
Distribution Statement A: Approved for Public Release

Training Decision Trees to Guide Feature Selection for Infrared

Image Pre-Screening Algorithms

Dawne M. Deaver, Nader Namazi, Department of Electrical Engineering and Computer Science, The Catholic University of America,

Washington, D.C., USA

Abstract

This research explores a fresh approach to the selection and

weighting of classical image features for infrared object detection

and target-like clutter rejection. Traditional statistical techniques

are used to calculate individual features, while modern supervised

machine learning techniques are used to rank-order the predictive-

value of each feature. This paper describes the use of Decision

Trees to determine which features have the highest value in

prediction of the correct binary target/non-target class. This work

is unique in that it is focused on infrared imagery and exploits

interpretable machine learning techniques for the selection of

hand-crafted features integrated into a pre-screening algorithm.

Background
The US Army uses infrared (IR) sensors to detect and classify

enemy threats and has long sought to field algorithms which are

effective at aiding Soldiers in target acquisition. Algorithm-

assisted target acquisition tasks are accomplished in multiple

stages: (1) a pre-screener to locate regions of interest using the

sensor’s low resolution, wide Field of View (FOV) and (2) a

classifier to further discriminate objects using the sensor’s high

resolution, narrow FOV. This research focuses on improved

methods of choosing image features for a pre-screener that do not

require processing with a neural network.

Pre-screening algorithms operating in midwave and longwave

infrared (IR) imaging wavebands enable day/night computer-aided

target acquisition by rapidly separating wide area scenes into

“target” and “non-target” regions. Early detection algorithms, such

as the “Scale-Insensitive Detection Algorithm for FLIR Imagery”

published by Der, et al. of the Army Research Laboratory (ARL)

[1], use a double-window sub-image for calculating traditional

image-based features to locate targets in IR imagery. ARL

researchers led by Chan later published a multi-stage IR target

detector [2], which added an Eigenspace Multi-Layer Perceptron

(EIGMLP) to separate clutter from real targets, and finally the

“Evidence Integrator” which combined the output of EIGMLP

with intermediate feature values from the initial detector. Young,

et al., [3] proposed the use of Eigenspace Separation Transforms

(EST) and Principal Components Analysis (PCA) applied to

gradient vectors to detect differences in the structural information

between low-contrast, short-to-medium range targets and non-

targets. Mehmood and Nasrabadi [4] proposed the “wavelet-RX”

algorithm, which uses two-dimensional wavelet transforms to

decompose the image into a number of sub-bands, followed by the

multi-variate RX Constant False Alarm Rate (CFAR) algorithm,

adopted from hyperspectral image processing.

A parallel research track grew out of studies of human search

performance using visual saliency models to locate objects of

interest in imagery. The benchmark work by Itti and Koch [5]

established an algorithm to model human visual attention, or

saliency, given a standard 3-color image. Their model defined

multi-scaled features based upon color, intensity, and orientation,

and linearly combined these to produce a saliency map. In 2013,

Chen, et al. [6] proposed an adaptation of the Itti and Koch

saliency model for use with static IR imagery. This technique

produces a saliency map as a weighted sum of spatial frequency,

orientation, and shape-based features. Borji, et al [7] provide an

excellent summary of the past two decades of salient object

detection techniques for color imagery.

The focus of this research is to combine previously defined

features from anomaly detection, image pre-screeners, and saliency

models and to establish a generalized methodology for feature

down-selection. This will result in an improved algorithm to pre-

screen infrared (IR) imagery for ground-based objects of interest,

while maximizing target detections and minimizing the time

required to cover the search sector. The hypothesis is that

performance of traditional automated pre-screening algorithms can

be improved by incorporating visual saliency and a select subset of

possible IR image-based features.

