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Abstract 

This research explores a fresh approach to the selection and 

weighting of classical image features for infrared object detection 

and target-like clutter rejection.  Traditional statistical techniques 

are used to calculate individual features, while modern supervised 

machine learning techniques are used to rank-order the predictive-

value of each feature.  This paper describes the use of Decision 

Trees to determine which features have the highest value in 

prediction of the correct binary target/non-target class. This work 

is unique in that it is focused on infrared imagery and exploits 

interpretable machine learning techniques for the selection of 

hand-crafted features integrated into a pre-screening algorithm. 

Background 
The US Army uses infrared (IR) sensors to detect and classify 

enemy threats and has long sought to field algorithms which are 

effective at aiding Soldiers in target acquisition.  Algorithm-

assisted target acquisition tasks are accomplished in multiple 

stages: (1) a pre-screener to locate regions of interest using the 

sensor’s low resolution, wide Field of View (FOV) and (2) a 

classifier to further discriminate objects using the sensor’s high 

resolution, narrow FOV. This research focuses on improved 

methods of choosing image features for a pre-screener that do not 

require processing with a neural network.  

Pre-screening algorithms operating in midwave and longwave 

infrared (IR) imaging wavebands enable day/night computer-aided 

target acquisition by rapidly separating wide area scenes into 

“target” and “non-target” regions.  Early detection algorithms, such 

as the “Scale-Insensitive Detection Algorithm for FLIR Imagery” 

published by Der, et al. of the Army Research Laboratory (ARL) 

[1], use a double-window sub-image for calculating traditional 

image-based features to locate targets in IR imagery.  ARL 

researchers led by Chan later published a multi-stage IR target 

detector [2], which added an Eigenspace Multi-Layer Perceptron 

(EIGMLP) to separate clutter from real targets, and finally the 

“Evidence Integrator” which combined the output of EIGMLP 

with intermediate feature values from the initial detector.  Young, 

et al., [3] proposed the use of Eigenspace Separation Transforms 

(EST) and Principal Components Analysis (PCA) applied to 

gradient vectors to detect differences in the structural information 

between low-contrast, short-to-medium range targets and non-

targets.  Mehmood and Nasrabadi [4] proposed the “wavelet-RX” 

algorithm, which uses two-dimensional wavelet transforms to 

decompose the image into a number of sub-bands, followed by the 

multi-variate RX Constant False Alarm Rate (CFAR) algorithm, 

adopted from hyperspectral image processing. 

A parallel research track grew out of studies of human search 

performance using visual saliency models to locate objects of 

interest in imagery.  The benchmark work by Itti and Koch [5] 

established an algorithm to model human visual attention, or 

saliency, given a standard 3-color image.  Their model defined 

multi-scaled features based upon color, intensity, and orientation, 

and linearly combined these to produce a saliency map.  In 2013, 

Chen, et al. [6] proposed an adaptation of the Itti and Koch 

saliency model for use with static IR imagery.  This technique 

produces a saliency map as a weighted sum of spatial frequency, 

orientation, and shape-based features. Borji, et al [7] provide an 

excellent summary of the past two decades of salient object 

detection techniques for color imagery. 

The focus of this research is to combine previously defined 

features from anomaly detection, image pre-screeners, and saliency 

models and to establish a generalized methodology for feature 

down-selection. This will result in an improved algorithm to pre-

screen infrared (IR) imagery for ground-based objects of interest, 

while maximizing target detections and minimizing the time 

required to cover the search sector.  The hypothesis is that 

performance of traditional automated pre-screening algorithms can 

be improved by incorporating visual saliency and a select subset of 

possible IR image-based features.  

Methodology 
A database of publicly available infrared imagery with labeled 

vehicles is used as input to a baseline Stationary Target Indicator 

(STI) algorithm to produce a set of target and target-like Regions 

of Interest (ROI).  For each ROI, a set of pre-defined image feature 

values are computed:  20 features from the baseline STI algorithm 

and 60 features from the saliency (SAL) model of Itti and Koch. 

