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Abstract 
Synthetic aperture radar (SAR) images have found numerous 

applications. However, analysis of SAR images including 

interpretation, classification, segmentation, etc. is an extremely 

challenging task due to the presence of intensive speckle noise. 

Therefore, image denoising is one of the main stages in SAR data 

pre-processing. Over the past decades, a large number of different 

image denoising techniques have been proposed ranging from local 

statistics filters to deep learning based ones. In this study, we 

analyze one of the most known and widely used local statistics Frost 

filter. Despeckling efficiency of the Frost filter significantly depends 

on the sliding window size and tuning (also called damping) factor. 

Here, we present a method for optimal parameters selection of the 

Frost filter for a given image based on despeckling efficiency 

prediction. Despeckling efficiency prediction is carried out using a 

set of statistical and spectral input parameters and a multilayer 

neural network. It is shown that such a prediction can be performed 

before applying image despeckling with a high accuracy and it is 

faster than despeckling itself. Both simulated speckled images and 

real-life Sentinel-1 SAR images have been used for extensive 

evaluation of the proposed method. 

Introduction 
It is well known that radar images are widely used in various 

remote sensing applications [1, 2]. The main advantage of radar 

imaging is its ability to operate and collect data regardless of 

cloudiness, weather and lighting conditions [2]. However, radar 

images are corrupted by a noise-like phenomenon called speckle [2, 

3]. It is caused by the coherent interference of reflected signals from 

a large number of elementary reflectors within a resolution cell [1]. 

The presence of intensive speckle noise especially in modern 

synthetic aperture radars (SARs) affects the efficiency of different 

high-level processing steps like classification or segmentation. 

Thus, it is desirable to suppress speckle in order to improve SAR 

image interpretability. 

A huge number of various filters has been developed to 

suppress speckle noise [3-7]. At the same time, it is still challenging 

to choose which filter is better to apply and how to select its 

parameters. Many factors influence a filter speckle suppression 

efficiency. One possible way to increase despeckling efficiency is 

to select optimal parameters for a given filter taking into account 

image properties and speckle characteristics. Several methods have 

been proposed for selection of filter parameters [8-10]. In [8], 

adaptive windowing approach has been proposed where the window 

size is automatically adjusted according to image characteristics 

(homogeneous or heterogeneous regions) for local statistics Mean 

and Lee filters. In [9], a method of adaptive adjusting of the tuning 

factor and the size of sliding window for the local statistics Frost 

filter has been proposed depending on the regional characteristics to 

get a balance between speckle suppression and edge preservation. 

In this paper we consider the Frost filter [7] since it is still 

widely used in various toolboxes like SNAP [11]. Our previous 

studies have shown that it is possible to predict despeckling 

efficiency beforehand with high accuracy for several filters [12]. We 

have already demonstrated how to select the window size for the 

well-known local statistics Lee filter based on despeckling 

efficiency prediction [10]. Therefore, we demonstrate here that such 

an approach can be extended to the Frost filter that has two 

adjustable parameters, with application to real-life Sentinel-1 SAR 

images in order to provide a better trade-off between speckle 

suppression and edge/detail preservation. 

Adaptive Parameters Selection for the Frost 
Filter 

Before starting the description of the proposed approach, let us 

briefly recall radar image model. Speckle noise is known to be pure 

multiplicative [1, 3]. The observed radar image model is described 

as: 

    ),(),(),( jijiIjiI truen = ,   (1) 

where ),( jiI n  is the ij -th speckled image pixel, ),( jiI true  denotes 

noise-free image pixel, ),( ji  is a random variable with Gamma 

distribution (or Rayleigh distribution for single look amplitude 

images) with mean equal to unity and relative variance 𝜎𝜇
2 modeling 

the speckle. In [13], it has been shown that relative variance of 

speckle 𝜎𝜇
2 for Interferometric Wide (IW) swath mode GRD 

Sentinel-1 SAR images is approximately equal to 0.05 for both 

polarization modes VV and VH. 