Methodology
A database of publicly available infrared imagery with labeled

vehicles is used as input to a baseline Stationary Target Indicator

(STI) algorithm to produce a set of target and target-like Regions

of Interest (ROI). For each ROI, a set of pre-defined image feature

values are computed: 20 features from the baseline STI algorithm

and 60 features from the saliency (SAL) model of Itti and Koch.

Binary classification Decision Trees (DT) are trained and

optimized using 10-fold cross validation to fine-tune training

parameters for minimum misclassification error rates. The process

is repeated with three different subsets of features to determine the

predictive value of each feature, and provide a relative rank-

ordering of feature importance within the trained DTs. The

analysis provides an approach using supervised machine learning

to down-select and combine a set of available features to use for

improving a traditional pre-screening algorithm.

Feature Database Development

Infrared Imagery
The data for this analysis is a set of infrared imagery collected

by the U.S. Army is available for public distribution for use in

automated target recognition algorithm development [8].

Commonly referred to as the “DSIAC database”, it includes video

sequences of ten foreign military and civilian vehicles, as well as

ground truth providing frame-by-frame bounding box locations of

all vehicles in the scene. The present analysis uses all videos with

vehicles being slowly driven in a circle centered at ten discrete

ranges from 500 m to 5000 m. In order to reduce highly correlated

frame-to-frame target signature information available in the 30-Hz

source video, the video sequences are temporally down-sampled to

0.5-Hz prior to further processing. By doing so, each 1800-frame

video of a vehicle traversing the circular path is reduced to 30

IS&T International Symposium on Electronic Imaging 2022
Image Processing: Algorithms and Systems XX 346-1

https://doi.org/10.2352/EI.2022.34.10.IPAS-346
© 2022, Society for Imaging Science and Technology

frames, resulting in a snapshot of each vehicle at roughly 12 degree

aspect angle increments. For further description of the infrared

sensor and imagery, the reader is referred to the referenced User

Guide.[9]

Train/Test Set Partitioning
The vehicle data was split into training and testing sets by

assigning eight of the range bins to the training set, and the

remaining two to the test set. This partitioning scheme, shown in

Table 1, was deliberately chosen instead of a random partition in

order to reduce the correlation of the scene background between

training and training sets, given that all of the imagery is from a

common site.

Table 1 Training/Testing Set Partitioning

 Training Set Testing Set

Video

Sequences

123 videos 36 videos

Image Frames 3690 frames 1080 frames

Range Bins

(meters)

500, 1000, 1500, 2500, 3000,

3500, 4500, 5000

2000, 4000

Region of Interest Selection
For this analysis, a set of 80 engineered features (described in

the next section) are computed for regions in each image which

contain targets or target-like signatures. The ROIs are generated in

two ways. First, the baseline ARL pre-screener [1] , hereafter

generically denoted STI, is configured to report the top thirty (30)

most likely target ROIs per image frame, based on a rank order of

the declaration confidence score calculated by the algorithm.

Second, the resulting ROIs are compared to ground truth and

augmented to include bounding boxes for any true targets missed

by the STI. The ROI database is designed to contain all of the

actual targets along with a large number of the most challenging

target-like regions. A sample infrared image frame in Figure 1 is

overlaid with bounding boxes of the 30 most target-like regions

output from the STI algorithm.

Figure 1 Example infrared image frame overlaid with 30 ROIs from the
baseline STI prescreening algorithm. Pickup truck is near center of scene.

Table 2 summarizes the ROI count for targets (Class 1) and

non-targets (Class 0), along with the a priori probability of each

class being randomly selected in the training and testing sets.

While the vehicle type sample count within Class 1 is fairly

uniform (µtrn=414, σtrn=40, µtst=132, σtst=11), there is a large class

imbalance in Class 0 and Class 1 samples – roughly 23:1 ratio

between non-targets and targets.