Binary classification Decision Trees (DT) are trained and 

optimized using 10-fold cross validation to fine-tune training 

parameters for minimum misclassification error rates.  The process 

is repeated with three different subsets of features to determine the 

predictive value of each feature, and provide a relative rank-

ordering of feature importance within the trained DTs.  The 

analysis provides an approach using supervised machine learning 

to down-select and combine a set of available features to use for 

improving a traditional pre-screening algorithm. 

Feature Database Development 

Infrared Imagery 
The data for this analysis is a set of infrared imagery collected 

by the U.S. Army is available for public distribution for use in 

automated target recognition algorithm development [8].  

Commonly referred to as the “DSIAC database”, it includes video 

sequences of ten foreign military and civilian vehicles, as well as 

ground truth providing frame-by-frame bounding box locations of 

all vehicles in the scene.  The present analysis uses all videos with 

vehicles being slowly driven in a circle centered at ten discrete 

ranges from 500 m to 5000 m.  In order to reduce highly correlated 

frame-to-frame target signature information available in the 30-Hz 

source video, the video sequences are temporally down-sampled to 

0.5-Hz prior to further processing.  By doing so, each 1800-frame 

video of a vehicle traversing the circular path is reduced to 30 
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frames, resulting in a snapshot of each vehicle at roughly 12 degree 

aspect angle increments.  For further description of the infrared 

sensor and imagery, the reader is referred to the referenced User 

Guide.[9]  

Train/Test Set Partitioning 
The vehicle data was split into training and testing sets by 

assigning eight of the range bins to the training set, and the 

remaining two to the test set.  This partitioning scheme, shown in 

Table 1, was deliberately chosen instead of a random partition in 

order to reduce the correlation of the scene background between 

training and training sets, given that all of the imagery is from a 

common site.   

Table 1  Training/Testing Set Partitioning 

 Training Set Testing Set 

Video 

Sequences 

123 videos 36 videos 

Image Frames 3690 frames 1080 frames 

Range Bins 

(meters) 

500, 1000, 1500, 2500, 3000, 

3500, 4500, 5000 

2000, 4000 

 

Region of Interest Selection 
For this analysis, a set of 80 engineered features (described in 

the next section) are computed for regions in each image which 

contain targets or target-like signatures.  The ROIs are generated in 

two ways.  First, the baseline ARL pre-screener [1] , hereafter 

generically denoted STI, is configured to report the top thirty (30) 

most likely target ROIs per image frame, based on a rank order of 

the declaration confidence score calculated by the algorithm.  

Second, the resulting ROIs are compared to ground truth and 

augmented to include bounding boxes for any true targets missed 

by the STI. The ROI database is designed to contain all of the 

actual targets along with a large number of the most challenging 

target-like regions.  A sample infrared image frame in Figure 1 is 

overlaid with bounding boxes of the 30 most target-like regions 

output from the STI algorithm. 

 

 
Figure 1  Example infrared image frame overlaid with 30 ROIs from the 
baseline STI prescreening algorithm.  Pickup truck is near center of scene. 

Table 2 summarizes the ROI count for targets (Class 1) and 

non-targets (Class 0), along with the a priori probability of each 

class being randomly selected in the training and testing sets.  

While the vehicle type sample count within Class 1 is fairly 

uniform (µtrn=414, σtrn=40, µtst=132, σtst=11), there is a large class 

imbalance in Class 0 and Class 1 samples – roughly 23:1 ratio 

between non-targets and targets. 

Table 2 Region of interest number of samples and class priors 

for training and testing sets 

 Training Set ROIs Testing Set ROIs 

Class 0 (Non-Target) N = 107,551 

Pr(C0) =  0.9629 

N = 30,588 

Pr(C0) =  0.9629 

Class 1 (Target) N = 4,140 

Pr(C1) =  0.0371 

N = 1,318 

Pr(C1) =  0.0371 

 

