
Rapid circle detection through fusion of summative statistics of
edge components
Scott Craver and Pheona Angoy; Binghamton University; Binghamton, NY USA

Abstract
Circle detection of edge images can involve significant time

and memory requirements, particularly if the circles have un-
known radii over a large range. We describe an algorithm that
processes an edge image in a single linear pass, compiling statis-
tics of connected components that can be used by two distinct least
square methods. Because the compiled statistics are all sums,
these components can then be quickly merged without any further
examination of image pixels. Fusing multiple circle detectors al-
lows more powerful circle detection. The resulting algorithm is
of linear complexity in the number of image pixels, and quadratic
complexity in a much smaller number of cluster statistics.

Introduction
Detection of circles in computer images is a long-standing

problem with a number of proposed algorithms, which can in-
volve significant time and memory requirements. Our goal is a
reliable algorithm with low time complexity, that can detect mul-
tiple circles, partial or occluded circles and circular arcs, and cir-
cles with a wide range of radii.

Existing algorithms include brute-force search algorithms
such as the Circle Hough Transform [1], and randomized al-
gorithms such as randomized circle Hough, or gradient vector
pairs citerch,gvp. Such complexity is needed because most of
a computer image’s content will be non-circle content, and circle
content may consist of multiple circles. If one only has a data set
of points known to be on one circle, there are simple and rapid
methods of estimating a circle of best fit, two of which we sum-
marize below; but the challenge then is separating and classifying
those data points in a natural image.

In this paper, we consider natural images that are subjected
to edge processing, in our case Canny edge detection [4], produc-
ing a binary image whose foreground pixels are edge pixels. Our
proposed method slightly amends Canny edge detection, both to
exclude vertex pixels and to save gradient vectors computed in
the edge detection process. We then segment the edge image into
connected components with a single pass over the edge pixels,
and accumulate summative statistics for each component. These
statistics can be used to determine if a component is a likely circu-
lar arc; subsequently, components can be quickly merged if their
statistics produce a match to the same arc, resulting in an image
consisting of likely circles.

Least Squares methods
Our algorithm combines one or more least squares methods

as kernels for classifying groups of pixels. Least squares methods
provide a very fast, accurate and optimal estimate of a circle that
best fits a data set; however, they work when one is given points on
a single circular arc, as opposed to a data set comprising multiple

circles overwhelmed by non-circle (noise) pixels.

We observe, however, that least squares methods often em-
ploy summative statistics, for example statistics of the form
∑k xa

kyb
k for data points at locations (xk,yk). These sums are not

only easy to accumulate in a single pass over the data, but they
are also easy to combine. If we can segment a computer image
into components, such that a component may be mostly edge data
from a single circle, a least squares method may be applied to that
segment; but in addition, two segments on the same circle can be
rapidly identified by adding their summative statistics and recom-
puting the circle estimate and goodness of fit. Crucially, this does
not require another pass over the data set to perform the circle fit.

If multiple least squares methods employ the same set of
summative statistics, it is also possible to use several, for im-
proved detection, with a modest increase in computational com-
plexity.

Our requirements for a least squares kernel are therefore:

1. A least squares estimate must be computable only from ag-
gregate pixel statistics, such as sums, that can be accumu-
lated in a single pass over the pixels and combined by a sim-
ple operation.

2. The least squares estimate must combine these statistics by
a simple formula of constant-time complexity.

3. The estimate must include not only circle parameters but the
MSE of the estimate.

We describe two methods below, that we use in our algo-
rithm. One identifies a circle of best fit in terms of pixel location
alone; the other uses luminance gradient information, and we thus
hypothesize that fusing both will provide improved performance.

