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Abstract
Visual quality is important for remote sensing data presented

as grayscale, color or pseudo-color images. Although several
visual quality metrics (VQMs) have been used to characterize such
data, only a limited analysis of their applicability in remote
sensing applications has been done so far. In this paper, we study
correlation factors for a wide set of VQMs for color images with
distortion types typical for remote sensing. It is demonstrated that
there are many metrics that have very high Spearman rank order
correlation, e.g. PSNR-based and SSIM-based metrics. Meanwhile,
there are also metrics that are practically uncorrelated with others.
A detailed analysis of VQMs that have the largest SROCC values
and belong to different groups is presented in this paper.

Keywords: visual quality, remote sensing image, correlation
analysis, neural network

1. Introduction
Remote sensing (RS) imaging is widely used nowadays in
numerous applications, such as ecology, forestry, agriculture,
etc. [1, 2]. In many practical situations, acquired RS images
are noisy and/or subject to other types of distortions (due to
lossy compression, blur, etc.) [3-5]. These distortions can be
inevitable due to the imaging system principle of operation
(e.g., speckle in multichannel radar images [4, 6]) or the
necessity to transform RS data in one or another way before
visualization and final processing (e.g., to compress images
before their transmission from satellites to on-land centers
of RS data collection, processing and dissemination [7] or to
carry out image registration and interpolation [8]).

RS images are often visualized and analyzed by experts
[9. 10]. Therefore, image visual quality is of high
importance, i.e. adequate VQMs should be used to
characterize the visual quality of RS images.

Many VQMs of RS images have been proposed and
analyzed in literature [11-15], both full-reference and no-
reference ones. Meanwhile, there is no commonly accepted
universal metric. This is due to many reasons. First, there
are numerous types of RS images including single channel
ones (similar to grayscale images), color or three-channel
images and multi- and hyperspectral images, for which
special ways of data visualization (e.g., in pseudo-colors)
are employed. It is quite probable that different VQMs are
optimal or quasi-optimal depending on applications. Second,
depending on RS image type, different types of distortions
are dominant. For example, speckle which a specific type of

multiplicative noise-like phenomenon is the main factor
which degrades quality of synthetic aperture radar (SAR)
images [3, 6]. Spatially correlated noise can appear after
geometric transformations used in image co-registration.
Third, there is no established strict connection between the
quality of RS images and the efficiency of solving further
tasks of data processing, such as classification, object
detection, etc. Fourth, there are no databases of distorted RS
images that can be employed in the metric analysis and
design.

If there is no commonly accepted visual quality metric,
it is worth analyzing an applicability of the existing metrics
and designing of new metrics [15]. Such an approach has
been carried out in [15]. The database TID2013 [16] has
been exploited – the color images with distortion types
typical for remote sensing applications are extracted from
this database.

Although such an approach has many limitations, it has
allowed to find the best metrics according to their rank
correlation with mean opinion scores (MOS). Note that none
of the elementary metrics produces SROCC larger than 0.9
for all types of distortions present in TID2013. Due to this,
one way is to use two or more elementary metrics in the
analysis. However, it is worth using such metrics that have
the correlation not too close to unity, i.e. metrics that differ
from each other in their properties.

The combined metrics based on the trained neural
network have been designed in [15]. In such a design, to
keep the simplicity of a quality assessment, it is reasonable
to apply a limited number of input elementary metrics. They
must be efficient enough and, simultaneously,
complementary with respect to each other, i.e. their
correlation should not be high. Thus, one needs to have a
priori information on cross-correlation properties of these
metrics.

The main goal of this paper is to study properties of
VQMs for RS applications.

Section 2 describes the results of preliminary analysis of
VQM properties. Correlation analysis data for the
considered VQMs are given in Section 3. The results of
neural network VQM design are presented in Section 4.
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2. Preliminary analysis
Let us recall the main results of the analysis carried out

in [15]. The database TID2013 contains 25 test color images
with 24 types and 5 levels of distortions. We were interested
in two subsets of distortion types. The first one is called
“Noise” and includes images with the following distortion
types: Additive Gaussian noise (#1), Additive noise in color
components (#2), Spatially correlated noise (#3), Masked
noise (#4), High frequency noise (#5), Impulse noise (#6),
Quantization noise (#7), Gaussian blur (#8), Image
denoising (#9), Multiplicative Gaussian noise (#19), Lossy
compression of noisy images (#21). Another subset, called
“Actual”, includes images with distortions ##1, 3, 4, 5, 6, 8,
9, 10 (JPEG compression), 11 (JPEG2000 compression), 19,
and 21. In addition, it has also been proposed in [15] to
consider jointly images for both subsets.

