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Abstract 

Changes in retinal structure have been documented in 
patients with chronic schizophrenia using optical coherence 
tomography (OCT) metrics, but these studies were limited by the 
measurements provided by OCT machines. In this paper, we 
leverage machine and deep learning techniques to analyze OCT 
images and train algorithms to differentiate between schizophrenia 
patients and healthy controls. In order to address data scarcity 
issues, we use intermediate representations extracted from 
ReLayNet, a pretrained convolutional neural network designed to 
segment macula layers from OCT images. Experimental results 
show that classifiers trained on deep features and OCT-machine 
provided metrics can reliably distinguish between chronic 
schizophrenia patients and an age-matched control population. 
Further, we present what is to our knowledge the first reported 
empirical evidence showing that separation can be achieved 
between first-episode schizophrenia patients and their age-
matched control group by leveraging deep image features 
extracted from OCT imagery. 

Introduction 
Machine Learning (ML) techniques enable computers to learn 

from data. Most ML applications fall under the category of 
supervised learning, whereby an algorithm is trained with pairs of 
data samples and corresponding labels, and learns to assign labels 
to unseen samples [4]. Another area where ML algorithms are 
effective is in the discovery, in a bottom-up or data-driven fashion, 
of novel relationships in multidimensional data [4]. This approach 
has demonstrated effectiveness in multiple fields [4], [20] ranging 
from financial services (e.g., stock market analysis [10], fraud 
detection [13]), clinical applications (e.g., disease diagnosis [3] and 
progression prediction [22]), drug discovery [14], robotics [19], 
[11] and social media (e.g., social network data analysis [15] and 
content filtering [6]). Within the broader healthcare field, one area 
where ML may be useful is in the discovery of biomarkers (e.g., 
predictors of illness development or course [9]). In this study, we 
focus on the exploration of novel biomarkers in neuropsychiatry. 
In the fields of human clinical neuropsychology, 
psychophysiology, and cognitive neuroscience, performance on 
experimental measures is typically measured in terms of variables 
such as accuracy, reaction time, waveform amplitude, or change in 
the blood oxygen-level dependent (BOLD) signal. Similarly, in 
studies of central nervous system (CNS) structure, typical 
parameters involve 2D thickness values, or 3D volumes. With the 
advent of machine learning-based (ML) approaches, however, 
comparisons between groups (e.g., a patient group and a control 
group) no longer need to be limited to those involving traditional 
metrics. With ML, it is possible to search for biomarkers based on 
complex patterns of relationships between multiple variables, 
including patterns that had not been previously considered. In 

traditional ML literature, patterns driven by heuristics or domain 
knowledge are termed ‘hand-crafted’ or ‘hand-engineered’, in 
contrast with ‘data-driven’ or ‘learned’ representations. It is widely 
accepted by the ML community that the latter tend to be most 
effective at automating decision-making and discovery, 
particularly in scenarios where abundant and complex data are 
available [20], [8]. 

In this study, we sought to demonstrate the potential 
effectiveness of an ML-based approach to investigating changes in 
retinal structure, as observed using optical coherence tomography 
(OCT; a form of retinal imaging) in people with schizophrenia. We 
undertook these analyses based on multiple considerations, 
including: 1) the retina is part of the CNS that develops out of the 
same tissue as the brain and shares many features (e.g., neurons 
and neurotransmitters, a layered architecture); 2) thinning of retinal 
neural and vascular layers has been identified in a range of 
neuropsychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s 
disease, multiple sclerosis, traumatic brain injury) where it is 
correlated with, and often precedes, features such as brain volume 
loss, cognitive decline, and overall illness progression (reviewed in 
[16]); 3) retinal thinning has been consistently observed in 
schizophrenia (reviewed in [17]); but 4) findings regarding which 
layers demonstrate thinning have been inconsistent; and 5) partly 
as a result of this inconsistency, the overall effect sizes from 
between-group comparisons (e.g., schizophrenia vs. healthy 
control) are small or very small for all variables that have been 
measured to date [5], [17]. This situation suggests two potential 
hypotheses and directions. One is that while thinning of retinal 
layers is reliably observed in schizophrenia, the specific layer(s) 
that are affected may be significantly determined by stochastic 
factors that are independent of the illness itself, as is thought to 
occur regarding the specific site of epileptic foci [16]. A second is 
that abnormalities in retinal structure in schizophrenia may be 
better characterized by variables other than overall thickness or 
volume. For example, it may be that there are changes to the 
internal structure of retinal layers that are primary, and that often, 
but not always, lead to overall thinning. Because it is not yet clear 
what such changes might be, however, a bottom-up approach that 
searches for patterns within the data is called for.  