Recall that output for the Frost filter is described as follows [7, 

9]: 

𝐼𝐹𝑟𝑜𝑠𝑡(𝑖, 𝑗) = ∑ ∑ 𝑃𝑠ℎ𝑚𝑠ℎ

ℎ𝑠

∑ ∑ 𝑚𝑠ℎ

ℎ𝑠

⁄ ,   𝑚𝑠ℎ = 𝑒−𝐾𝐶𝐼
2𝑑𝑠ℎ  (2) 

where 𝐼𝐹𝑟𝑜𝑠𝑡(𝑖, 𝑗) is the 𝑖𝑗-th despeckled image pixel, 𝑃𝑠ℎ is the pixel 

values in the local window centered at the 𝑖𝑗-th pixel (𝑠 and ℎ are 

indices of pixels within the local window), 𝐾 (𝐾 > 0) denotes 

tuning factor (or the so-called damping factor), 𝐶𝐼 denotes 

coefficient of variation defined as the ratio of the sample standard 

deviation to the sample mean of the pixels in the local window, 𝑑𝑠ℎ 

is the distance from the centered pixel to the neighboring pixels in 

the local window. The value of tuning factor 𝐾 influences the trade-

off between speckle suppression and edge preservation. 

It is also worth noting that in this study the peak signal-to-noise 

ratio (PSNR), PSNR-HVS-M [14] and FSIM [15] image quality 

measures are used to assess despeckling efficiency for the Frost 

filter. More in detail, despeckling efficiency is described by a value 
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of improvement due to despeckling for a given image quality 

measure, i.e. a difference for a given image quality measure after 

and before applying despeckling [10, 12]. Both PSNR and PSNR-

HVS-M image quality measures are expressed in dB, where larger 

values correspond to better image quality. Values for FSIM measure 

vary from 0 to 1, larger values relate to better image quality. 

Despeckling Efficiency Prediction for the Frost 
Filter 

In this subsection, we describe an approach to predict 

despeckling efficiency for the Frost filter with different settings, i.e. 

window size and damping factor, using a set of input parameters 

extracted from a given speckled image and a multilayer neural 

network as a regressor. In this study, we have considered five 

window sizes: 5x5, 7x7, 9x9, 11x11, 13x13 pixels and the damping 

factor (DF) varied from 1 to 3 with the step 0.5. 

Extracted Input Parameters 
Here we utilized the same approach and set of statistical and 

spectral input parameters as in our previous research [10]. Now we 

briefly describe four groups of input parameters. 

The first group is energy allocation parameters calculated in the 

discrete cosine transform (DCT) domain. A normalized spectral 

power is determined in four spectral sub-bands of 8x8 pixel blocks 

(see Fig. 1) denoted by digits from 1 to 4 as follows [12]: 

𝑊𝑚 =
∑ 𝐷𝑘𝑙

2
𝑘,𝑙∈𝑆𝑚

∑ ∑ 𝐷𝑘𝑙
2 − 𝐷11

28
𝑙=1

8
𝑘=1

                         (3) 

where 𝐷𝑘𝑙 denotes a DCT coefficient with indices 𝑘 and 𝑙 in a block 

(𝑘 = 1. .8,   𝑙 = 1. .8), 𝑚 is an index of the 𝑚-th sub-band 𝑆𝑚 (𝑚 =
1. .4), 𝑊 is a normalized energy allocation parameter that lies in the 

range from 0 to 1. 
 

0 1 1 1 1 2 2 2 

1 1 1 1 2 2 2 3 

1 1 1 2 2 2 3 3 

1 1 2 2 2 3 3 3 

1 2 2 2 3 3 3 4 

2 2 2 3 3 3 4 4 

2 2 3 3 3 4 4 4 

2 3 3 3 4 4 4 4 

Figure 1. Four spectral sub-bands in the 2D DCT domain 

 Then, for the obtained set of 𝑊𝑚 for each sub-band, four 

statistical parameters, namely mean, variance, skewness and 

kurtosis have been calculated. Totally 16 parameters representing 

energy allocation in the DCT blocks have been obtained. 

The second group of input parameters includes four blocks’ 

parameters. They describe image statistics in 8x8 pixel blocks. 

These four parameters are mean, variance, skewness, and kurtosis 

of block means distribution [10]. 

Another group is the so-called probability parameters. For each 

8x8 DCT block, the probabilities 𝑃𝜎(𝑞), 𝑞 = 1, . . , 𝑄 in a 𝑞-th block 

(𝑄 is a total number of analyzed blocks), where magnitudes of DCT 

coefficients are smaller than the corresponding thresholds [12]: 

𝑇𝑞 𝑘𝑙 = 𝜎𝜇𝐼�̅�√𝐷𝑝𝑛(𝑘, 𝑙),                       (4)  

where 𝐷𝑝𝑛(𝑘, 𝑙) denotes the DCT normalized power spectrum, 𝐼�̅� is 

the 𝑞-th block mean, 𝜎𝜇
2 is the relative variance of the speckle. Note 

that in our study 𝜎𝜇
2 is equal to 0.05. Next, after getting all estimates 

𝑃𝜎(𝑞),   𝑞 = 1, . . , 𝑄, four statistical parameters, i.e. mean, variance, 

skewness, and kurtosis have been calculated. 