Table 1. SROCC values for 22 best metrics (according to the
results for “Noise&Actual” subset)

Metric All dis-
tortions Noise Actual Noise &

Actual
MDSI 0.8897 0.9275 0.9387 0.9374
CVSSI 0.8090 0.9248 0.9350 0.9341
MCSD 0.8045 0.9224 0.9326 0.9323
PSNRHA 0.8198 0.9230 0.9388 0.9322
GMSD 0.8004 0.9211 0.9314 0.9318
PSNRHMAm 0.8541 0.9221 0.9387 0.9315
PSIM 0.8926 0.9189 0.9309 0.9303
PSNRHAy 0.7794 0.9184 0.9272 0.9275
PSNRHVS 0.6536 0.9172 0.9257 0.9263
PSNRHMA 0.8137 0.9151 0.9343 0.9250
IGM 0.8023 0.9099 0.9220 0.9227
PSNRHMAy 0.7570 0.9107 0.9209 0.9226
VSI 0.8967 0.9101 0.9258 0.9218
SR-SIM 0.8076 0.9070 0.9211 0.9206
HaarPSI 0.8730 0.9063 0.9168 0.9190
ADM 0.7861 0.9113 0.9201 0.9189
PSNRHVSM 0.6246 0.9061 0.9175 0.9188
FSIMc 0.8510 0.9022 0.9150 0.9164
ADD_GSIM 0.8310 0.9023 0.9151 0.9159
IQM2 0.7955 0.8995 0.9103 0.9122
ADD_SSIM 0.8023 0.9008 0.9119 0.9120
FSIM 0.8011 0.8969 0.9108 0.9117

The SROCC values for all types of distortions and the
considered subsets are presented in Table 1. The data are
given for 22 elementary metrics that produce SROCC>0.9
for the subset “Noise&Actual” (in general, we have
considered 50 elementary metrics, the references can be
found in [17]).

Analysis of data given in Table 1 shows the following.
First, several elementary metrics provide approximately the
same efficiency of characterizing the visual quality of three-
channel images with distortions types that take place in RS
images. Second, these elementary metrics belong to
different groups (families), such as PSNR-based metrics (as
PSNRHA and PSNRHVSM) and SSIM-based metrics (as

ADD SIM and FSIM). Meanwhile, there are also
elementary metrics that do not belong to these families. This
means that, on one hand, there are many efficient
elementary metrics (although none of them is perfect) and,
on the other hand, they are based on different principles and,
thus, may complement each other. This ability has been, in
fact, proven by the results of the combined metric design in
[15]. It has been shown that a trained neural network that
uses about 20 elementary metrics as inputs can provide
SROCC for the subset “Noise&Actual” of about 0.965, i.e.
sufficiently higher than SROCC of the best elementary
metric.

Another problem with elementary metrics and image
quality characterization is that the ranges of metric value
variation are different. Some metrics are expressed in dB
and vary in the wide limits, the others vary in the limits
from 0 to 1. Most elementary metrics increase if the
distortion level increases although there are also other cases.
A linearization of MOS is often used to compare the
metric’s performance [15]. An example of such a
linearization is given in Fig. 1. The scatterplot for each
elementary metric shows pairs of metric value (after
linearization) vs MOS for each considered test image,
distortion type and level.

Figure 1. Scatter plot illustrating the correlation of four metrics (after
linearization) vs true MOS (range 0-7) for TID2013 Noise&Actual subset.

Ideally, this should be a pure linear relation Linearized
metric=MOS or, at least, a set of points placed closely and
compactly to this line. However, as one can see, many
PSNR points are placed far from this line. Some obvious
outliers are observed even for the best elementary visual
quality metrics MDSI and CVSSI. The NN-based combined
metric provides higher compactness of the scatter-plot
points. Thus, the preliminary analysis clearly indicated a
necessity in correlation analysis of the elementary VQMs.