Table 2 Region of interest number of samples and class priors

for training and testing sets

 Training Set ROIs Testing Set ROIs

Class 0 (Non-Target) N = 107,551

Pr(C0) = 0.9629

N = 30,588

Pr(C0) = 0.9629

Class 1 (Target) N = 4,140

Pr(C1) = 0.0371

N = 1,318

Pr(C1) = 0.0371

Feature Descriptions
This analysis uses engineered feature types drawn from two

different algorithms, both of which internally produce pixel level

Feature Maps. The “STI Features” are derived from a tailored

version (code revision ao18) of the ARL STI algorithm. The STI

uses a sliding double-window scheme in which the inner window

is sized to an expected target at an expected range, and the outer

window represents local background pixels. The feature types

include Local Extreme, two types of Contrast, Local Variance, and

Average Gradient. Each of the five feature types is calculated for

inner windows sized for two different target aspects (side-view and

front/rear view) at a single range gate, resulting in 10 pixel level

STI feature maps. The “SAL Features” are derived from the

orientation and intensity feature maps described in the Itti and

Koch saliency model. (Color feature maps were omitted due to

irrelevance to IR imagery.) When computed at six different spatial

scales, the four orientation maps and one intensity map result in 30

pixel level SAL feature maps. To compile the master feature

database, the average and maximum pixel values within the area of

each ROI are computed from the 40 pixel-level feature maps,

resulting in a total of 80 feature values for each candidate ROI.

Binary Decision Tree Classification Model
A classification decision tree (DT) is a supervised machine

learning method that splits the training data into subsets using the

available features in order to separate Class 1 from Class 0

samples. The data is split as many times as needed (up to N-1

nodes, where N is the number of samples) in order to predict the

true class of the input data. For this analysis, the decision tree

predictors are real, continuous-valued features, and the objective is

to assign a discrete binary class (target or non-target) to each

sample, where any civilian or military vehicle in the ROI is

considered a target belonging to Class 1, and all other ROIs belong

to Class 0. The objective of creating the binary decision trees is to

analyze the relative strength of each feature for an improved pre-

screening algorithm.

Decision Trees Trained on Feature Subsets – Default

Parameters
In the first experiment, three independent DT classifier

models were grown to compare the performance of each tree using

three feature subsets: STI, SAL, and ALL, where ALL includes

both STI and SAL feature sets. Each feature vector was scaled to a

346-2
IS&T International Symposium on Electronic Imaging 2022

Image Processing: Algorithms and Systems XX

zero-mean, unit variance distribution for all of the samples in the

training set.

The MATLAB Statistics and Machine Learning Toolbox [10]

function fitctree was used to build each DT Classifier. The split

criterion used Gini’s diversity index, with a maximum number of

splits to be one less than the total training samples.

The confusion matrices for each of the three DT classifiers,

when used to predict the classes for data in the Training Set and

Testing Set are shown in Figure 2 and Figure 3, respectively. The

percentages shown along the diagonals are correct predictions,

while the percentages shown on the off diagonals are incorrect

predictions. The first observation is that each DT classifier

performs significantly better on the Training Set than the Testing

Set, which is to be expected, since no explicit attempt was made in

the initial training process to avoid overtraining or to increase

generalization of the DT. A second observation is that the DT with

default training parameter settings performs best when using only

the STI features, and worst when using only the SAL features.

Third, all DT models are better at correctly predicting Class 0, the

non-target class then they are at predicting Class 1, the targets.

In addition to comparing confusion matrices, calculation of

the misclassification error is helpful in evaluating overall classifier

performance.

Figure 2 Training set confusion matrices for decision trees trained using
default parameter settings and three different subsets of features.

Figure 3 Testing set confusion matrices for decision trees trained using
default parameter settings and three different subsets of features.

DT Performance Metric: Misclassification Error

The misclassification error, L, given by Equation (1),

measures the inaccuracy of the predicted class, 𝑦�̂�, based on feature

data input, compared to the actual class, 𝑦𝑗 . Lower values

correspond to a better predictive model.

