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Abstract

Image classification performance using a deep neural net-
work is based on the quality of training images. Well-designed
and selected training set representing truth distribution of the
classes enable the network to achieve improved accuracy. On
the other hand in real applications, class training data imbal-
ance problem limits training performance. Minor classes of rel-
atively smaller training instances suffer from under-training and
networks are over-trained on major classes. In this work, we study
the effectiveness of prior re-sampling approaches for imbalanced
image classification. We propose to investigate inter-class and
within-class characteristics and conduct class specific extrapola-
tion re-sampling for optimal imbalanced learning. The proposed
algorithm is evaluated on CIFAR-10 data set using a biased ex-
trapolation method.

Introduction

Deep neural network based image classification requires
training images of related classes that are well designed and se-
lected to represent truth distribution of the classes. In many real
applications, given training instances of a class are not enough
to represent the truth distribution. Furthermore, if the number of
training images is relatively much smaller (minor classes) than
other classes (major classes), a minor class with relatively smaller
training samples will be overwhelmed by other major classes in
the training. Because deep neural networks prefer to reflect the
supervision from major class to optimize given objective func-
tion. Addressing such class imbalance problem corresponds to
the generalization of minor class. In order to avoid class imbal-
ance problem in the training, re-weighting assigns higher impor-
tance on the minor samples so that they can be considered with
equal importance in the training. On the other hand, re-sampling
methods interpolate new samples of minor classes. For example,
Chawla et al. [2] create new samples from existing minor samples
using K-nearest neighbors. Methods are referring to the distribu-
tion of classes for re-sampling. RAMOBoost [12] determines the
ranking of minor classes following respective data distribution.
GAMO [10] performs oversampling of minority classes to han-
dle the class imbalance problem. Xu et al. [S] propose an auto-
matic data augmentation method using stochastic natural gradient
even though it is a time-consuming complex process. Lin et al.
[4] propose a deep reinforcement learning method for imbalanced
classification.

However, the class imbalance problem is not just about the
imbalance in the number of training samples. It is more about the
quality difference of the sample distribution of major and minor
classes. With the limited number of training samples, describ-
ing every aspect of a class may be limited. Simple re-weighting
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or oversampling by interpolation may not resolve the problem
because they only replicate the description of minor class sam-
ples. For example, two classes with an equal number of training
samples may have different complexity of truth distribution. One
of the classes with complex truth distribution with within-class
diversity may require more training samples outside of the cur-
rent training sample distribution. Sample extrapolation methods
[15, 6, 7, 8, 9, 13] are the solution for the problem. Han et al.
[6] create new minor samples on the borderline with other classes
rather than within minor class samples. Lee et al. [7, 8] pro-
pose a feature space extrapolation with deep convolutional neural
networks. Decision boundary re-sampling (DBR) finds new mi-
nor samples on the decision boundary of latent space. Li et al.
[9] propose a margin tuning scheme by using asymmetric large
margin loss to move their activation distribution towards under-
represented classes across the decision boundary. Similarly, label-
distribution-aware margin (LDAM) [13] assigns a larger margin
to minor class in the classification. Jeong and Lee [15] propose bi-
ased extrapolation method in latent space to concentrate on chal-
lenging cases for improved classification.

In this work, we study the effectiveness of prior re-sampling
approaches with data sets of diverse inter-class and within-class
characteristics. We claim that the uniform application of a re-
sampling scheme on a data set is not efficient and effective in
many imbalanced learning applications. We propose class spe-
cific extrapolation algorithms for the optimal and efficient ex-
trapolation re-sampling. The proposed algorithm is evaluated on
CIFAR-10 data set using a biased extrapolation method.

Biased Extrapolation in Latent Space

One of recent approaches for class imbalanced learning is
re-sampling new training data between major and minor classes.
Usual re-sampling approaches choose confident existing instances
and conduct sample interpolation or extrapolation synthesizing
new samples. On the other hand, Jeong and Lee [15] claim that
re-sampling with confident instances add new but less effective
samples. Instead, they synthesize new samples around struggling
locations of feature space such as decision boundary between ma-
jor and minor classes so that new samples investigate and improve
the separation of the classes. Sampling by extrapolation enables a
deep learning network to be induced to improve decision bound-
ary separation with the new samples. In other words, adding chal-
lenging new samples improves the classification providing fine-
grained descriptions.