Feature Descriptions 
This analysis uses engineered feature types drawn from two 

different algorithms, both of which internally produce pixel level 

Feature Maps.  The “STI Features” are derived from a tailored 

version (code revision ao18) of the ARL STI algorithm.  The STI 

uses a sliding double-window scheme in which the inner window 

is sized to an expected target at an expected range, and the outer 

window represents local background pixels.  The feature types 

include Local Extreme, two types of Contrast, Local Variance, and 

Average Gradient.  Each of the five feature types is calculated for 

inner windows sized for two different target aspects (side-view and 

front/rear view) at a single range gate, resulting in 10 pixel level 

STI feature maps. The “SAL Features” are derived from the 

orientation and intensity feature maps described in the Itti and 

Koch saliency model.  (Color feature maps were omitted due to 

irrelevance to IR imagery.)  When computed at six different spatial 

scales, the four orientation maps and one intensity map result in 30 

pixel level SAL feature maps. To compile the master feature 

database, the average and maximum pixel values within the area of 

each ROI are computed from the 40 pixel-level feature maps, 

resulting in a total of 80 feature values for each candidate ROI. 

 

Binary Decision Tree Classification Model 
A classification decision tree (DT) is a supervised machine 

learning method that splits the training data into subsets using the 

available features in order to separate Class 1 from Class 0 

samples.  The data is split as many times as needed (up to N-1 

nodes, where N is the number of samples) in order to predict the 

true class of the input data. For this analysis, the decision tree 

predictors are real, continuous-valued features, and the objective is 

to assign a discrete binary class (target or non-target) to each 

sample, where any civilian or military vehicle in the ROI is 

considered a target belonging to Class 1, and all other ROIs belong 

to Class 0.  The objective of creating the binary decision trees is to 

analyze the relative strength of each feature for an improved pre-

screening algorithm. 

 

Decision Trees Trained on Feature Subsets – Default 

Parameters 
In the first experiment, three independent DT classifier 

models were grown to compare the performance of each tree using 

three feature subsets:  STI, SAL, and ALL, where ALL includes 

both STI and SAL feature sets.  Each feature vector was scaled to a 
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zero-mean, unit variance distribution for all of the samples in the 

training set. 

The MATLAB Statistics and Machine Learning Toolbox [10] 

function fitctree was used to build each DT Classifier.  The split 

criterion used Gini’s diversity index, with a maximum number of 

splits to be one less than the total training samples. 

The confusion matrices for each of the three DT classifiers, 

when used to predict the classes for data in the Training Set and 

Testing Set are shown in Figure 2 and Figure 3, respectively.  The 

percentages shown along the diagonals are correct predictions, 

while the percentages shown on the off diagonals are incorrect 

predictions. The first observation is that each DT classifier 

performs significantly better on the Training Set than the Testing 

Set, which is to be expected, since no explicit attempt was made in 

the initial training process to avoid overtraining or to increase 

generalization of the DT.  A second observation is that the DT with 

default training parameter settings performs best when using only 

the STI features, and worst when using only the SAL features. 

Third, all DT models are better at correctly predicting Class 0, the 

non-target class then they are at predicting Class 1, the targets. 

In addition to comparing confusion matrices, calculation of 

the misclassification error is helpful in evaluating overall classifier 

performance. 

  

 
Figure 2  Training set confusion matrices for decision trees trained using 
default parameter settings and three different subsets of features. 

 
Figure 3  Testing set confusion matrices for decision trees trained using 
default parameter settings and three different subsets of features. 

DT Performance Metric:  Misclassification Error 
 

The misclassification error, L, given by Equation (1), 

measures the inaccuracy of the predicted class, 𝑦𝑗̂, based on feature 

data input, compared to the actual class, 𝑦𝑗 .  Lower values 

correspond to a better predictive model. 

𝐿 = ∑ 𝑤𝑗𝐼{𝑦𝑗̂ ≠ 𝑦𝑗}
𝑛
𝑗=1 , (1) 

where, 𝑦𝑗̂ is the predicted class of sample j.  The sample weights, 

𝑤𝑗 , are computed to ensure the contributions from each class 

correspond to the prior class probability, and such that the sum 

over all sample weights are normalized to 1.  The operator I 

produces a value of 1 for misclassified samples and a value of 0 for 

correctly classified samples. 