The Kåsa method
The Kåsa method of circle fitting inputs a collection of data

points at locations {(x1,y1), · · · ,(xn,yn)} and fits a circle that
minimizes the total error ∑

n
k=1 Ek

2, where the error is defined as:

Ek =
∥∥(xk,yk)− (cx,cy)

∥∥2−R2

This error is not the distance from a point to the circle, but
an alternate metric chosen so that the resulting estimate is easily
computable. With this error metric the estimate is:

IS&T International Symposium on Electronic Imaging 2022
Image Processing: Algorithms and Systems XX 345-1

https://doi.org/10.2352/EI.2022.34.10.IPAS-345
© 2022, Society for Imaging Science and Technology



Cx =
1

2D

∣∣∣∣∣∣
∑(x3

k + xky2
k) ∑(y3

k + x2
kyk) ∑(y2

k + x2
k)

∑xkyk ∑y2
k ∑yk

∑xk ∑yk n

∣∣∣∣∣∣
Cy =

1
2D

∣∣∣∣∣∣
∑(y3

k + ykx2
k) ∑(x3

k + y2
kxk) ∑(x2

k + y2
k)

∑xkyk ∑x2
k ∑xk

∑yk ∑xk n

∣∣∣∣∣∣
D =

∣∣∣∣∣∣
∑x2

k ∑ykxk ∑xk
∑xkyk ∑y2

k ∑yk
∑xk ∑yk n

∣∣∣∣∣∣
nR2 = ∑x2

k +nc2
x −2

(
∑xk

)2
+∑y2

k +nc2
y −2

(
∑yk

)2

The total error of the estimate can also be expressed in terms
of summative statistics, as:

Err = ∑x4
k +∑y4

k +2∑x2
ky2

k

−4cx

(
∑x3 +∑xy2

)
+4cy

(
∑y3 +∑yx2

)
+4

(
c2

x ∑x2 + c2
y ∑y2 +2cxcy ∑xy

)
+2A

(
∑x2 +∑y2−2cx ∑x−2cy ∑y

)
+nA2

...where A = c2
x + c2

y −R2. We observed that this total error func-
tion can be written as Err = EnR2, where E denotes an error met-
ric that is consistent across arcs of varying sizes.

Gradient regression
Suppose edge pixels are determined from luminance gradi-

ents in a computer image, as is the case in our problem. If an edge
follows a circular arc, normalized luminance gradients at the edge
points will satisfy a linear relationship with the edge coordinates.
To see this, consider without loss of generality a disk whose lu-
minance is darker than its background. The luminance gradient ∇

at the edge will point outward. At an edge point (x,y) we have

(x− cx)
2 +(y− cy)

2 = R2

∇ = A(x− cx,y− cy)

∇/‖∇‖ = A(x− cx,y− cy)/AR

=
1
R
(x,y)− 1

R
(cx,cy)

If we collect the coordinates (xk,yk) and normalized gradient
values which we label~nk = (nxk,nyk), then we can perform linear
regression to minimize the error

E = ∑
k

eT
k ek, ek =

(
R
[

nxk
nyk

]
−
[

xk
yk

]
+

[
cx
cy

])

Computing the partial derivatives with respect to R, cx and

cy and setting them to zero, we have the following equations:

1
R

=
∑nxkxk +∑nykyk−∑nxk ∑xk/n−∑nyk ∑yk/n

∑x2
k +∑y2

k − (∑xk)
2 /n− (∑yk)

2 /n

cx =

(
∑nxk−

1
R ∑xk

)
/n

cy =

(
∑nyk−

1
R ∑yk

)
/n

Despite their apparently complexity, all of these estimates
are computed from summations assembled from a linear pass over
the edge pixel data; in terms of asymptotic complexity, both of
these algorithms run in O(n) time for an image of n pixels, and
the above formulas run in constant time if the sums are precom-
puted. In particular, if one has two datasets whose sums are pre-
computed, applying either least squares method to the combined
dataset requires a constant-time operation of adding the corre-
sponding sums.

Gradient computation
Gradient regression requires that we have, for each edge

pixel, an estimate of the luminance gradient direction (normal-
ized gradient) at that point. Such gradients are computed as a
stage in the Canny edge detection algorithm, although they are
immediately quantized to one of four orientations: vertical, hori-
zontal, diagonal northeast, and diagonal northwest [4]. However,
it is a simple matter to save the estimated gradient data prior to
quantization, to accumulate the sums.

Overall algorithm
Our algorithm is illustrated in figure 1. We first commit edge

detection on a computer image, and then segment the edge pixels
into connected components. For each component, as we assemble
it, we assemble a collection of sixteen summative statistics, based
on pixel coordinates and gradient values. At that point, the image
can be discarded, as the rest of the algorithm only operates on the
summative statistics of the assembled components. Components
with few pixels are discarded.