𝐿 = ∑ 𝑤𝑗𝐼{𝑦�̂� ≠ 𝑦𝑗}
𝑛
𝑗=1 , (1)

where, 𝑦�̂� is the predicted class of sample j. The sample weights,

𝑤𝑗 , are computed to ensure the contributions from each class

correspond to the prior class probability, and such that the sum

over all sample weights are normalized to 1. The operator I

produces a value of 1 for misclassified samples and a value of 0 for

correctly classified samples.

Table 3 shows the misclassification error for the three un-

optimized DT Classifier Models when computed with the Training

Set (“in-sample [IS] error”) and Testing Set (“out-of-sample

[OOS] error”). A low IS error does not imply good generalization

of the decision tree on the unseen test data, and therefore is not the

best metric to compare model performance. The values in the table

represent the decimal rate at which misclassifications (i.e. errors)

occur. For example, for the DT trained with STI features, the IS

misclassification rate is 0.6%, while the OOS misclassification rate

is 3.2%.

The class priors shown in Table 2 may be used as a

benchmark for the computed loss rates. Consider a classifier that

always predicts the majority class (in this case, Class 0) regardless

of feature value input. The misclassification rate for such a

majority-class predictor is equal to the Class 1 prior, or 0.0371.

With respect to the OOS misclassification error, only the STI-

feature-trained DT performs better than a majority-class predictor.

Table 3 IS and OOS misclassification error for decision trees

trained with 3 feature subsets using default training settings.

 Samples, N STI SAL ALL

Training

Set

111,691 LIS =

0.006

LIS =

0.005

LIS =

0.004

Testing

Set

 31,767 LOOS=

0.032

LOOS=

0.159

LOOS=

0.073

The following section will discuss the application of k-fold

cross validation to estimate the generalizability of the DT model

against unseen data without explicitly using the Testing Set.

K-Fold Cross-Validation

To perform cross-validation, the training set is randomly

partitioned into 10 folds. The MATLAB crossval function was

used to create 10 new model partitions, with each partition

successively trained on data in 9 out of the 10 folds. The data used

for training each partition are considered “in-fold” (IF)

observations, while the remaining fold is used to validate

classification performance with of “out-of-fold” (OOF)

observations. The predictive accuracy of the trained partitions was

then estimated using the kfoldloss function to predict the response

and misclassification error on the out-of-fold data.

Table 4 shows the IF and OOF misclassification errors for the

un-optimized DT trained on three feature subsets. Unsurprisingly,

the OOF misclassification errors resulting from the k-fold cross-

validation method are considerably worse than the IF

misclassification errors calculated when all of the data was used

for training a single DT. The cross-validation method provides a

better estimate of the generalizability of the DT model to

unobserved data.

Table 4 IF and OOF misclassification error for decision trees

trained with 3 feature subsets using default training settings.

 Samples, N STI SAL ALL

Training

Set

“In-fold”

111,691 LIF =

0.006

LIF =

0.005

LIF =

0.004

Training

Set

“Out-of-

fold”

Each Partition:

Trn= 100,522

Tst= 11,169

LOOF =

0.0275

LOOF =

0.0290

LOOF =

0.0213

IS&T International Symposium on Electronic Imaging 2022
Image Processing: Algorithms and Systems XX 346-3

Again, we can consider a comparison of the OOF

misclassification error with that of a majority-class predictor.

Unlike the performance against the Test Set (LOOS), the OOF

misclassification error (LOOF) for each of the three DT models

trained with 10-fold cross validation is slightly better than a

majority-class predictor, although still an order of magnitude

worse than the LIF metric calculated using the Training Set.

Note that by convention, data in the Testing Set is never used

in actual training of any of the Decision Tree models, whereas the

results of k-Fold Cross Validation are a surrogate used to estimate

the performance trends when the final DT is tested against unseen

data (i.e. the Testing Set.) The next step is to vary certain

parameters while training the DTs and use K-Fold Cross

Validation to evaluate how the parameter settings affect the OOF

misclassification rates. By doing so, optimal training parameters

can be found and used to train a final DT classifier.