Table 3 shows the misclassification error for the three un-

optimized DT Classifier Models when computed with the Training 

Set (“in-sample [IS] error”) and Testing Set (“out-of-sample 

[OOS] error”).  A low IS error does not imply good generalization 

of the decision tree on the unseen test data, and therefore is not the 

best metric to compare model performance.  The values in the table 

represent the decimal rate at which misclassifications (i.e. errors) 

occur.  For example, for the DT trained with STI features, the IS 

misclassification rate is 0.6%, while the OOS misclassification rate 

is 3.2%. 

The class priors shown in Table 2 may be used as a 

benchmark for the computed loss rates.  Consider a classifier that 

always predicts the majority class (in this case, Class 0) regardless 

of feature value input. The misclassification rate for such a 

majority-class predictor is equal to the Class 1 prior, or 0.0371.  

With respect to the OOS misclassification error, only the STI-

feature-trained DT performs better than a majority-class predictor. 

Table 3  IS and OOS misclassification error for decision trees 

trained with 3 feature subsets using default training settings. 

 Samples, N STI SAL ALL 

Training 

Set 

111,691 LIS = 

0.006 

LIS = 

0.005 

LIS = 

0.004 

Testing 

Set  

  31,767 LOOS= 

0.032 

LOOS= 

0.159 

LOOS= 

0.073 

 

The following section will discuss the application of k-fold 

cross validation to estimate the generalizability of the DT model 

against unseen data without explicitly using the Testing Set. 

 

K-Fold Cross-Validation 
 

To perform cross-validation, the training set is randomly 

partitioned into 10 folds.  The MATLAB crossval function was 

used to create 10 new model partitions, with each partition 

successively trained on data in 9 out of the 10 folds.  The data used 

for training each partition are considered “in-fold” (IF) 

observations, while the remaining fold is used to validate 

classification performance with of “out-of-fold” (OOF) 

observations.  The predictive accuracy of the trained partitions was 

then estimated using the kfoldloss function to predict the response 

and misclassification error on the out-of-fold data. 

Table 4 shows the IF and OOF misclassification errors for the 

un-optimized DT trained on three feature subsets.  Unsurprisingly, 

the OOF misclassification errors resulting from the k-fold cross- 

validation method are considerably worse than the IF 

misclassification errors calculated when all of the data was used 

for training a single DT.  The cross-validation method provides a 

better estimate of the generalizability of the DT model to 

unobserved data. 

Table 4  IF and OOF misclassification error for decision trees 

trained with 3 feature subsets using default training settings. 

 Samples, N STI SAL ALL 

Training 

Set 

“In-fold” 

111,691 LIF = 

0.006 

LIF = 

0.005 

LIF = 

0.004 

Training 

Set  

“Out-of-

fold” 

Each Partition: 

Trn= 100,522 

Tst=  11,169 

LOOF = 

0.0275 

LOOF = 

0.0290 

LOOF = 

0.0213 
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Again, we can consider a comparison of the OOF 

misclassification error with that of a majority-class predictor.  

Unlike the performance against the Test Set (LOOS), the OOF 

misclassification error (LOOF) for each of the three DT models 

trained with 10-fold cross validation is slightly better than a 

majority-class predictor, although still an order of magnitude 

worse than the LIF metric calculated using the Training Set.   

Note that by convention, data in the Testing Set is never used 

in actual training of any of the Decision Tree models, whereas the 

results of k-Fold Cross Validation are a surrogate used to estimate 

the performance trends when the final DT is tested against unseen 

data (i.e. the Testing Set.)  The next step is to vary certain 

parameters while training the DTs and use K-Fold Cross 

Validation to evaluate how the parameter settings affect the OOF 

misclassification rates.  By doing so, optimal training parameters 

can be found and used to train a final DT classifier. 

 

Decision Tree Depth Parameter Optimization 
Three training parameters control the depth and complexity of 

the trained DT.  These are MinLeafSize, MaxNumSplits, and 

MinParentSize.  Each of these parameters are individually varied 

over range of values while performing k-fold cross validation to 

evaluate the OOF misclassification rate.  The parameter settings 

found to yield the lowest misclassification rates for the three 

feature sets will be used to retrain each tree for better 

generalizability with the test set. 

 

 
Figure 4  Out-of-fold misclassification rate for different values of the minimum 
leaf size tree depth parameter. 