Figure 1. The overall structure of the proposed method.

345-2
IS&T International Symposium on Electronic Imaging 2022

Image Processing: Algorithms and Systems XX



Given a set of edge pixel components, we test each compo-
nent using least squares estimates, determining which have a high
goodness of fit to a circular arc. In a final phase, we attempt to
merge components, adding their statistics, if doing so increases
their goodness of fit.

Segmentation into connected components
The segmentation algorithm we employ requires only a sin-

gle pass over the image, and it (along with accumulating statistics)
can be performed as Canny edge detection classifies edge pixels.
The algorithm is illustrated in figure 2. The image is traversed top
to bottom, left to right, with each foreground (edge) pixel labeled
with a component. When a foreground pixel is encountered, we
check the four pixels above and to its left, in other words neigh-
boring pixels that have already been evaluated by our traversal.
We then switch based on the foreground pixel’s neighbors:

Figure 2. Image traversal to assign edge pixels to connected components.

• If there are no foreground pixels there, our new foreground
pixel is labeled as belonging to a new component, which is
allocated with its own statistical accumulators initialized to
0.

• If neighboring pixels are found labeled as belonging to a
specific component, our new foreground pixel is also labeled
as belonging to that component, and its location and gradi-
ent are used to update the statistical accumulators for that
component.

• If neighboring pixels are found belonging to more than one
component, the components are first merged. This consists
of adding one components statistics to the other, and updat-
ing a reference table so that pixels with both component la-
bels are mapped to a single label for the merged component.
Then, the new foreground pixel’s location and gradient are
used to update the accumulators of the merged component,
as above.

At the end of this pass over the image, we then have a set
of statistical accumulators for every connected component, pro-
viding summative statistics for each. We discard those compo-
nents that have few pixels; in our experiments any component
with fewer than 12 pixels is discarded.

Classification and merging
Once our components are assembled, our next step is clas-

sifying likely arcs. The summative statistics per component are

used to compute the centers, radii, and goodness of fit for a circle,
using both the Kåsa method and gradient regression as described
above. For the Kåsa method, we use the normalized error E =
Err/nR2. In experiment we observe that for certain circular arcs,
E is approximately 12.5 times the mean squared error for gradi-
ent regression. We thus use the score S = (E/12.5)2 +(MSE)2,
where MSE denotes the mean square error under gradient regres-
sion.

There are other statistics and heuristics that can be employed
when classifying a segment as a likely circle. One is the radius
size, or center location: if the circle’s center is far from the image
rectangle, it means that our cluster may be a line segment rather
than an estimable circular arc. The “arc length” of a segment can
be estimated using the number of pixels in the segment versus its
radius, and those segments of small arc length can be discarded
as containing insufficient information to classify them as circular.
Another heuristic method available to us is comparing the circle
estimate of our two fused methods, to determine if they agree suf-
ficiently. However, for our initial exploration, we only use the
combined errors of circle fit, which we compare to a threshold.

Implementation and testing
To test our algorithm, we produced pseudo-random zig-zag

images to use as non-circle data. An example is illustrated in
figure 3. These are wedges of random location and angular span,
which are combined by exclusive-or in a binary image plane. We
can also add disks and disk wedges to these images, isolating their
edges to collect statistics for arcs versus non-arcs.

Figure 3. A generated zig-zag image for testing the algorithm.

Figure 4 shows a plot of Kåsa error metric E on the hori-
zontal axis, versus gradient error on the vertical axis, for zig-zag
images versus generated circular arcs. The striking pattern for cir-
cular images corresponds to our observation that E for many true
arcs is about 12.5 times the gradient error.

Figure 4. Error rates for zig-zag images (left) and circular arcs (right).

Upon inspecting the segmented images, we noticed that seg-
mentation would mistakenly combine into polygons multiple edge

IS&T International Symposium on Electronic Imaging 2022
Image Processing: Algorithms and Systems XX 345-3



elements corresponding to distinct edges. These polygons pro-
duce the risk of false positives, and an edge fusing with an arc
produces the risk of a false negative. We thus modified the Canny
edge detector with one extra, final step in its edge pixel classifica-
tion: a candidate edge pixel is compared to its immediate neigh-
bors, and rejected if neighboring pixels have at least two orientia-
tions distinct from that of the candidate pixel. This removes ”tee”
intersections as well as sharp bends in the image plane; figure 5
shows the segmentation before and after the addition of this step.
Figure 6 shows the plot of E versus gradient MSE for zig-zags and
arcs after this vertex culling step: the result is data that is much
better behaved. Vertex culling was also observed to separate cir-
cles in natural images, from adjoining edges that previously con-
founded our attempts to identify them.