In this study, we report on the use of such an ML-based 
approach to differentiate schizophrenia patients from healthy 
controls. Specifically, we used data from a recently published 
study by Lai et al [2] in which (as in prior studies) chronic 
schizophrenia patients could be discriminated from age-matched 
controls on standard OCT metrics, but first episode schizophrenia 
patients (who had not been previously studied) could not be 
differentiated from their age-matched controls based on the same 
metrics. The data from Lai et al. were interpreted as evidence that 
retinal thinning and volume loss in schizophrenia are aspects of 
illness progression, and that they are not present at the initial 
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episode of psychosis. However, we recognized the possibility that 
examination of patterns within the extensive image data generated 
by OCT might yield additional insights regarding group 
differences. Therefore, the purpose of this study was to determine 
the classification accuracy of ML methods and to examine this 
accuracy relative to results obtained from traditional OCT metrics 
analyzed with traditional parametric statistics to determine 
between group differences.  

Proposed Approach  
Data Collection 

Our data was collected as part of a previously published OCT 
study that examined and compared retinal structural differences 
between chronic and first episode schizophrenia spectrum disorder 
patients [2]. The subjects included 14 first episode (FEP) 
schizophrenia patients and 18 chronic schizophrenia patients. 
There were also 20 age-matched controls for the FEP group and 18 
age-matched controls for the chronically ill group. For each 
subject, we obtained data, from both eyes, on macula thickness and 
volume, combined ganglion and inner plexiform layer thickness 
measured at the macula, and retinal nerve fiber layer thickness 
measures adjacent to the optic nerve head. Data was acquired using 
a Spectral Domain Cirrus 5000 HD-OCT scanner. For this study, 
the data used were the values provided by the Cirrus machine for 
the above variables, and the data inherent to the images produced 
by the device.  

 

Figure 1. Diagrammatic view of ReLayNet and associated feature naming 
convention. 

Deep Learning Framework 
A convolutional neural network (CNN) is a type of deep 

learning architecture that is often used for automated analysis of 
image data. Examples of tasks commonly carried out by CNNs 
include object detection, image segmentation and image 
classification. Because our study looked at OCT images, we 
decided to use a CNN. However, training a CNN requires a large 
data set, and our data was limited to images from each eye of the 
70 subjects. Therefore, we relied on transfer learning techniques. 

Specifically, we leveraged the publicly available PyTorch 
implementation of ReLayNet, a pre-trained CNN that was 
designed to segment the macula layers of and identify pathologic 
fluid build up in OCT images from people with diabetic macular 
edema [1]. The ReLayNet algorithm is an instance of a U-Net [12], 
which is a type of CNN that involves encoding and subsequently 
decoding image data to produce multiple intermediate image 
feature convolutional layers. Each convolutional layer involves 
higher levels of abstraction. ReLayNet has seven convolutional 
layers between the OCT image input and the segmented output, 
and we looked at the middle three layers (e3, bn, and d3) for our 
analysis (see Figure 1). We chose these layers because we wanted 
intermediate activations that had been moderately processed but 
were not overly tuned to the segmentation task since our goal was 
not to segment the OCT images, but rather use abstracted 
intermediates to classify the images as “control” or 
“schizophrenia.”  