The baseline (unoptimized) DT was trained using a default 

minimum leaf size of 1, which means that the decision nodes can 

continue to split until there is only a single sample at the lowest 

level of the tree (i. e. the leaf.)  As shown in Figure 4, the 

minimum leaf size was sampled logarithmically between values of 

1 and 100 and yielded the best overall misclassification rates at 

MinLeafSize=16 for each of the three feature sets.  This means that 

with this data there is better predictive power in a decision tree that 

requires at least 16 training observations at the lowest layer of the 

tree, and implies that a tree that splits down to a single observation 

at each leaf becomes overtrained for the test set, and does not 

generalize as well to unseen data. 

 
Figure 5  Out-of-fold misclassification rate for different values of the maximum 
number of split tree depth parameter. 

The maximum number of splits was sampled logarithmically 

between 1000 and 100000, with the default being (Nsamples-1) 

(111,690).  As shown in Figure 5, a MaxNumSplit value of 1000 

yields the best OOF misclassification error (LOOF) for two of the 

three cross-validated models (i.e. STI and SAL).  For the third 

model (ALL), there is very little difference (delta = 0.0006) 

between the value at 1000 and the minimum sampled.  For the 

optimized tree, the MaxNumSplit value will be set to 1000 for all 

three re-trained DTs. 

 
Figure 6  Out-of-fold misclassification rate for different values of the minimum 
parent size tree depth parameter. 

 The default setting for MinParentSize is 10. This means that 

any decision node must have at least 10 training observations to 

continue to split into classes.  Out-of-fold misclassification rates 

for  MinParentSize sampled logarithmically at values between 10 

and 1000 are plotted in Figure 6.  Above a value of 100, all of the 

OOF misclassification rates increased monotonically; however 

there is no single optimal setting below 100 that minimizes the 

LOOF for all three models.  Note that when training a DT, 

specifying both the MinLeafSize and MinParentSize could result in 

a condition of over-specifying parameters (because a parent node 

has two leaf nodes).  The lowest value of MinParentSize is twice 

the MinLeafSize specified.  With a MinLeafSize of 16, the 

MinParentSize used in retraining the DTs is 32. 
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Retrained DT with Optimal Parameter Set 
Finally, using the set of optimal parameters for controlling the 

tree depth, the three DTs are retrained twice more: (1) using all 

available training data in order to compute the in-sample 

misclassification rate, and (2) using 10-fold cross validation in 

order to compute the out-of-fold misclassification rate.  Table 5 

shows key training parameters before and after the tree depth 

parameter optimization. 

Table 5  Decision Tree training settings before and after 

optimization. 

Training Parameter Non-Optimized Optimized 

MaxSplits 111690 1000 

MinLeafSize 1 16 

MinParentSize 10 32 

 

Evaluating the misclassification errors indicates that using the 

optimal parameter set was somewhat detrimental to the in-sample 

misclassification rate as listed in Table 6, as compared to using the 

default parameter values (Table 4.)  The LIS values are shown only 

for completeness, since it is the LOOF calculated from the cross 

validated models that provide insight as to the expected 

performance on unseen data.  Using the tailored parameter set very 

minimally reduced the out-of-fold misclassification rate for all 

three feature sets, as compared to using the default parameter 

settings (Table 4.)  The reductions, ranging from one-tenth to one-

half of a percent of misclassifications, are achieved with less 

complex DT models. 

Table 6  IS, OOF, and OOS misclassification error for decision 

trees trained with 3 feature subsets using optimized training 

settings. 

 Samples, N STI SAL ALL 

Training 

Set 

111,691 LIs= 

0.005 

LIs= 

0.019 

LIs= 

0.013 

10-fold 

Cross 

Validation 

Per Partition: 

Trn=100,522 

Tst=  11,169 

LOOF= 

0.023 

LOOF= 

0.028 

LOOF= 

0.019 

Testing 

Set 

  31,767 LOOS= 

0.023 

LOOS= 

0.070 

LOOS= 

0.025 

 

The Testing Set confusion matrices for each of the three DT 

classifiers retrained with the optimal parameters are shown in 

Figure 7Error! Reference source not found..  Compared to results 

shown in Figure 3, using the optimized parameters to train the DT 

was detrimental to performance against Class 1 (targets) while 

beneficial to performance against Class 0 (non-targets) for all three 

feature subsets.  This is not a desirable result for the military use-

case, in which it is critical to find a high percentage of the regions 

containing targets.  Although the LOOF and LOOS metrics were 

improved by using k-fold cross-validation to find optimal tree 

depth training parameters, the misclassification error alone is 

insufficient in determining whether the resulting model is better 

suited to a specific task. 

