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Abstract
Contrast is an imperative perceptible attribute embodying

the image quality. In medical images, the poor quality, specif-
ically low contrast inhibits precise interpretation of the image.
Contrast enhancement is, therefore, applied not merely to im-
prove the visual quality of images but also enabling them to fa-
cilitate further processing tasks. In this paper, we propose a con-
trast enhancement approach based on cross-modal learning us-
ing two-way Generative Adversarial Network (GAN), where U-
Net augmented with global features acts as a generator. Besides,
individual batch normalization has been used to make genera-
tors adapt specifically to their input distributions. The proposed
method learns the global contrast characteristics of T1-w brain
magnetic resonance images (MRI) to improve the contrast of T2-w
images. The experiments were conducted on a publicly available
IXI dataset. Comparison with recent CE methods and quantita-
tive assessment using two prevalent metrics FSIM and BRISQUE
validate the superior performance of the proposed method.

Introduction
Different degradations are introduced during the image ac-

quisition phase that reduces the lucidity of important details and
ultimately affect the extraction of valuable information [31, 15].
Contrast Enhancement (CE) is a primary operation that allows the
digital images to be visually perceptible. In the context of medical
images, one of the objectives of CE is to improve the perceptual
quality for superior visibility of specific structures [18]. Another
objective is to facilitate feature extraction and other subsequent
tasks such as detection and segmentation of critical structures
[24, 25]. It has been reported that the performance of segmen-
tation and detection in medical images can be augmented by em-
ploying effective pre-processing techniques on low-contrast im-
ages [20, 30, 17, 4].

It is important to mention that a single medical image does
not carry complete structural information of the organ under in-
spection. Multi-modal image acquisition is therefore becoming
a standard clinical practice [21]. It not only endorses the initial
diagnosis, moreover, it also provides complementary information
that can play an influential role in several stages of diagnosis and
treatment. The multi-modal image information has been utilized
to solve various problems in medical imaging such as segmen-
tation, detection and denoising [29, 7, 19]. The complementary
information equips the image analysis tasks with additional ca-
pability enabling these methods to outperform those that rely on
single images for these tasks [8, 22].

Cross-modal guidance-based enhancement has been applied

to natural images [32, 27], where the cross-modality-guided CE
methods generally perform well in preventing saturation and over-
enhancement phenomena since they exploit the redundant com-
plementary information in the corresponding better quality image
[16]. A similar concept was applied to multi-modal medical im-
age enhancement for better visibility of structures [18] and to fa-
cilitate tumor segmentation in liver CT images [20].

In this paper, a contrast enhancement method is proposed by
learning contrast from corresponding high-contrast medical im-
ages of another modality. The multi-modal images employed in
this work possess a better perceptual quality that can ameliorate
the learning capability of the model. Since image enhancement is
a subjective task and it is challenging to acquire the paired ground
truth for the supervised learning approaches targeted to contrast
enhancement, we formulate the CE problem as an image to im-
age translation problem. The low contrast T2-w brain MR image
is transformed into an enhanced image inheriting the contrast of
the corresponding T1-w image. A two-way GAN analogous to
Cycle-GAN [37] is used for this purpose. The proposed method
is inspired by the work of Chen et al. [5] where GAN was used to
embed the characteristics of high contrast natural images into low-
contrast images under both paired and unpaired data configura-
tions. In this work, the generator is basically a U-Net augmented
with global features. The global features carry global contrast in-
formation to improve the low-contrast images specifically when
acquiring paired ground truth in the form of high contrast images
is not feasible.

The paper is structured as follows. First, a review of related
work regarding contrast enhancement and GANs is presented.
Then, we elaborate on the proposed method followed by exper-
iment results and discussion. The conclusion is drawn in the end
of the paper.

Related Work
Contrast enhancement (CE) is one of the most instinctive and

commonly applied solutions in medical image applications. There
exist several contrast enhancement approaches that improve the
perceptual quality of the images, however, the need for controlled
CE that does not over-enhance the images is a challenging prob-
lem. CE methods can be categorized as spatial or transform do-
main methods [3]. Among spatial domain approaches, histogram-
based methods are widely researched for medical as well as nat-
ural image enhancement because of low complexity and reason-
able performance [11], [2]. Transform domain methods including
wavelet based methods are also widely investigated [26].

Followed by the idea of utilizing the information in a similar
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Figure 1: Network Architecture

image to enhance the original image [9], several cross-modality
guided image enhancement approaches were proposed for natural
images [32, 27]. For instance, Near-infrared (NIR) images were
enhanced utilizing photographs [38]. Gradient-based histogram
matching along with wavelet domain processing was performed
to embed the contrast of NIR images in photos and to enhance
texture information respectively. Recently, cross-modal guided
enhancement has been extended and applied to medical images
as well. A method using 2D histogram specification and morpho-
logical operations was employed to map the histogram of liver
CT image to that of MR image [18]. In an optimization approach,
2D-HS was combined with structural similarity index metric to
retain the structural information in the original image during en-
hancement [20].