Figure 5. Segmentation of zig-zag image without (left) and with (right)

vertex culling.

Figure 6. Error rates for zig-zag images (left) and circular arcs (right), after

vertex culling.

Finally, we show the result of this algorithm on natural im-
ages, below. The figure shows, for each image, its edge compo-
nents, components that satisfy an error threshold of 0.01n, where
n is the number of pixels in the cluster; and finally the result of
combining those clusters if their error metric improves by doing
so.

Discussion and conclusions
We have described an overall approach to circle finding in

computer images, that fuse multiple least-squares methods with
edge segmentation, exploiting the ability to swiftly combine seg-
ments without requiring additional passes over the image.

The complexity of our algorithm is not much more than the
linear time operation of edge detection (linear in the number of
image pixels). Most of the work of the algorithm can be per-
formed in the edge detection process, as edge pixels can be seg-
mented and statistics assembled as those edge pixels are identi-
fied.

The subsequent processing is per cluster, and indeed the im-
age can be discarded once it is segmented. Our results show that
per-segment classification is already quite powerful by itself, and
subsequent merging of clusters clearly improves the identification
of circular arcs in the image.

One question left unanswered by this analysis is: how many
segments are produced by this process in general? A naive
attempt to merge them requires a number of trials that grows
quadradically with the number of clusters. Thus far, our obser-
vations show natural images on the order of 1000x700 produc-
ing hundreds of candidate clusters; we suspect that the number of
clusters grows sub-linearly with the number of pixels, but future
work is needed to confirm this.

Figure 7. Circle detection example. Upper right, an edge-segmeneted

image; below left, segments below threshold; below right, segments after

merging.

Figure 8. Circle detection example. Upper right, an edge-segmeneted

image; below left, segments below threshold; below right, segments after

merging.

345-4
IS&T International Symposium on Electronic Imaging 2022

Image Processing: Algorithms and Systems XX



Future work
The largest open question implied by our results is how we

can best classify circular arcs based on their computed statis-
tics. While we see promising performance by combining only the
mean squared errors of our two least-squares kernels, there is sig-
nificant potential to improve this by combining these or perhaps
other metrics into a more sophisticated detection region.

In addition, we have yet to explore heuristic methods to dis-
card unlikely segments, for example those whose estimated circle
centers, radii or arc lengths are not likely to correspond to circles
in natural images.

Finally, an obvious avenue for future work is combining
other or more least squares kernels into this algorithm, to deter-
mine if or how much they may improve performance when their
statistics are fused.

Acknowledgments
This research is the product of a summer research internship

program supported by the Louis Stokes Alliance for Minority Par-
ticipation (LSAMP).

References
[1] ER Davies, A modified Hough scheme for general circle location,

Pattern Recognition Letters, vol 7 no 1, pg. 37–43. (1988).
[2] A Pekka Kultanen, Lei Xu and Erkki Oja, Randomized hough trans-

form (rht), Proc. 10th International Conference on Pattern Recogni-
tion, vol 1, pg. 631-635. (1990).

[3] A.A. Rad, K. Faez and N. Qaragozlou, Fast circle detection using gra-
dient pair vectors, Proc. VIIth Digital Image Computing: Techniques
and Applications, 897-887. (2003.)

[4] McIlhagga, William, The Canny edge detector revisited. International
Journal of Computer Vision 91.3, pg. 251-261. (2011).

Author Biography
Scott Craver received his PhD in Electrical Engineering from

Princeton University in 2004, and is an assistant professor of Electri-
cal and Computer engineering at Binghamton University in Binghamton,
NY. Pheona Angoy is an Electrical and Computer engineering major at
Binghamton University in Binghamton, NY.

IS&T International Symposium on Electronic Imaging 2022
Image Processing: Algorithms and Systems XX 345-5