Convolutional Layer Feature Extraction 
In order to address domain gaps that may exist between the 

imagery with which ReLayNet was trained and our own image 
data, we preprocessed our OCT images before feeding them to the 
pre-trained network. The first preprocessing step was to adjust the 
exposure of our OCT images so that they matched the exposure of 
the training images. We did this in Python 3.8 using the publicly 
available scikit-image project [18]. We specifically used the 
match_histograms function in the exposure module. We then 
denoised the images using BM3D 3.0.6 software available for 

scientific research, with a noise standard deviation parameter of 
30/255 and hard thresholding [21]. Lastly, our images were 
508✕338 pixels while the training set images were 512✕496 pixels, 
and so we rescaled our images to have a height of 496 using 
MatLab’s imresize function and then evenly cropped each side to 
create a width of 512. After preprocessing the OCT images, we ran 
each of the 140 images through the ReLayNet algorithm and saved 
the e3, bn, and d3 intermediate convolutional layers as NumPy 
array data structures. 

SVM Classification 
Support Vector Machines (SVMs) are machine learning 

models that can be used to analyze and classify data. To determine 
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if the intermediate convolutional layers of the FEP and chronic 
schizophrenia patients differed from their age-matched controls, 
we utilized scikit-learn’s SVM module to build Support Vector 
Classification (SVC) models and see how accurately the models 
could classify an unseen OCT-derived data sample as being from a 
schizophrenia patient or control subject [7]. For comparison, we 
also built SVCs using the values provided by the Cirrus 5000 OCT 
machine. In total we analyzed 6 different data sets using SVCs: the 
features from the 1) e3, 2) bn, and 3) d3 convolutional layers, 4) 
All OCT machine-provided values, 5) All OCT machine-provided 
values that were analyzed in Lai et al., and 6) the OCT machine-
provided values that were found to have significant differences 
between populations in Lai et al. (see Table 1). 

Table 1: OCT machine-provided values used to create 3 
different sets of SVCs 

OCT-machine 
provided values 

Macula Central Subfield (CSF) 
thickness, Macula volume,  
Retinal Nerve Fiber Layer 
(RNFL) thickness, Cup/Disc 
ratio, Cup volume, Ganglion Cell 
Layer-Inner Plexiform Layer 
(GCL-IPL) thickness,  
RNFL symmetry, RNFL 
quadrant thicknesses (Superior, 
Temporal, Nasal, Inferior 
quadrants), RNFL clock-hour 
thicknesses (3, 6, 9, and 12) 

OCT machine-
provided values 
analyzed in Lai et al. 

Macula CSF thickness, Macula 
volume,  
RNFL thickness, Cup/Disc ratio, 
Cup volume, GCL-IPL thickness 

OCT machine-
provided values 
found to have 
significant differences 
between populations 
in Lai et al. 

Macula CSF thickness, Macula 
volume 

 
Each of these data sets was subdivided such that SVCs were 

built to classify FEP patients vs. age-matched controls or 
chronically ill patients vs. age-matched controls. Given the small 
number of data samples available, we implemented a leave-one out 
cross-validation process. Specifically, we built SVCs by training 
the algorithm with all of the samples in a data subset, except one, 
and tested them by having the models label the unseen sample. For 
example, when using the e3 convolutional layers from the FEP and 
age-matched control OCT images, we created 68 classifiers 
because there were 14 FEP subjects and 20 controls, with 2 retina 
images each. The classifiers were all trained on 67 of the 
convolutional layers and each was tested by labeling a different 
unseen layer. This way, every convolutional layer was used to test 
a classifier that was trained on the remainder of the data. 