Decision Tree Depth Parameter Optimization
Three training parameters control the depth and complexity of

the trained DT. These are MinLeafSize, MaxNumSplits, and

MinParentSize. Each of these parameters are individually varied

over range of values while performing k-fold cross validation to

evaluate the OOF misclassification rate. The parameter settings

found to yield the lowest misclassification rates for the three

feature sets will be used to retrain each tree for better

generalizability with the test set.

Figure 4 Out-of-fold misclassification rate for different values of the minimum
leaf size tree depth parameter.

The baseline (unoptimized) DT was trained using a default

minimum leaf size of 1, which means that the decision nodes can

continue to split until there is only a single sample at the lowest

level of the tree (i. e. the leaf.) As shown in Figure 4, the

minimum leaf size was sampled logarithmically between values of

1 and 100 and yielded the best overall misclassification rates at

MinLeafSize=16 for each of the three feature sets. This means that

with this data there is better predictive power in a decision tree that

requires at least 16 training observations at the lowest layer of the

tree, and implies that a tree that splits down to a single observation

at each leaf becomes overtrained for the test set, and does not

generalize as well to unseen data.

Figure 5 Out-of-fold misclassification rate for different values of the maximum
number of split tree depth parameter.

The maximum number of splits was sampled logarithmically

between 1000 and 100000, with the default being (Nsamples-1)

(111,690). As shown in Figure 5, a MaxNumSplit value of 1000

yields the best OOF misclassification error (LOOF) for two of the

three cross-validated models (i.e. STI and SAL). For the third

model (ALL), there is very little difference (delta = 0.0006)

between the value at 1000 and the minimum sampled. For the

optimized tree, the MaxNumSplit value will be set to 1000 for all

three re-trained DTs.

Figure 6 Out-of-fold misclassification rate for different values of the minimum
parent size tree depth parameter.

 The default setting for MinParentSize is 10. This means that

any decision node must have at least 10 training observations to

continue to split into classes. Out-of-fold misclassification rates

for MinParentSize sampled logarithmically at values between 10

and 1000 are plotted in Figure 6. Above a value of 100, all of the

OOF misclassification rates increased monotonically; however

there is no single optimal setting below 100 that minimizes the

LOOF for all three models. Note that when training a DT,

specifying both the MinLeafSize and MinParentSize could result in

a condition of over-specifying parameters (because a parent node

has two leaf nodes). The lowest value of MinParentSize is twice

the MinLeafSize specified. With a MinLeafSize of 16, the

MinParentSize used in retraining the DTs is 32.

346-4
IS&T International Symposium on Electronic Imaging 2022

Image Processing: Algorithms and Systems XX

Retrained DT with Optimal Parameter Set
Finally, using the set of optimal parameters for controlling the

tree depth, the three DTs are retrained twice more: (1) using all

available training data in order to compute the in-sample

misclassification rate, and (2) using 10-fold cross validation in

order to compute the out-of-fold misclassification rate. Table 5

shows key training parameters before and after the tree depth

parameter optimization.

Table 5 Decision Tree training settings before and after

optimization.

Training Parameter Non-Optimized Optimized

MaxSplits 111690 1000

MinLeafSize 1 16

MinParentSize 10 32

Evaluating the misclassification errors indicates that using the

optimal parameter set was somewhat detrimental to the in-sample

misclassification rate as listed in Table 6, as compared to using the

default parameter values (Table 4.) The LIS values are shown only

for completeness, since it is the LOOF calculated from the cross

validated models that provide insight as to the expected

performance on unseen data. Using the tailored parameter set very

minimally reduced the out-of-fold misclassification rate for all

three feature sets, as compared to using the default parameter

settings (Table 4.) The reductions, ranging from one-tenth to one-

half of a percent of misclassifications, are achieved with less

complex DT models.