Deep learning methods have been applied to contrast en-
hancement. These include Convolutional Neural Networks such
as the primary work of Yan et al. [33] to adjust the contrast of pho-
tograph and another contrast enhancement approach [6] suitable
for real-time. Generative Adversarial Networks (GANs) were
used by Ignatov et al. [10] to learn the mapping between phone
and DSLR cameras. GANs have drawn incredible attention re-
cently and are being applied to solve several difficult tasks in-
cluding an image to image translation [37], super-resolution [34]
enhancement [5, 28] and many other problems.

All the approaches mentioned here require paired training
data for network training. Since contrast enhancement is a sub-
jective task, it is generally difficult to collect a huge amount of
paired data. Moreover, different users have different preferences
for contrast. To address this issue, cycle-GANs were introduced
which eradicate the necessity of paired ground truth; instead, the
network learns from the unpaired training data by incorporating
several loss functions.

The availability of paired training data for medical image
contrast enhancement is even challenging and it is difficult to ac-
quire ground truth. However, the redundant complementary infor-
mation acquired during clinical routine exams makes it possible
to enhance the low contrast images using corresponding high per-
ceptual quality multi-modal images. We exploit the capability of
two-way GAN in this work to extract global contrast information
from the corresponding multi-modal image and embed this infor-
mation in enhancing the contrast of its corresponding low-contrast

medical image. This kind of deep learning based cross-modal CE
approach is proposed first time for medical images to the best of
our knowledge.

Method
In this section, we discuss our proposed methodology. First,

a general description of two-way GAN is provided, then we ex-
plain the generator architecture followed by loss functions.

As mentioned earlier, 2-way GAN is particularly suited in
scenarios where acquisition of paired input-ground truth data is
challenging. Our proposed method discovers and learns global
contrast from the label images to embed this information in the
generated images. The images enhanced as a result possess those
characteristics while simultaneously possessing the content of the
input image due to the loss functions used. This kind of frame-
work has shown drastic performance in the image to image trans-
lation domain due to its ability to learn the embedding of input
data and generating output samples in the space spanned by train-
ing samples. This concept has been exploited for natural image
enhancement as well, where the two-way GANs were used to
learn the mapping between input and ground truth under paired
supervision and unpaired supervision. Under unpaired supervi-
sion, the high contrast images, as well as HDR images with en-
tirely different content, were used for training. Inspired by this
work, we employ the corresponding high contrast multi-modal
images as labels for this purpose that share similar objects con-
tours as the input images.

In the proposed method, the source domain and target do-
main data are denoted by A and B respectively, the source domain
consists of low contrast T2-w MR images and the target domain
is a collection of high contrast T1-w images. The general config-
uration of two-way GAN is depicted in the figure 1. Considering
a ∈ A, the generator GA converts a into b′, where b′ = GA(a)
∈ B, The discriminator DB discriminates between real samples
(target domain) and generated data (fake samples). 2-way GAN
imposes cycle consistency loss, where G′B accepts GA-generated
sample and applies backward mapping to transform it to source
domain A. These GANs employ forward pass and backward pass

represented as a GA−→b′
G′B−→a′′andb GB−→ a′

G′A−→ b′′ to inspect the
consistency between a and a′′ as well as b and b′′ respectively.

The design of our generator is explained hereinafter. U-Net
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Figure 2: Network Architecture of a) generator and b) discriminator

has been used as generator in our work. Initially applied to medi-
cal image segmentation, U-Net has shown promising performance
on several imaging problems. However, adapting the original
U-Net as our generator cannot guarantee efficient enhancement
considering the unpaired data. Therefore, global features have
been added into the U-Net, the conjecture is that the global fea-
tures manipulation works well in learning the global contrast of
the corresponding multi-modal data samples. In U-Net, 5×5 fil-
tering (stride 2) is used for every contraction stage, after which
SELU activation and batch normalization are applied. Followed
by 32×32×128 feature map (fifth layer), the feature map reduces
to 16x16x128 and 8x8x128 afterward. A fully connected layer is
then used to further reduce the feature map to 1×1×128. These
global features are duplicated as 32x32 and concatenated with
32×32×128 feature maps to combine global and local features.
U-Net’s expansion path then uses combined features. The resid-
ual connection is also used in the U-Net so the generator learns
the difference between input and label. Figure 2 elaborates the
detailed architecture of generator and discriminator.