We employ decision boundary re-sampling [8] and biased
extrapolation[15] schemes in our study and evaluation. Biased
extrapolation between two classes can reveal the characteristics
of the classes such as diversity and complexity. Following the



training scheme of biased extrapolation[15], the backbone net-
work is trained with class imbalance data, and latent space projec-
tion of all training data is conducted. Biased extrapolation creates
new minor samples in the latent space. We choose pairs of major
and minor classes for the extrapolation. And then, closest minor-
major instance pairs are decided for all instances. Biased extrap-
olation re-sampling is performed in each minor-major instance
pair. Decision boundary re-sampling [8] adds the new sample on
the minor-major class boundary. On the other hand, biased extrap-
olation finds the optimal location of new samples based on diverse
bias condition. We only use sample probability and asymmetric
biases. Sample probability bias selects major instances that are
used for the decision boundary re-sampling. Extrapolation is con-
ducted only with the minor-major pairs including selected major
instances.

Asymmetric sample probability bias is a type of extrapola-
tion bias that adjusts sampling locations of minor instances based
on existing instances of low probability using the following for-
mulation.

Pasym =0.5+7Pnax- (max(1, (dnormat )/ (dabnormat)) —1)(1)

This asymmetry bias shifts new minor samples toward the major
class regions of feature space.

Class Specific Extrapolation

Due to the difference of class characteristics in a data set,
the aspect of imbalance vary along with the pairs of minor-major
classes.

First, within-class characteristics of given data set are di-
verse. Just by the number of training instances, there exist rel-
atively large or small classes. On the other hand, regardless of the
number of training instances, there exist classes with given train-
ing instances that are sufficient or deficient to describe truth distri-
bution. Large and sufficient class is good enough to be applied as
it is. Small and deficient class definitely has to be re-sampled to
resolve the imbalance problem. Large but deficient class may not
be ignored in a training thanks to the number of training instances,
however given set of instances are not enough to describe the class
correctly. In this case, similar instances can be sub-sampled and
then the class has to be considered as a minor class. On the con-
trary, small but sufficient class does not suffer from the descrip-
tion problem. It only needs to assign increased importance to the
given instances by re-weighting or interpolation re-sampling.

Secondly, a pair of minor-major classes can be either well
separated or significantly overlapped with the given data set.
Well-separated minor and major classes already form good de-
cision boundary for classification. Therefore re-sampling around
the given training samples may not change the decision boundary
much showing a limited gain. On the contrary, significantly over-
lapped minor and major classes form distorted decision bound-
ary favoring major class. In this case, extrapolation re-sampling
may function extending the distribution of minor class and shift-
ing original decision boundary toward the major class region.

Therefore uniformly applying extrapolation re-sampling is
not efficient and effective in many imbalanced learning applica-
tions. Investigating within-class and inter-class characteristics of
the given data set enables class specific extrapolation. Unfortu-
nately, it is not possible to explicitly obtain truth distribution of a
class or estimate if given training instances are sufficient enough

to represent the truth distribution. Only the number of training
instances is counted for re-weighting or re-sampling approaches.
On the other hand, an inter-class characteristics can be estimated
in pair-wise classification performance.

Proposed class specific extrapolation is as follows. First,
estimate the number of given training instances of N classes if
they are relatively small or large in the data set and assign minor
or major classes. Now we have M major classes and m minor
classes (N = M +m). And then, find closest minor-major pairs
in the latent space of trained deep neural network for extrapola-
tion. At each pair, check the binary classification performance
of the trained network to decide inter-class separation. Based on
a classification performance threshold 7, each pair is decided to
be separable or overlapped. Finally, extrapolation is conducted
only on the overlapped pair. An alternative method in class spe-
cific extrapolation without any fixed threshold, iteration number
of extrapolation is decided inversely proportional to the binary
classification performance. Algorithms 1 and 2 summarize pro-
posed class specific extrapolation with and without classification
performance threshold 7.

Algorithm 1 Class Specific Extrapolation with T

1: procedure EXTRAPOLATION(C{,C3,...,Cy)
2: Minors,Majors < EstimateSize(Cy)

3 Pairs < FindPairs(Minors,Majors)
4 Accuracy + Classification(Pairs)
5: for all Pairs do
6: if Accuracy(Pair(C;,C;)) < 7 then
7 for Iter do
8 C; « Extrapolation(Pair(C;,C;))
9: Ci <+ é,'
10: end for
11: end if
12: end for

13: return C;,C,,....Cy
14: end procedure

Algorithm 2 Class Specific Extrapolation without 7
1: procedure EXTRAPOLATION(Cy,C3,...,Cy)
2: Minors,Majors < EstimateSize(Cy,)
Pairs < FindPairs(Minors,Majors)
Accuracy < Classification(Pairs)
for all Pairs do

A

do
7: C; « Extrapolation(Pair(C;,C;))
8: Ci + é[
9 end for
10: end for
11: return C;,C3,...,Cy
12: end procedure