The last group of input parameters consists of four global 

statistics parameters. These parameters are calculated as mean, 

variance, skewness and kurtosis for the whole analyzed image. 

Finally, all above-mentioned 28 parameters can be potentially 

used to train neural network, although our experiments have shown 

that it is enough to use 13 parameters without losing prediction 

performance [10]. 

Neural Network Structure and its Training 
Prediction of despeckling efficiency in terms of improvement 

for a given image quality measure for the Frost filter is carried out 

using the multilayer perceptron (MLP) and 13 input parameters 

extracted from an analyzed speckled image. It consists of three 

hidden layers with hyperbolic tangent activation function. Bayesian 

regularization backpropagation has been used to train multilayer 

perceptron and 30 epochs have been established. The output of the 

used MLP is a value of improvement for a given image quality 

measure. The architecture of the used neural network is shown in 

Fig.2. 

 

 
Figure 2. Architecture of the multilayer perceptron used to perform prediction 
of despeckling efficiency (improvement for a given image quality measure) for 
the Frost filter 

We have used 100 high quality component images from #5 and 

#11 channels of multispectral data acquired by Sentinel-2 to create 

a dataset for neural network training and validation. Each 

component image from both channels was divided into images of 

the size 512x512 pixels. As a result, 8100 images of 512x512 pixels 

for each channel were used as speckle-free (reference) images. 

These images were then distorted by artificially generated speckle 

with the same properties as for Sentinel-1 SAR images and filtered 

by the Frost filter with different window sizes and damping factors.  

The data for neural network training and validation were 

collected in the following way. First, for all images distorted by the 

speckle, the statistical and spectral input parameters were calculated 

and saved. In addition, using speckled images and the corresponding 

reference ones, the values of the considered image quality measures, 

namely PSNR, PSNR-HVS-M, and FSIM were obtained. For 

despeckled images, the corresponding measure values were 

obtained in the same way. The values of improvement due to 

despeckling (difference between measure values for despeckled 

images and for the corresponding noisy ones) for all image quality 

measures were determined as well. Here and below we denote the 
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improvement for the considered image quality measures as IPSNR, 

IPHVSM and IFSIM. 

The procedure of neural network training and validation has 

been conducted in two stages. At the first stage, which is called self-

dataset validation, the dataset was divided into two parts: 80% of 

images have been used for training and the remaining 20% of images 

for validation. In this stage, all images have been taken from one 

channel, namely #5. The second stage using cross-validation has 

been performed to evaluate the generalization capability of the 

trained neural network. To perform cross-validation, the image 

dataset has been divided in the same proportion, but the training 

subset of 80% of images (i.e. 6480 images) has been taken from 

channel #5, while other part of 20% of images (i.e. 1620 images) 

from channel #11 has been utilized for validation. The procedure of 

random splitting the dataset into training and validation subsets has 

been carried out 100 times. 

Prediction Accuracy 
To evaluate the prediction accuracy of despeckling efficiency 

for the Frost filter, the adjusted coefficient of determination �̅�2 [16] 

averaged over 100 realizations of train-validation splitting 

procedure was used. Note that the values of adjusted �̅�2 vary from 

0 to 1, where the higher the value of �̅�2, the more accurate the 

prediction is. 

The self-dataset along with cross-dataset validation results for 

IPSNR, IPHSVM and IFSIM image quality measures are given in 

Tables 1-3. 

