D LF rep-
resentation L(u,v,s, t) can be sliced by fixing e.g. u = u0 and
s = s0. The new representation E(v, t) = L(u0,v,s0, t), referred
to as Epipolar Plane Image (EPI) [12], is characterized by stripes
picturing the evolution of objects along camera motion (perspec-
tive) with slopes θ corresponding to the objects’ depths within
the range [θpmin ,θpmax ] (Figure 1 (b)). Elements in focus appear
with vertical slopes. Through shearing with particular θpk , one
can get different planes pk in focus and stack them to get the so-
called Focal Stack (FS) FS(u,v, pk) [13]. The resharing process
is problematic when the EIs are taken at sparse discrete perspec-
tives that is equivalent to having broken epipolar lines in the EPI
representation. To tackle this issue, in our previous work, we have
reconstructied the FS from a representation referred to as densely-
sampled LF (DSLF), comprising EIs with less than 1 pixel maxi-
mum disparity between adjacent images [5].

While the ZStack includes only sections of objects at par-
ticular depths, the FS includes images of all objects, both those
in-focus, which appear sharp, and out-of-focus, which appear
blurred. In this work, our goal is to use a reconstructed FS, in
order to find the objects of interest within the ZStack.
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Figure 1: (a) Two-plane LF parameterization. (b) Epipolar Plane
Image. (c) 2D slice of an FS. (d) 2D slice of a ZStack.
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Figure 2: Pipeline of the approach.

Methodology
We aim at segmenting a specimen within a volume from an

LF captured by a FIMic. In our approach, we reconstruct a dis-
crete FS first to make use of the in-focus sections there for seg-
mentng the corresponding ZStack.

Consider a 2D slice of the FS by fixing u = u0, EFS(v, p) =
FS(u0,v, p). The object’s evolution along p is pictured as
hourglass-shaped changing-intensity stripe, with an intensity
peak at the depth plane where the object is in focus, which is also
the tiniest stripe area, since the energy is the same for all ps (c.f.
the green circle in Figure 1 (c)). The effect is caused by the way
the FS is obtained, generally by averaging.

The counterpart ZStack slice looks both similar and differ-
ent. One can find a match between the slices only where a fea-
tured object does exist in the ZStack and thus appears in focus in
the FS (c.f. Figure 1 (d)). We therefore need a tool to analyze
the FS as an input and segment the areas where the intensity is
confined and maximized.

We make use of a deep learning model, based on the U-Net
architecture [14]. Such network architecture has been widely used
for image segmentation tasks especially in the field of biomedical
images. Some of its main advantages are the minimal amount of
data required for training and the high segmentation precision.

Our ultimate goal is to be able to segment the volume in the
form of ZStack from captured EIs, the so-called sparsely-sampled
LF (SSLF), as illustrated in the bottom half of Figure 2. Our
hypothesis is that the DSLF is the instrumental intermediary for
generating FS as the machine learning model input and has to
be reconstructed from SSLF first. To test this hypothesis, in this

(a) (b) (c)
Figure 3: Preview of the scenes used for test: (a) Cells. (b) Korona
Particles. (c) Pili.

Figure 4: Train Loss for H Training based on different Batch size.

work we utilize synthetic imagery. Specifically, we use Blender,
to render both the Ground Truth (GT) ZScans of specimens and
the corresponding DSLFs (top half of Figure 2).

An FS, reconstructed from the corresponding DSLF, is used
as input for three ML models based on the U-Net architecture.
The Frontal model uses the FS slices (u,v) along p axis, while
the Horizontal and Vertical models use (v, p) slices along u, and
(u, p) slices along v correspondingly. The three models give rise
to three ZStacks, which are then merged into a single segmented
volume.

While our main goal in this work is to test the DSLF poten-
tial for reconstructing ZStack from computed FS, in practice one
would get an SSLF in the form of a limited number of EIs. In our
simulations, SSLFs are obtained by decimating the DSLFs gener-
ated in Blender. The desired DSLFs are then reconstructed using
the tool introduced in [15].

Experiments
The network has been trained using a synthetic dataset cre-

ated in Blender that mimics the FIMic capture process. The
dataset includes 8 scenes as described in [16]. For each scene, the
GT ZStack is composed of 201 images and the DSLF, to be used
for reconstructing the FS, is composed of 51x51 images. Three
of the eight scenes have been used for testing and are presented in
Figure 3. The Cells scene comprises multiple objects of medium
thickness; the Korona Particles scene contains a high amount of
small particles characteristic for coronaviruses; and the Pili scene
has Bacteria objects with multiple tentacles.

The U-Net architecture follows the one in [17]. It is im-
plemented in Pytorch and makes use of the Weight and Biases
developer tool for ML monitoring [18].