Experimental Evaluation

We evaluate our class specific biased extrapolation algo-
rithm on CIFAR-10 data set. The number of training instances
is adjusted to assign Ship, Automobile, Deer, Cat, Bird as minor
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Figure 1. Precision-Recall curves of five minor-major pairs in Cifar10 data set
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Figure 2. Precision-Recall curves of Airplane and Cat pair with varying size of minor class

classes. The total number of major and minor samples is 3000
and 1000. Decided Minor-Major pairs are shown in figure 3. In
all experiments, VGG19 is used as our backbone network that is
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initially trained (epoch = 10). Extrapolation is performed 19 iter-
ations (Iter=19) and 10% of new minor samples are generated and
trained 10 epochs more for each iteration. B, and 7y are obtained
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Airplane +— Automobile

Figure 3. Minor-Major pairs of Cifar10 data set

empirically and the probability bias is 30% in all tests. For classi-
fication performance evaluation, we employ the precision-recall
curve and the value of area under the curve(PR-AUC). Figure
1 shows precision-recall curves of all minor-major pairs before
and after biased extrapolation. Each graph compares precision-
recall curves of five cases: No extrapolation, Extrapolation with
30% randomly chosen normal samples (Random) [8], Extrapo-
lation with bottom 30% of normal sample probability (Bottom),
Extrapolation with top 30% of normal sample probability (Top),
Asymmetry extrapolation based on the equation (1).

Separable Classes

If the binary classification accuracy of a pair is higher, ex-
tracted features of the classes are more separated. Since airplanes
and automobiles are man-made objects, their characteristics are
clear and classification accuracy is relatively higher than other
pairs. Figure 1-(a) shows classification results of airplanes and
automobiles. Figure 1-(b) is an enlarged graph of 1-(a). In this
pair, extrapolation itself improves original classification perfor-
mance significantly. However, all types of biased extrapolations
do not show significant improvement as expected. On the other
hand in 1-(c) and (d), the classification of trucks and ships show
relatively worse original classification performance compared to
the pair of airplanes and automobiles. Therefore, biased extrap-
olations show expected improvement. Asymmetry extrapolation
with ¥ = —0.4 shows the best AUC and the extrapolation with the
bottom 30% of normal sample probability shows the second best
improvement in the performance.

Overlapped Classes

Figure 1-(g) shows classification results of dogs and cats
classes. Dogs and cats are natural objects and show very similar
characteristics across the classes. Therefore major and the minor
classes overlap with each other in the latent space distribution.
As a result, classification performance is relatively low (in 1-(g))
compared to other pairs indicating that extrapolation re-sampling
is required to correct the current decision boundary due to imbal-

anced training data. In the classification of similar classes, asym-
metry extrapolation with y = —0.4 and the extrapolation with bot-
tom 30% of normal sample probability show clear improvement
compared to random [8] and top extrapolations. Similarly, Horse-
Deer pair in figure 1-(h) also shows the characteristic of over-
lapped class pair. Horses and deer have sharing features, though
not as much as dogs and cats do. For this reason, this pair also
shows a higher effect of biased extrapolation compared to sepa-
rated class pairs.

Class Specific Extrapolation

Based on the evaluation above on the CIFAR-10 data set,
we apply our class specific extrapolation algorithm with thresh-
old 7 = 0.7 on the data set. As a result, out of chosen 5 pairs of
minor-major classes (Airplane-Automobile, Truck-Ship, Horse-
Deer, Frog-Bird, and Dog-Cat), two overlapped pairs (Horse-
Deer, Dog-Cat) are biased extrapolated and remaining pairs are
randomly extrapolated (Note that extrapolation itself gives ad-
ditional training to the networks, and therefore we perform ran-
dom extrapolation with separable pairs rather than doing nothing
with them) keeping overall classification accuracy saving 20.7%
of computational cost.

Ablation Study

To see the effect of different ratios in original training in-
stances, we vary the size of the minor classes. In figure 2, the
number of major class instances is fixed to 3000. In 3:1, 6:1, and
10:1 cases, the number of minor class instances is set to 1000,
500, and 300, respectively with Airplane and Cat pair. As the
number of minor classes decreases, classification performance
without extrapolation decreases. In all cases, biased extrapola-
tions increase the classification performance. In the 3:1 case,
the sample probability of bottom 30 and asymmetric bias with
Y = —0.4 show the best performance over others as reported in
[15]. However, such results cannot be observed with the smaller
minor classes such as the 10:1 case where the number of the mi-
nor classes is too small to show the meaningful effect of biased
extrapolation.

Conclusion

In this work, we have studied the effectiveness of prior re-
sampling approaches including biased extrapolation for imbal-
anced image classification. We proposed to consider inter-class
and within-class characteristics and suggested class specific ex-
trapolation re-sampling algorithm for optimal imbalanced learn-
ing. The proposed algorithm is evaluated on CIFAR-10 data set
using a biased extrapolation method showing the effectiveness of
imbalanced learning.
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