 
Figure 7  Testing set confusion matrices for decision trees trained using 
optimized parameter settings and three different subsets of features. 

Feature Ranking and Selection 
Using each of the trained DTs, the predictor importance 

values are estimated by summing changes in the risk due to splits 

on every predictor and dividing the sum by the number of branch 

nodes.  Note that the predictors used in each DT correspond to the 

STI, SAL, and ALL feature subsets that have been described.   

Figure 8 shows the predictor importance values for the DT 

trained using only the 20 STI features.  The feature names are 

listed down the y-axis, and identify the range gate (always gate 1), 

the target box aspect (1 or 2), the feature number (1-5), and 

whether the maximum or average inside the ROI was calculated.  

The predictor importance values are shown for the DT trained with 

the default tree depth parameter settings, as well as those that were 

optimized.  The specific features are ranked by predictor 

importance using the default settings.  It is notable that the highest 

ranking STI feature (F_STI_gate01_aspect02_feat04_ave) is so 

dominant on a logarithmic scale over all other STI features. 

 

 
Figure 8  Predictor importance for DT trained using STI features. Features are 
rank ordered using the results of the default training settings. All twenty of the 
STI features are shown. 

Figure 9 shows the predictor importance values for the DTs 

trained using only the 60 SAL features.  The feature names for 

saliency indicate whether it is intensity-based (IFM) or orientation-

based (OFM).  The orientation features are further coded by the 

angle of orientation (000, 045, 090, and 135), which correspond to 

vertical, horizontal, and two diagonal angles.  Due to space 

considerations, only the top 20 SAL features are shown in the plot. 

Figure 10 shows the predictor importance values for the DTs 

trained using all 80 available features, with the top 20 ranked 

features shown on the plot.  It is interesting to note that the ranking 

of the combined feature set does trend with the rankings of the 

STI-only and SAL-only decision trees, suggesting that, if one 
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wanted to calculate a fixed number of features, there may be value 

in swapping some of the current STI features with specific saliency 

features to create an improved pre-screening algorithm. 

 

 
Figure 9  Predictor importance for DT trained using SAL features. Features 

are rank ordered using the results of the default training settings. Only the top 
twenty saliency features are shown. 

 

 
Figure 10  Predictor importance for DT trained using ALL features. Features 
are rank ordered using the results of the default training settings.  Only the top 
twenty amongst all the STI and SAL features are shown. 

Conclusions 
Using a significantly imbalanced training set to optimize the 

training parameters for a decision tree caused the resulting 

classification model to be tuned for high performance on the non-

target majority class, while sacrificing performance on the 

minority target class, which is not desirable for use as a pre-

screener for a military target acquisition system.  Future efforts 

will explore methods of sampling the master database of 

observations such that the number of target and non-target samples 

are balanced.  Methods could include randomly sampling the non-

target samples, or using the declaration confidence score during the 

initial ROI selection to keep a smaller number of high-ranking 

non-target samples.  In either case, it is expected that using a 

database with balanced classes while optimizing the decision tree 

training parameters would have the desired effect of improving 

performance on both classes, not just the majority class. 

The feature ranking and selection process described in this 

paper is one step in an overall approach to using supervised 

learning techniques to improve the performance of more traditional 

statistically-based pre-screening algorithms. Future efforts include 

directly incorporating the most highly ranked features from the STI 

and SAL feature sets into a new version of the baseline ARL STI 

pre-screening algorithm. Performance of the improved pre-

screener will be evaluated against the baseline using standard 

binary classifier metrics, including true and false positive rates, as 

well as any changes in the detection confidence reported by the 

algorithm. 
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