3. Correlation analysis results
We start our analysis from considering correlations

between the conventional PSNR and other elementary
metrics. Considering the non-linearity of all metrics,
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SROCC values have been determined to minimize its
influence. They are presented in Fig. 2. Data analysis shows
the following. First, there are visual quality metrics which
are highly correlated with PSNR (SROCC values exceed
0.8). These are mainly PSNR-based metrics (PSNRHVS,
PSNR-HVSM, WSNR, and some others). Most other
metrics (in particular, majority of SSIM-based ones) have
rank correlation with PSNR about 0.7. This also relates to
the top three metrics in Table 1 although SROCC for them
is about -0.7 (this is because all three metrics reduce if the
quality improves). Meanwhile, there are also other metrics
such as WASH (that has SROCC about 0.3). Note that this
metric has very poor performance for the subset
Noise&Actual.

Next, we consider the correlation properties for metrics
belonging to the same family. Table 2 presents data for a set
of PSNR-based metrics. Data in Table 2 (as well as later in
Tables 3 and 4) are put in the descending order of
elementary metric SROCC with MOS.

Analysis of the results shows the following. First, for
all PSNR-based metrics, their correlation with PSNR is high
– the smallest SROCC is equal to 0.79 for the WSNR and
VSNR. Second, SROCC values are also much higher for all
pairs of visual quality metrics – all other pairs of metrics
show greater results than mentioned ones. Third, there are
pairs of metrics for which SROCC exceeds 0.9: WSNR and
PSNRHVS, WSNR and PSNRHVSM, PSNRHVS and
PSNRHVSM, PSNRHA and PSNRHMA, etc. This means
that it is possible to analyze such metrics jointly but there is
no expectation to benefit from their joint use. If one deals
with a quality characterization for color or three-channel
images, it seems reasonable to use PSNRHA that has high
SROCC values for the considered subsets of distortions and
large SROCC values for other PSNR-based metrics.

Table 3 shows data for the SSIM-based metric family.
The analysis demonstrates that, first, the only metric for
which its SROCC with SSIM is smaller than 0.7 is
CWSSIM (0.67). Second, the only metric for which its
SROCC with SSIM exceeds 0.9 is MSSIM. Other SSIM-

based metrics have a high rank correlation with SSIM –
mainly within 0.8 - 0.9.

One more conclusion is that all SSIM-based metrics
are highly correlated. In particular, for the metric FSIMc
(color version of FSIM), all SROCC values exceed 0.83,
most SROCC values exceed 0.9 and the SROCC for FSIMc
and FSIM is practically equal to unity (because of this, data
for FSIM are not given in Table 3). Similar properties take
place for the metric PSIM. Keeping in mind high values of
SROCC for these metrics and MOS (see data in Table 1), it
is reasonable to use either FSIMc or PSIM metrics from the
considered family.

Thus, we have left PSNRHA, FSIMc, and PSIM for
further analysis and added good metrics from Table 1 (those
ones that produce SROCC with MOS larger than 0.9). The
obtained SROCC values are given in Table 4. In analysis,
we ignore signs of SROCC since they show only does a
metric increase or decrease if image quality improves. Since
all the metrics presented in Table 4 are “good”, they have
high values of SROCC between each other. For example,
the absolute value of SROCC for MDSI and other metrics is
not smaller than 0.963. SROCC values for PSNRHA and
other metrics exceed 0.94.