Table 1: Prediction accuracy for IPSNR 

Self-dataset evaluation 

Adjusted �̅�𝟐 

DF / 
Window 

size 
5x5 7x7 9x9 11x11 13x13 

1 0.976 0.975 0.974 0.973 0.971 

1.5 0.981 0.979 0.978 0.976 0.974 

2 0.983 0.982 0.980 0.978 0.976 

2.5 0.984 0.983 0.982 0.980 0.977 

3 0.985 0.984 0.982 0.980 0.978 

Cross-dataset evaluation 

Adjusted �̅�𝟐 

DF / 
Window 

size 
5x5 7x7 9x9 11x11 13x13 

1 0.949 0.954 0.959 0.963 0.967 

1.5 0.956 0.961 0.965 0.969 0.971 

2 0.960 0.966 0.970 0.973 0.975 

2.5 0.964 0.970 0.975 0.977 0.979 

3 0.965 0.972 0.977 0.980 0.981 

 

One can see that the prediction is very accurate. In case of self-

dataset evaluation for all considered measures, the values of 

adjusted �̅�2 are in the range from 0.945 to 0.985. Analysis of the 

obtained results for the cross-dataset evaluation also shows that the 

values of adjusted �̅�2 have decreased by 0.02-0.05 compared to the 

corresponding results for self-dataset evaluation. It is especially 

noticeable in the case of improvement prediction for IPHVSM 

measure. In general, the prediction accuracy is still very high. Thus, 

we can conclude that the trained neural network demonstrates high 

generalization capability and stable results. 

Table 2: Prediction accuracy for IPHVSM 

Self-dataset evaluation 

Adjusted �̅�𝟐 

DF / 
Window 

size 
5x5 7x7 9x9 11x11 13x13 

1 0.957 0.956 0.955 0.954 0.953 

1.5 0.964 0.962 0.960 0.958 0.956 

2 0.962 0.959 0.956 0.953 0.951 

2.5 0.960 0.956 0.953 0.950 0.947 

3 0.958 0.953 0.950 0.947 0.945 

Cross-dataset evaluation 

Adjusted �̅�𝟐 

DF / 
Window 

size 
5x5 7x7 9x9 11x11 13x13 

1 0.894 0.901 0.908 0.913 0.918 

1.5 0.948 0.956 0.961 0.964 0.964 

2 0.958 0.964 0.966 0.966 0.963 

2.5 0.958 0.962 0.962 0.959 0.955 

3 0.957 0.958 0.955 0.951 0.946 

Table 3: Prediction accuracy for IFSIM 

Self-dataset evaluation 

Adjusted �̅�𝟐 

DF / 
Window 

size 
5x5 7x7 9x9 11x11 13x13 

1 0.982 0.982 0.983 0.982 0.982 

1.5 0.981 0.982 0.982 0.982 0.982 

2 0.976 0.977 0.978 0.978 0.978 

2.5 0.973 0.973 0.973 0.972 0.972 

3 0.969 0.968 0.966 0.965 0.964 

Cross-dataset evaluation 

Adjusted �̅�𝟐 

DF / 
Window 

size 
5x5 7x7 9x9 11x11 13x13 

1 0.941 0.943 0.944 0.944 0.944 

1.5 0.961 0.963 0.965 0.965 0.966 

2 0.959 0.960 0.960 0.960 0.960 

2.5 0.950 0.948 0.946 0.944 0.944 

3 0.940 0.933 0.928 0.925 0.925 

 

Filter Parameters Selection 
As has been shown above, the despeckling efficiency for the 

Frost filter can be accurately predicted for a set of filter parameters’ 

values, i.e. the window size and damping factor. Based on this 

prediction, it is possible to choose what values of the filter 

parameters to set for a considered speckled image. 

Our approach to filter parameters selection is based on 

predicting the values of improvement for a given image quality 

measure, e.g. IPSNR, IPHVSM or IFSIM, for different scanning 

window sizes and damping factor values, and selecting the 

corresponding parameters for which the predicted image quality 
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measure improvement is the largest. It is possible because such a 

prediction is much faster than despeckling itself. 

 

  
               (a)                                                  (b) 

  
               (c)                                                  (d) 

  
               (e)                                                  (f) 

  
               (g)                                                  (h) 

Figure 3. The reference Sentinel-2 image (a); the speckled image (b); the 
optimal filter output for the 11x11 window size and DF = 3 (c); the filter output 
for the 5x5 window size and DF = 1 (d); the filter output for the 7x7 window 
size and DF = 2.5 (e); the filter output for the 9x9 window and DF = 2 (f); the 
filter output for the 13x13 window and DF = 1 (g); the filter output for the 
13x13 window and DF = 3 (h) 

Let us show an example of the test image artificially distorted 

by the speckle and the selected filter parameters depending on the 

predicted improvements of image quality measures. Fig. 3 shows the 

reference Sentinel-2 image (a), the speckled image (b), and the Frost 

filter outputs for different parameters (c-h). 