SVC Parameters and Data Preprocessing 
One technique used to improve the performance of the SVCs 

was to adjust for the data imbalance of the training set. Because the 
groups being compared (i.e., FEP vs. control) did not have the 

same number of subjects (i.e., 14 vs. 20, each providing data from 
both eyes), an SVC could be biased to more likely label an unseen 
sample as belonging to whichever group had a larger sample size. 
To account for this, we used the scikit’s “class_weights=balanced” 
parameter, which automatically balanced the weights of different 
groups so that an SVC was not influenced by their sizes. The 
equation for the weight of each group or class was as followed: 

n_samples / (n_classes * np.bincount(array_per_sample))  (1) 

Another technique we tested was standardizing the data sets 
by removing the mean and adjusting the standard deviation of each 
variable to 1, using scikit-learn’s preprocessing StandardScaler 
function. Standardization was necessary for the SVCs created 
using OCT machine-provided values, because the low 
dimensionality of the data resulted in non-convergence, meaning 
differing results with repeated trials. Standardization was not 
necessary to achieve convergence on SVCs operating on features 
extracted from convolutional layers, so we created SVCs for these 
using both standardized and nonstandardized data sets. 

Data Analysis 
Our labeling followed the traditional convention according to 

which “schizophrenia” samples belong to the positive class and 
“control” samples belong to the negative class. A true positive or 
true negative resulted when the test sample was correctly labeled 
as schizophrenia or control, respectively. For each set of classifiers 
(i.e., SVCs built using all OCT machine-provided data and labeling 
FEP vs. control), a confusion matrix was constructed outlining the 
number of true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN) that resulted. We then calculated the 
accuracy, precision, recall, and f1 values for each confusion 
matrix, where each of these values is defined as followed: 

accuracy = (TP + TN) / (number of predictions) (2) 

precision = TP / (TP + FP) (3) 

recall (sensitivity) = TP / (TP + FN) (4) 

f1  =  2 * (Recall * Precision) / (Recall + Precision) (5) 

The accuracy and f1 values were used to compare the 
performance of the different sets of classifiers. 

Results  
SVCs trained on OCT Machine Values 

Using OCT machine-provided values, SVCs that labeled 
chronic schizophrenia vs. age-matched control samples had good 
performance, based on their accuracy and f1 values, while SVCs 
labeling FEP vs. age-matched controls did not. 

For the chronic schizophrenia vs control classifiers, all of the 
SVCs resulted in both accuracies and f1 scores greater than 0.5, 
meaning that their performance was better than the expected result 
had the algorithms randomly assigned the two labels (see Table 2). 
The SVCs built and tested on only the macular thickness and cube 
volume values performed best (accuracy = 0.72, f1 = 0.70). The 
classifiers created using all OCT machine-provided values and 
only the provided values analyzed in Lai et al. performed 
comparably with equal accuracies (accuracy = 0.69) and f1 scores 
of 0.66 and 0.64, respectively.  
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For the FEP vs. control classifiers, there was no classifier that 
had both accuracy and f1 values greater than 0.5 or performed 
better than the others when looking at both fields (see Table 2). 
Classifiers that looked only at macular thickness and cube volume 
had the highest accuracy (accuracy = 0.5), and classifiers that only 
looked at values analyzed in Lai et al. had the highest f1 scores (f1 
= 0.48). 

 
Table 2: Confusion matrices and statistical analysis values for 
OCT machine data SVCs 

 

SVCs trained on Deep OCT Image Features 
Comparing the overall results of SVCs looking at chronic 

schizophrenia patients to those looking at FEP schizophrenia 
patients, neither set of SVCs consistently outperformed the other. 

For the chronic schizophrenia vs. control classifiers, the SVCs 
using the d3 intermediate convolutional layers with non-
standardized data had the best performance (accuracy = 0.62, f1 = 
0.58, see Table 3). The SVCs relying on non-standardized data 
produced higher f1 scores than those using standardized data for all 
three convolutional layers. Also comparing only f1 scores, the d3 
layer had the best performance within the standardized and non-
standardized categories. 