The experiments have been set as follows:

• Optimizer: ADAMAX
• Scheduler: StepLR (step size = 20, gamma = 0.1)
• Loss: CrossEntropy + Dice Coefficient
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Figure 5: Validation Dice result for H training (first 35500 steps).

Our training has been coping with the limited amount of data
we have. Following approaches originally used for time series
analysis, we leave as less data as possible for testing, and use
the rest of data for training and validation [19]. More specifi-
cally, each time we leave one scene for testing and use the data of
the remaining seven scenes for training and validation in a corre-
sponding proportion 80% to 20%. We train three U-NET based
machine learning models, for three data arrangements denoted as
Horizontal (H), Vertical (V) and Frontal (F) training. We repeat
the training for leaving different test scenes in order to test the
consistency and stability of the trained models.

Most U-Net based models have been trained with a batch
size equal to one. We found that this selection is suboptimal for
our 3D-structure case and performed some tests to find out the
best batch size. We illustrate our findings with the H training and
the Cells dataset for testing. Grouping samples and increasing
the batch size leads to less training steps. We compare both the
training loss and the validation loss based on a maximum value
of 35500 steps. As seen in Figure 4, a batch size of one yields
an unstable training loss, while increasing the batch size reduces
the fluctuations. The curve of the validation process shows that
a training performed with a batch size of 1 stays below the score
of 0.6 for the Validation Dice (Figure 5) while a higher batch size
brings a score higher that 0.8 and with much lower fluctuations.

To optimize the learning rate (LR), a stepLR optimizer set to
20 has been used. We illustrate the empirical observations for the
case of F training and Cells test dataset for the first 50 epochs.
The 3 starting values adopted for the different LR are: 0.001,
0.0001, and 0.00001. A low starting LR produces a train loss
which remains above 0.4 score (Figure 6). Using a high starting
LR produces too many fluctuations and therefore does not stabi-
lize the training. The results are reflected also in the validation
curve (Figure 7) where the lower LR quickly stabilizes to a very
low validation dice score, while the medium and higher value are
still more unstable in the first 50 values but reach a higher result.
An initial, rather moderate, LR of 0.0001 should be favored.

Results
We present results in terms of several metrics aimed at quan-

tifying the segmentation quality. The True Positive (TP) met-
ric represents the ratio between the number of correctly marked
pixels (marked by 1) and the total number of pixels. Its coun-
terpart is the True Negative (TN), which represents the ratio be-
tween the correct no-object pixels (marked by 0) and the total
number of pixels. The sum of TP and TN, denoted by TruePix-
els, is the total number of all correctly marked pixels (both ob-
ject and no object). The False Positive (FP) metric represents

Figure 6: Train Loss for F Training.

Figure 7: Validation dice per epoch for F Training.

the ratio between the total number of predicted 1, when the ac-
tual value should be 0, and the total number of pixels. Like-
wise, wrongly predicted 0’s versus all pixels is denoted by False
Negative (FN). The sum of FP and FN, denoted by FalsePixels,
gives the total of all incorrectly predicted pixels versus all pix-
els: FalsePixels = 1− TruePixels. Precision and Recall (True
Positive Rate (TPR)) metrics are defined as follows: Precision =

T P
T P+FP ; Recall = TruePositiveRate(T PR) = T P

P . Subsequently,
the True Negative Rate (TNR) is T N

N , the False Positive Rate
(FPR) is FP

N , and the False Negative Rate (FNR) is FN
P .

The results for the test scene Cells are summarized in Ta-
ble 1. Each row lists results per neural network and their combi-
nation. One can notice that the H (or V) networks perform better
in terms of detecting ’positive’ pixels. However, relying on either
H or V is very much scene specific, as it depends on the scene
composition. This justifies the use of both networks. On the other
hand, the F network is more capable of detecting ’negative’ pix-
els and reaches the best values for the TNR (and by consequence
the lowest for FPR). This is especially important for removing
false positives detected by the other networks. We illustrate this
qualitatively in Figure 9, which shows a fragment of the segmen-
tation result for the scene Cells. While the H network detects
correctly the bulk of ’positive’ pixels, it also falsely marks pixels
of no objects as object pixels. The F network fails to detect all
object pixels however there are no false positives. The merged
result from the three networks is a compromise with effectively
removed outliers and correctly detected object pixels.

Table 2 summarizes the results for two other test scenes,
namely Korona Particles and Pili. The results for the former are
similar to these for Cells. However, the results for the latter are
considerably worse. The scene contains fairly wide areas with
connected object pixels, which is in contrast with the other test
scenes characterized by small objects at different depths. Such
wide areas do not manifest as bright (in-focus) spots in the focal
stack slices and correspondignly are not detected accurately. The
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Figure 8: Overlap of GT area over training image.

effect is illustrated in Figure 8. It shows the GT slice overlapped
by the slice to be segmented. The latter contains ’shadowed’ ar-
eas (c.f. the upper left corner of the figure), which confuse the
ML model. The results is also visible in Figure 10 (f) and (g).