Several losses used in the method are expressed below. The
first that is identity mapping loss I enforces the transformed image
b content to be analogous to that of input a:

I= E
a,b′

[MSE (a,b′)]+ E
b,a′

[MSE(b,a′)] (1)

The consistency loss C can be expressed as:

C = E
a,a′′

[
MSE

(
a,a′′

)]
+ E

b,b′′

[
MSE

(
b,b′′

)]
(2)

The adversarial losses AD and AG are expressed as:

AD = E
a
[DA(a)]−E

a′

[
DA
(
a′
)]

+E
b
[DB(b)]−E

b′

[
DB
(
b′
)]

(3)

AG = E
a′

[
DA(a′)

]
+E

y′

[
DB
(
b′
)]

(4)

The gradient penalty P is incorporated while training dis-
criminator:

P=E
â
[max(0,‖∇âDA(â)‖2−1)]+E

b̂

[
max

(
0,
∥∥∇b̂DB(b̂)

∥∥
2−1

)]
(5)

The expression guarantees 1-Lipschitz constraint for Wasser-
stein distance. Therefore, discriminator is attained by doing opti-
mization as follows:

argmax
D

[
AD− λ̃P

]
(6)

λ̃ is adjusted using adaptive Wasserstein GAN (A-WGAN).
Generator is obtained by doing the following optimization:

argmin
G

[−AG +αI +10αC] (7)

α determines weight between adversarial and identity/ con-
sistency loss. Conventionally, 2-way GANs employ the same gen-
erator for GA and G′A since both transform the input samples in
domain A to domain B (the same applies to GB and G′B). How-
ever, GA accepts input from the original distribution (real sam-
ples) whereas G′A accepts the generated (or fake) samples; both
possess different distributions. Enabling the two to specifically
adapt to their inputs results in higher PSNR in enhancement prob-
lems [5], therefore, individual batch normalization (iBN) layers
were used for GA and G′A. Except for BN layers, the rest of the
layers and parameters are shared between the two.

Experiment
This section explains the dataset used for the experiment,

pre-processing applied to data, and the methods selected for com-
parison.

Dataset
The public dataset of Hammersmith Hospital, United King-

dom accessible on the IXI database [12] was used for analyzing
the performance of the proposed method in comparison with other
enhancement approaches. Total 3000 image pairs (T1-w, T2-w)
were used for training, whereas 400 were used for testing. Input
to our network (T2-w images) was darkened by applying mor-
phological operations, whereas original T1-w images were used
as reference or label images.

Implementation Details
The proposed method is implemented in PyTorch. The net-

work was trained for 100 epochs with the learning rate 1e-5.
Weight decay values was 0.5. All the images were 512×512. The
network was trained on RTX Twin Titan with a batch size of 8.
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(a1) Input (a2) Label (a3) Zohair et al. [1]

(a4) CLAHE [39] (a5) CMGE [18] (a6) proposed

Figure 3: Enhancement Results: Comparison with recent methods

Experiment Results
The proposed method was compared with three contrast en-

hancement methods. The first method, Contrast Limited Adaptive
Histogram Equalization (CLAHE) [39] is one of the well-known
and widely accepted methods for CE. Cross-modality Guided En-
hancement (CMGE) was proposed recently to improve the con-
trast of medical images using cross-modal guidance information
in a 2D histogram-based approach [18]. The third method is a
modification of single-scale retinex with the inclusion of sigmoid
function presented for low contrast medical images [1]. The en-
hancement results from all the methods are shown in figure 3.
The input image is a low-contrast dark T2-w brain MR image.
The method proposed by Zohair et al. [1] further darkens the im-
age. CLAHE on the other hand improves the contrast; CMGE
also improves image contrast in some regions, however qualita-
tive analysis shows the over-enhancement phenomena in case of
both the enhanced images. The proposed method improves the
contrast without over-enhancing certain areas of the image. The
quantitative assessment done to compare all the approaches is dis-
cussed below.

Image Quality Assessment (IQA) metrics Feature Similar-
ity Index Metric (FSIM) [35] and Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) [36] are well accepted
for the evaluation of medical images in addition to natural im-
ages [13, 14, 23]. FSIM is a full-reference IQA metric whereas
BRISQUE is a reference-less metric. Both were used to evaluate
the performance of the enhancement methods considered in this
work. Table 1 presents the results of the quantitative assessment.
It is important to mention that higher FSIM scores while lower

Table 1: Quantitative Assessment
Metric Zohair et al. [1] CLAHE [39] CMGE [39] Proposed
FSIM 0.812 0.714 0.715 0.984
BRISQUE 47.132 45.172 52.582 32.838

BRISQUE scores imply superior contrast. Considering the quan-
titative results, we observe that the proposed method works best in
preserving the important features in the enhanced image as shown
by the highest FSIM values. Besides, it also prevents the artifacts
in the enhanced images as pointed by the BRISQUE results.

Discussion and Conclusion

A cross-modal learning approach for contrast enhancement
of medical images is proposed in this paper. The capability of
2-way GAN coupled with global features in U-Net bypasses the
need for paired ground truth. Instead, the complementary infor-
mation and structural similarity of redundant multi-modal medi-
cal images has been exploited and effectively utilized in the learn-
ing framework. The proposed method improves reasonable con-
trast without introducing artifacts. The experimental results on
the publicly available dataset prove that the method not only re-
tains the features but also maintains the structure and naturalness
of the original T2-w MR images as evaluated by the quality as-
sessment metrics. This concept can be further extended to other
multi-modal medical images including Computed Tomography
and Positron Emission Tomography images.
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