For the FEP vs. control classifiers, the SVCs using the d3 
intermediate convolutional layers with non-standardized data once 
again had the best performance (accuracy = 0.61, f1 = 0.56, see 
Table 3). For features extracted from the bn and d3 layers, the non-
standardized data outperformed the standardized data. However, 
for the e3 convolutional layer, the standardized data performed 
better (standardized: f1 = 0.53, non-standardized: f1 = 0.49). 
Within the non-standardized data category, the d3 layer still 
performed best, and within the standardized data category, the e3 
layer performed best (f1 = 0.53). 

We hypothesize the reason why standardization of deep 
features does not have a significant impact on the experimental 
results is related to the fact that all feature values lie on the same 
feature space, and consequently, their magnitudes have comparable 
physical meaning. This is not the case for OCT machine values, 
which carry largely diverse physical meanings.  Additionally, 
classifiers operating on features extracted from the d3 layers may 
outperform those leveraging earlier sets of deep features may be 

due to the fact that, the deeper the feature, the higher the level of 
abstraction associated with it. As mentioned, however, using 
features that are too close to the output layer may be 
counterproductive since their level of task specificity (in this case, 
segmentation) may prevent them from being effective at other 
tasks, such as the one this work focuses on. 

Of note, for the FEP schizophrenia patient vs. control 
classifiers, the SVCs built using features extracted from OCT 
images consistently performed better than SVCs built using values 
provided by the OCT machine. In contrast, for the chronic 

schizophrenia vs. control classifiers, the SVCs built from OCT 
machine values consistently had higher f1 scores. 

Discussion  
This study demonstrated the potential for ML analyses in 

research on retinal imaging in schizophrenia. The classifiers built 
using OCT machine metrics paralleled the findings in the Lai et al. 
study, with those differentiating chronic schizophrenia patients 
from controls performing with good accuracy while those 
differentiating FEP schizophrenia patients from controls had poor 
accuracy. This shows that relying on SVCs to analyze OCT data is 
equivalent to implementing parametric statistics. Building on this 
finding, we successfully created a set of classifiers, trained on data 
extracted from OCT images using ML techniques, that performed 
with accuracy above 0.5 for both the FEP and chronic 
schizophrenia populations, revealing the potential effectiveness of 
ML in analyzing OCT images and distinguishing differences 
between these groups. Although our accuracies of 0.61 and 0.62 
yield room for improvement, what makes this a noteworthy finding 
is that the ML algorithm we used to extract OCT image data was 
not optimized for data from schizophrenia patients. Rather, due to 
the small data set, we used an algorithm based on diabetic macular 
edema patients that had been previously generated on a 
significantly larger, publicly available data set. In addition, the 
ReLayNet algorithm was optimized for a segmentation task, 
whereas we aimed to discriminate schizophrenia patients from 
controls. We hypothesize that accuracy would be significantly 
higher if a model trained for our goal and tested on a large sample 
of schizophrenia patients and controls could be developed.  
This proof-of-concept study demonstrated that ML analyses of 
OCT data, especially those developed on a dataset of  
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Table 3: Statistical analysis values for OCT image-based SVCs 

schizophrenia patients, could be useful in several respects. 
First, these may eventually be shown to be more sensitive than 
traditional OCT thickness and volume variables for identifying 
schizophrenia-related abnormalities. Second, once an optimal 
algorithm is identified, it can be used to discover those image 
features –and therefore, which anatomical features– are most 
associated with schizophrenia, thereby leading to advances in our 
understanding of pathophysiology. This could also potentially have 
implications for treatment and prevention of further decline in 
retinal and possibly brain health. 

No study published to date on OCT findings in schizophrenia 
has had a sample size that is sufficiently large to be used for 
development of a schizophrenia-specific deep ML model. Because 
it is unlikely that any single study would be large enough, 
establishment of a network of clinical sites, collecting data on 
well-characterized patient samples using the same OCT equipment 
and software, and contributing to a centralized data registry, is a 
logical next step. In our view, the relative consistency of findings 
of retinal structural abnormalities in schizophrenia across studies, 
and the advantages of these data for revising our view of 
schizophrenia within the context of other neuropsychiatric 
disorders, warrants pursuing this approach. 
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