Table 6 IS, OOF, and OOS misclassification error for decision

trees trained with 3 feature subsets using optimized training

settings.

 Samples, N STI SAL ALL

Training

Set

111,691 LIs=

0.005

LIs=

0.019

LIs=

0.013

10-fold

Cross

Validation

Per Partition:

Trn=100,522

Tst= 11,169

LOOF=

0.023

LOOF=

0.028

LOOF=

0.019

Testing

Set

 31,767 LOOS=

0.023

LOOS=

0.070

LOOS=

0.025

The Testing Set confusion matrices for each of the three DT

classifiers retrained with the optimal parameters are shown in

Figure 7Error! Reference source not found.. Compared to results

shown in Figure 3, using the optimized parameters to train the DT

was detrimental to performance against Class 1 (targets) while

beneficial to performance against Class 0 (non-targets) for all three

feature subsets. This is not a desirable result for the military use-

case, in which it is critical to find a high percentage of the regions

containing targets. Although the LOOF and LOOS metrics were

improved by using k-fold cross-validation to find optimal tree

depth training parameters, the misclassification error alone is

insufficient in determining whether the resulting model is better

suited to a specific task.

Figure 7 Testing set confusion matrices for decision trees trained using
optimized parameter settings and three different subsets of features.

Feature Ranking and Selection
Using each of the trained DTs, the predictor importance

values are estimated by summing changes in the risk due to splits

on every predictor and dividing the sum by the number of branch

nodes. Note that the predictors used in each DT correspond to the

STI, SAL, and ALL feature subsets that have been described.

Figure 8 shows the predictor importance values for the DT

trained using only the 20 STI features. The feature names are

listed down the y-axis, and identify the range gate (always gate 1),

the target box aspect (1 or 2), the feature number (1-5), and

whether the maximum or average inside the ROI was calculated.

The predictor importance values are shown for the DT trained with

the default tree depth parameter settings, as well as those that were

optimized. The specific features are ranked by predictor

importance using the default settings. It is notable that the highest

ranking STI feature (F_STI_gate01_aspect02_feat04_ave) is so

dominant on a logarithmic scale over all other STI features.

Figure 8 Predictor importance for DT trained using STI features. Features are
rank ordered using the results of the default training settings. All twenty of the
STI features are shown.

Figure 9 shows the predictor importance values for the DTs

trained using only the 60 SAL features. The feature names for

saliency indicate whether it is intensity-based (IFM) or orientation-

based (OFM). The orientation features are further coded by the

angle of orientation (000, 045, 090, and 135), which correspond to

vertical, horizontal, and two diagonal angles. Due to space

considerations, only the top 20 SAL features are shown in the plot.

Figure 10 shows the predictor importance values for the DTs

trained using all 80 available features, with the top 20 ranked

features shown on the plot. It is interesting to note that the ranking

of the combined feature set does trend with the rankings of the

STI-only and SAL-only decision trees, suggesting that, if one

IS&T International Symposium on Electronic Imaging 2022
Image Processing: Algorithms and Systems XX 346-5

wanted to calculate a fixed number of features, there may be value

in swapping some of the current STI features with specific saliency

features to create an improved pre-screening algorithm.

Figure 9 Predictor importance for DT trained using SAL features. Features

are rank ordered using the results of the default training settings. Only the top
twenty saliency features are shown.

Figure 10 Predictor importance for DT trained using ALL features. Features
are rank ordered using the results of the default training settings. Only the top
twenty amongst all the STI and SAL features are shown.