Another observation is that there are pairs of
elementary metrics for which SROCC approaches unity.
This holds for CVSSI and MCSD, GMSD and MCSD.
Taking this into account, we propose to leave for further
analysis and joint use the following seven elementary
metrics:

1) MDSI, since it provides the largest MOS for the
considered types of distortions (see data in Table 1 or in
Table 4);

2) PSNRHA, as the best PSNR-based metric that does
not have too high correlations with other metrics;

3) GMSD, as a representation of the pair GMSD and
MCSD having very high correlation;

4) PSIM, as one of the best SSIM-based metrics that
does not have too high correlation with others in Table 4;

Figure 2. Metrics’ SROCC with PSNR
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Table 2. SROCC values for PSNR-based metrics

## Metric MOS (NA) PSNR HA PSNR
HMAm PSNR HVS PSNR

HMA
PSNR
HVSM WSNR VSNR PSNR MSE

1 PSNRHA 0.93 1 1 0.97 0.99 0.96 0.93 0.91 0.89 -0.89
2 PSNRHMAm 0.93 1 1 0.97 0.99 0.96 0.93 0.91 0.88 -0.88
3 PSNRHVS 0.93 0.97 0.97 1 0.96 0.98 0.95 0.93 0.90 -0.90
4 PSNRHMA 0.93 0.99 0.99 0.96 1 0.97 0.94 0.91 0.83 -0.83
5 PSNRHVSM 0.92 0.96 0.96 0.98 0.97 1 0.97 0.93 0.83 -0.83
6 WSNR 0.90 0.93 0.93 0.95 0.94 0.97 1 0.90 0.79 -0.79
7 VSNR 0.88 0.91 0.91 0.93 0.91 0.93 0.90 1 0.79 -0.79
8 PSNR 0.83 0.89 0.88 0.90 0.83 0.83 0.79 0.79 1 -1
9 MSE -0.83 -0.89 -0.88 -0.90 -0.83 -0.83 -0.79 -0.79 -1 1

Table 3. SROCC values for SSIM-based metrics

## Metric MOS
(NA)

PSI
M SRSIM FSIM

c
ADD
SSIM

IW
SSIM

CS
SIM

MS
SIM

RF
SIM

ES
SIM

RV
SIM

CW
SSIM SSIM

1 PSIM 0.93 1 0.98 0.98 0.96 0.95 0.97 0.94 0.93 0.94 0.91 0.84 0.80
2 SRSIM 0.92 0.98 1 0.99 0.97 0.97 0.97 0.96 0.95 0.93 0.95 0.84 0.85
3 FSIMc 0.92 0.98 0.99 1 0.97 0.98 0.98 0.97 0.93 0.94 0.95 0.83 0.85
4 ADD SSIM 0.91 0.96 0.97 0.97 1 0.98 0.96 0.97 0.91 0.91 0.91 0.81 0.87
5 IWSSIM 0.89 0.95 0.97 0.98 0.98 1 0.97 0.99 0.92 0.92 0.95 0.81 0.89
6 CSSIM 0.89 0.97 0.97 0.98 0.96 0.97 1 0.96 0.90 0.95 0.91 0.82 0.80
7 MSSIM 0.89 0.94 0.96 0.97 0.97 0.99 0.96 1 0.91 0.93 0.94 0.79 0.92
8 RFSIM 0.89 0.93 0.95 0.93 0.91 0.92 0.90 0.91 1 0.87 0.95 0.80 0.83
9 ESSIM 0.86 0.94 0.93 0.94 0.91 0.92 0.95 0.93 0.87 1 0.89 0.83 0.81
10 RVSIM 0.84 0.91 0.95 0.95 0.91 0.95 0.91 0.94 0.95 0.89 1 0.78 0.88
11 CWSSIM 0.81 0.84 0.84 0.83 0.81 0.81 0.82 0.79 0.80 0.83 0.78 1 0.67
12 SSIM 0.78 0.80 0.85 0.85 0.87 0.89 0.80 0.92 0.83 0.81 0.88 0.67 1