The ground-truth values of improvement for all considered 

measures for the above test image with different filter parameters 

(not all shown) are given in Table 4. The values of PSNR, PSNR-

HVS-M and FSIM measures for the image artificially distorted by 

speckle (see Fig. 3 b) are 22.043 dB, 19.2707 dB and 0.7013, 

respectively. It can be observed from the data in Table 4 that the 

11x11 window size and DF=3 are the best parameters. It is 

consistent with visual inspection. The predicted values for the 11x11 

window size and DF = 3 are IPSNR = 8.64 dB, IPHVSM = 6.91 dB 

and IFSIM = 0.1753. All predicted values are very close to the 

corresponding ground-truth (see Table 4), which confirms that our 

trained neural network predicts quite accurately. 

Table 4: Ground-truth values of improvement for IPSNR, 

IPHVSM and IFSIM image quality measures 

Filter Parameters 
IPSNR, 

dB 
IPHVSM, 

dB 
IFSIM 

5x5, DF = 1 6.5389 4.2869 0.12813 

7x7, DF = 2.5 7.9012 5.8478 0.1679 

9x9, DF = 2 8.2362 6.2635 0.17152 

11x11, DF = 3 8.6065 6.7721 0.17234 

13x13, DF = 1 7.2657 5.126 0.10983 

13x13, DF = 3 8.5305 6.7167 0.14623 

 

Now let us give a real-life example. Fig. 4 shows an example 

for real Sentinel-1 SAR image of size 512x512 pixels and the Frost 

filter output with the selected window size 13x13 and DF = 1. The 

values of the predicted measures IPSNR, IPHVSM and IFSIM for 

different filter parameters are given in Table 5. According to the 

obtained result, the window size of 13x13 and DF=1 provide the 

best results for all image quality measures. The best values are 

highlighted. 

Let us also compare despeckling efficiency of the Frost filter 

with the Lee filter [10] for which the optimal parameters are chosen 

in accordance with IPHVSM image quality measure. Values of 

improvement for IPHVSM measure for different parameters and for 

both Frost and Lee filters are given in Table 6. The test Sentinel-2 

image along with the outputs for both filters with optimal parameters 

are shown in Fig. 5. 

Table 6: Values of improvement for IPHVSM for different 

parameters for the Frost and Lee filters 

Frost filter 

IPHVSM, dB 

DF / 
Window 

size 
5x5 7x7 9x9 11x11 13x13 

1 4.0307 4.1126 4.1813 4.2270 4.2463 

1.5 4.7309 4.9817 5.1775 5.3016 5.3608 

2 4.7020 5.1151 5.4156 5.6002 5.6983 

2.5 4.4857 5.0001 5.3515 5.5656 5.6912 

3 4.2603 4.8236 5.1912 5.4188 5.5644 

Lee filter 

IPHVSM, dB 

Window 
size 

5x5 7x7 9x9 11x11 13x13 

 4.4516 5.2458 5.0570 4.6081 4.1649 
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Analysis of the results in Table 6 shows that optimal window 

size and damping factor for the Frost filter are 13x13 and 2, 

respectively, while for the Lee filter the 7x7 window size is the best. 

It is well seen that the Frost filter with optimal parameters 

outperforms the Lee filter both in visual quality and in improvement 

of IPHVSM measure. 

Conclusions 
In this paper, a method for selection of parameters of the well-

known Frost filter is presented. The novelty of the proposed method 

and obtained results consists in the following: 1) it is possible to 

perform despeckling efficiency prediction for the Frost filter using 

statistical and spectral parameters extracted from an analyzed 

speckled image and employed neural network before applying 

despeckling itself very quickly and quite accurately (coefficient of 

determination is larger than 0.9); 2) it is demonstrated that such a 

prediction can be done for several image quality measures utilized 

to characterize the image despeckling efficiency; 3) it is shown how 

to properly select the sliding window size and damping factor for 

the Frost filter according to different image quality measures based 

on despeckling efficiency prediction; 4) the proposed method of 

selection parameters for the Frost filter is adopted to speckle 

characteristics for real-life Sentinel-1 SAR images. 
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Figure 5. The reference Sentinel-2 image (a); the speckled image (b); the Frost filter output with the 13x13 window size and DF=2 

(c); the Lee filter output with the 7x7 window size (d) 
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