The so-far presented results are for DSLFs directly rendered
from the synthetic scenes, i.e. ’ideal’ DSLFs. In practice, the
DSLF cannot be sensed due to the requirement for less than 1
pixel disparity between neighbouring views, which in turn re-
quires very high angular sampling. The DSLF has to be recon-
structed from sparsely sampled angular views instead. Consider
the example of the Cells scene. Its DSLF is represented by 51x51
views, while an FIMic would be set by much lower number of
angular views. To quantify the performance of our segmentation
approach for the real case, we downsampled the true DSLF to
5x5 views and subsequently reconstructed the DSLF and got the
FS out of it [5]. The reconstructed FS was then used as input to
the three NNs. The results are given in the last row of Table 2 and
in Figure 10 (b).

Conclusion
In this paper, we presented an approach for volumetric seg-

mentation of 3D samples captured by an LF microscope with
the FIMic optical setting. By means of simulations with syn-
thetic scenes, we investigated the possibility to segment the ZS-
tack given the FS as reconstructed from the DSLF of the sensed
scene. We made use of three difference 2D slice directions of
the FS and trained the corresponding ML models. We further
tested the proposed framework on an SSLF, assuming this would
be the real case of FIMic-based LF sensing. Our results are quite
encouraging especially in terms of Precision. While the Recall
values are not equally high, we believe this can be improved by
extending the training dataset.
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(a) (b) (c) (d)

Figure 9: Fragment of segmentation results for scene Cells. (a) H-network output; (b) F-network output; (c) merged HVF output; (d) GT.

TP TN FP FN TruePixels FalsePixels Precision Recall TNR FNR FPR

H 0.4856 99.2486 0.0619 0.2038 99.7343 0.2657 0.8869 0.7044 0.9994 0.2956 0.0006

V 0.4344 99.2609 0.0496 0.2550 99.6953 0.3047 0.8975 0.6301 0.9995 0.3699 0.0005

F 0.3254 99.3002 0.0103 0.3640 99.6256 0.3744 0.9692 0.4720 0.9999 0.5280 0.0001

H+V+F 0.4342 99.2944 0.0161 0.2552 99.7286 0.2714 0.9642 0.6298 0.9998 0.3702 0.0002

Table 1: Results for test related to scene Cells

TP TN FP FN TruePixels FalsePixels Precision Recall TNR FNR FPR

Cells 0.4342 99.2944 0.0161 0.2552 99.7286 0.2714 0.9642 0.6298 0.9998 0.3702 0.0002

Korona P. 0.1184 99.7913 0.0131 0.0773 99.9096 0.0904 0.9006 0.6050 0.9999 0.3950 0.0001

Pili 0.5642 97.5746 0.1318 1.7294 98.1388 1.8612 0.8106 0.2460 0.9987 0.7540 0.0013

Cells Rec. 0.3328 99.2958 0.0147 0.3566 99.6256 0.3714 0.9576 0.4827 0.9999 0.5173 0.0001

Table 2: H+V+F results comparison for different scenes.
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Robert Bregović received the MSc degree in electrical engineering
from the University of Zagreb (1998), Croatia, and the Dr. Sc. (Tech.)
degree in information technology from the Tampere University of Technol-

ogy (2003), Finland. Since 1998, he is with Tampere University (former
Tampere University of Technology), where he currently works as a Project
Manager. His research interests include the design and implementation
of digital filters and filterbanks, multirate signal processing, and topics
related to acquisition, processing, modeling, and visualization of 3D con-
tent.

Atanas Gotchev received the M.Sc. degrees in radio and television
engineering (1990) and applied mathematics (1992), the Ph.D. degree in
telecommunications from the Technical University of Sofia (1996), and the
D.Sc.(Tech.) degree in information technologies from the Tampere Univer-
sity of Technology (2003). He is currently Professor of Signal Processing
with the Tampere University. His recent work concentrates on developing
methods for multi-sensor 3D scene capture, and light field imaging and
display.

IS&T International Symposium on Electronic Imaging 2022
Image Processing: Algorithms and Systems XX 356-5
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(d) (e)

(f) (g)
Figure 10: Volumetric reconstruction comparison for different scenes. (a) H+V+F test for Cells. (b) H+V+F test for Cells after recon-
struction. (c) GT for Cells. (d) H+V+F test for Korona Particles. (e) GT for Korona Particles. (f) H+V+F for Pili. (g) GT for Pili.
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