Table 4. SROCC values for several good metrics

## Metric MOS
(NA) MDSI CVSSI PSNR

HA GMSD MCSD PSIM IGM VSI Haar
PSI FSIMc ADD

GSIM
1 MDSI -0.937 1 0.976 -0.963 0.978 0.975 -0.985 -0.972 -0.988 -0.974 -0.985 -0.977
2 CVSSI -0.934 0.976 1 -0.943 0.987 0.992 -0.974 -0.961 -0.96 -0.966 -0.972 -0.977
3 PSNRHA 0.932 -0.963 -0.943 1 -0.943 -0.945 0.959 0.951 0.966 0.965 0.952 0.941
4 GMSD -0.932 0.978 0.987 -0.943 1 0.994 -0.983 -0.968 -0.963 -0.972 -0.975 -0.982
5 MCSD -0.932 0.975 0.992 -0.945 0.994 1 -0.981 -0.966 -0.958 -0.973 -0.973 -0.985
6 PSIM 0.93 -0.985 -0.974 0.959 -0.983 -0.981 1 0.974 0.978 0.98 0.983 0.983
7 IGM 0.923 -0.972 -0.961 0.951 -0.968 -0.966 0.974 1 0.964 0.977 0.979 0.97
8 VSI 0.922 -0.988 -0.96 0.966 -0.963 -0.958 0.978 0.964 1 0.972 0.983 0.966
9 HaarPSI 0.919 -0.974 -0.966 0.965 -0.972 -0.973 0.98 0.977 0.972 1 0.986 0.974
10 FSIMc 0.916 -0.985 -0.972 0.952 -0.975 -0.973 0.983 0.979 0.983 0.986 1 0.983
11 ADD GSIM 0.916 -0.977 -0.977 0.941 -0.982 -0.985 0.983 0.97 0.966 0.974 0.983 1

5) VSI that does not have too high correlation with other
metrics (Table 4);

6) HaarPSI that produces a quite high MOS (Table 1)
but is not too highly correlated with others;

7) FSIMc that is one more good representation of
SSIM-based metrics, but which is not too highly correlated
with others.

4. Neural network based metrics
The use of neural networks (NN) is one of the possible

ways to unite (combine, process jointly) a set of elementary
metrics. Its performance depends on several factors: number
of inputs, NN structure, neuron activation function, learning
strategy, etc. One more factor is a preliminary processing of
elementary metrics, particularly whether they are linearized
or not? The results presented in [15] demonstrate the
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influence of most of these factors. Our task here is not to
carry out such a wide study. Instead, we would like to see
the results of combining a fixed number of elementary
metrics (in our case, seven) based on the performed analysis
of their correlation properties.

To study the influence of the NN structure, we have
analyzed six variants described in Table 5 in the column
“Layers” (we give numbers of neurons in the hidden layers).
Configuration of the layers of neural networks is determined
based on the amount of available input data and the
complexity of the task.

Data preparation was performed based on the results
obtained in [15]. For example, fitting is not used for the
selected set of elementary metrics, since the task of data
normalization is effectively performed by choosing a
sigmoid activation function.

A feed-forward network with two or three hidden layers
was selected, as it is shown in Table 5. To ensure the
maximum training accuracy, distorted images were
dynamically distributed to the learning and training subsets
in a ratio of 70% to 30%, 50 networks were trained for each
configuration. The best results according to SROCC values
obtained for them are shown in Table 5. The number of
epochs is determined dynamically by a number of maximum
validation failures during a decreasing backpropagation
error.

Table 5. Data for the designed neural network based metrics
with seven inputs

## Layers SROCC (train) SROCC (test)
1 [7, 4] 0.9496 0.9514
2 [7, 4, 1] 0.9499 0.9516
3 [2, 2] 0.9483 0.9496
4 [4, 4] 0.9507 0.9494
5 [7, 7] 0.9460 0.9559
6 [7, 7, 7] 0.9493 0.9487

Analysis of data in Table 5 shows that there is a certain
improvement of the combined metrics’ performance
compared to the best elementary metrics. There is no much
difference between NNs with different structure, although
variant 2 seems to be quantitatively the best. Meanwhile, the
achieved SROCC values (about 0.95) are anyway slightly
worse (smaller) than those reached in [15] for the larger
numbers of elementary metrics (about 20) used as NN
inputs. So, a trade-off between NN efficiency and simplicity
can be found depending on the priority of requirements in
practice.

Conclusions
An analysis of visual quality metrics with application to

images with distortions typical for remote sensing
applications is carried out. It is shown that there are many
metrics that perform well. Correlation properties for these
metrics have been analyzed using SROCC. It is shown that
SROCC is high for many possible pairs of metrics.

This has allowed recommending the best metrics for
PSNR and SSIM based families. It is also shown that the
neural networks that use seven elementary metrics as inputs
can produce SROCC with MOS about 0.95, i.e. at the very
high level.
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