Conclusions
Using a significantly imbalanced training set to optimize the

training parameters for a decision tree caused the resulting

classification model to be tuned for high performance on the non-

target majority class, while sacrificing performance on the

minority target class, which is not desirable for use as a pre-

screener for a military target acquisition system. Future efforts

will explore methods of sampling the master database of

observations such that the number of target and non-target samples

are balanced. Methods could include randomly sampling the non-

target samples, or using the declaration confidence score during the

initial ROI selection to keep a smaller number of high-ranking

non-target samples. In either case, it is expected that using a

database with balanced classes while optimizing the decision tree

training parameters would have the desired effect of improving

performance on both classes, not just the majority class.

The feature ranking and selection process described in this

paper is one step in an overall approach to using supervised

learning techniques to improve the performance of more traditional

statistically-based pre-screening algorithms. Future efforts include

directly incorporating the most highly ranked features from the STI

and SAL feature sets into a new version of the baseline ARL STI

pre-screening algorithm. Performance of the improved pre-

screener will be evaluated against the baseline using standard

binary classifier metrics, including true and false positive rates, as

well as any changes in the detection confidence reported by the

algorithm.

References
[1] Der, S., Dwan, C., Chan, A., Kwon, H., Nasrabadi, N. (2001). Scale-

Insensitive Detection Algorithm for FLIR Imagery. ARL-TN-175,

Army Research Laboratory.

[2] Chan, A. L. (2003). Multistage infrared target detection. Optical

Engineering, 42(9), 2746. https://doi.org/10.1117/1.1593038.

[3] Young, S. S. (2004). Adaptive target detection in forward-looking

infrared imagery using the eigenspace separation transform and

principal component analysis. Optical Engineering, 43(8), 1767.

https://doi.org/10.1117/1.1768534.

[4] Mehmood, A. and Nasrabadi, N. M. (2010). Anomaly detection in

wavelet domain for long-wave FLIR imagery. Proc. of SPIE Vol.

7696, 76960S. https://doi.org/10.1117/12.850211.

[5] Itti, L., & Koch, C. (2000). A saliency-based search mechanism for

overt and covert shifts of visual attention. Vision Research, 40(10–

12), 1489–1506. https://doi.org/10.1016/S0042-6989(99)00163-
7.

[6] Chen, Y., Sang, N., & Dan, Z. (2013). A saliency-based approach to

detection of infrared target (T. Zhang & N. Sang, Eds.; p. 89180S).

https://doi.org/10.1117/12.2031336.

[7] Borji, A., Chen, MM., Hou, Q., Jiang, H., Li, J. (2019). Salient Object

Detection: A Survey. Computational Visual Media. 5, 117-150.
https://doi.org/10.1007/s41095-019-0149-9.

[8] Defense Systems Information Analysis Center,

https://dsiac.org/databases/atr-algorithm-development-image-

database/, Retrieved on 27 Dec 2021.

[9] “ATR Algorithm Development Image Database – Database Overview

and User Reference.” Version 1.49d, 9 July 2014.

[10] MATLAB. (2021). version 9.10, (R2021a), Natick, Massachusetts:

The MathWorks, Inc.

Author Biography
Dawne M. Deaver received a BS in physics from Loyola College (1994), an

MS in optics from University of Rochester (1996), and is working toward a

PhD at The Catholic University of America. Ms. Deaver is a civilian

employee at the U.S. Army Combat Capabilities Development Command,

specializing in the development and exploitation of electro-optic/infrared

imaging sensors and algorithms to assist Soldiers in the detection and

classification of battlefield threats

346-6
IS&T International Symposium on Electronic Imaging 2022

Image Processing: Algorithms and Systems XX

https://doi.org/10.1117/1.1593038
https://doi.org/10.1117/1.1768534
https://doi.org/10.1117/12.850211
https://doi.org/10.1016/S0042-6989(99)00163-7
https://doi.org/10.1016/S0042-6989(99)00163-7
https://doi.org/10.1117/12.2031336
https://doi.org/10.1007/s41095-019-0149-9
https://dsiac.org/databases/atr-algorithm-development-image-database/
https://dsiac.org/databases/atr-algorithm-development-image-database/

