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Abstract

This paper presents Nirmaan, an open-source web-based
tool for generating synthetic datasets of multiclass blobs for use
in research related to scatterplots. We demonstrate how to use
Nirmaan to generate datasets in the context of a user study where
users must determine the centers of each class, but this tool can be
used to generate datasets for other scatterplot tasks as well.

Introduction

Reproducibility and replicability are often cited as hallmarks
of good science [19]. As the visualization field continues to grow,
we are increasingly seeing efforts to provide code, data, and ex-
perimental methodology, along with the manuscript to truly al-
low the community to reproduce and validate the presented find-
ings [4, 14, 15, 24].

Researchers frequently use a combination of synthetic data
along with real world data to evaluate the efficacy of their contribu-
tion [4, 11, 16, 18, 26, 27, 28]. The process of generating synthetic
data can be tedious and time-consuming. Not only do you need
to generate synthetic data with varying sizes and features, but you
have to also consider the various parameters that can be controlled
(and reported for replication).

To alleviate the tedium of generating synthetic data (and
reporting it), we present Nirmaan—a new tool that allows a user
to generate multiclass datasets with control over the number of
classes, number of blobs, points in a blob, the positions of the
blobs, the radius of each blob, as well as the number of points in
each class in the dataset. In this paper, we introduce the various
features of Nirmaan that allow the generation of multiclass datasets
for scatterplots-related research. Users can not only save their
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data in comma-separated value (CSV) files, but they can also
save the JavaScript Object Notation (JSON) format of the dataset
configuration for compact storage and sharing. Users can also vary
the random seed to generate numerous similar datasets that have
the same configuration (number of classes, blobs, number of points
per blob, etc.), but different random point values. Having multiple
similar datasets can be valuable when designing a study where you
do not want participants to see the same datasets repeatedly.

Additionally, we demonstrate the use of Nirmaan for a com-
pleted user study where we investigated strategies to address over-
draw in multiclass scatterplots. We later discuss other possible
use cases for the tool that allows participants to generate datasets
to test “numerosity,” “object comparison,” “find anomalies,” and
“density comparison” scatterplot visualization tasks [22].

Related Work

Multiclass scatterplots are popular in data visualization re-
search due to the potential to impact the legibility of large, multi-
class datasets with overlap. A combination of synthetic and
real world datasets are used in the validation process. Kim and
Heer [16] generate data with varying cardinality, category, and
entropy to study the impact of data distribution on the efficacy of
visual encodings.

Chen et al. [4] explored the use of animation to address chal-
lenges associated with exploring multiclass data visualized using
scatterplot matrices. Wang et al. [26] investigated optimal color
maps for perceptual separability for multiclass scatterplots. For
their evaluation, they used a combination of real-world datasets
and generated synthetic data with six classes. In recent work, Wei
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Figure 1. Screenshots of the Nirmaan web interface at vgl.cs.usfca.edu/nirmaan. A (top left): The interface to configure the parameters that apply to the
entire dataset. These are the first parameters configured by the user. B (middle): The interface to configure per-blob parameters, including the class distribution,
radius, and center. C (bottom left): The interface to view the current configuration in JSON format or to load a saved JSON configuration. D (right): The dataset
preview displayed after the dataset is generated. Users may opt to animate the points, download the CSV, and/or download the JSON configuration.
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et al. [27] examined the impact of geometric scaling on scatterplot
interpretation. Heimerl et al. [13] explored various aggregation-
based design choices to address problems associated with clutter
and density when visualizing multiclass scatterplots. They used
a combination of real-world data as well as synthetic data. Yuan
et al. [28] used eight real-world multiclass data sets in their recent
paper on evaluating sampling strategies when visualizing dense
multiclass scatterplots. Lu et al. [17] presented the Winglets tech-
nique to communicate uncertainty in multiclass scatterplots. They
used a within subjects design where they generated datasets with a
number of clusters and varying overlap in the clusters.

Finally, Sedlmair et al. [23] presented a taxonomy of visual
cluster separation factors. Our tool allows users to configure the
count, size, density, and separation data characteristics, but not
factors like the shape or mixture. Nirmaan is inspired by (but
does not directly use) the make-blobs dataset generator in the
scikit-learn Python library [21]. The name, pronounced Nir-
maan, is inspired by the Hindi word for construction and building.

Tool Features

Nirmaan is an open-source web-based tool that allows
users to generate synthetic datasets with one or more multi-
class blobs. A “blob” is a set of randomly generated points
in a circle around a central (x,y) coordinate within a given
radius. Visit vgl.cs.usfca.edu/nirmaan for a live demo and
github.com/usfvgl/nirmaan for the source code.

Dataset Configuration

Users must first configure the parameters that apply to the
entire dataset. See Figure 1 (A) for the interface. The required
parameters include the number of classes to use, the number of
blobs to generate, and the number of points per blob. Users must
also specify a minimum and maximum value, which is used to
determine the blob centers. Depending on the radius specified per
blob later, it is possible that some point values fall outside this
range (see Figure 2).

Users may optionally set a random seed to make the dataset
generation repeatable. This value is used to seed the random
number generator used to generate point positions and shuffle the
dataset. Users may also optionally shuffle the generated dataset;
otherwise the points are sorted by blob then class. Figure 3 shows
the result of enabling shuffle in the tool.

Per Blob Configuration

Once the dataset parameters are configured, users may then
configure the per-blob parameters. Each blob has its own config-
uration section based on the dataset configuration, as shown in
Figure 1 (B). Each blob has sliders to configure the number of
points per class within the blob. The class distribution percentages
update automatically as the sliders are moved. Any individual class
may be set to 0 points, so that none of the points within that blob
are assigned that class. Users must also specify the blob radius,
relative to value range configured for the dataset earlier.

Users may also optionally specify the blob center coordinates.
The center must be within the value range for the dataset, but the
points generated may be outside of that range depending on the per-
blob radius (see Figure 2). Either all or none of the blob centers
must be specified; the center coordinates will be automatically
calculated unless the coordinates are provided for all blobs.
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json: {"numPoints": 1200, "numClasses": 2, "numBlobs": 1,
"minVal": 0.15, "maxVal": 9.85, "radii": [2], "sliders": [[400, 800]],
"centers": [[1, 1]], "shuffle": true, "seed": "120"}

Figure 2. Shows that while our tool requires the center of each blob to be
in the user specified range of values, certain points can fall outside the range
depending on the size of the radius.

Generate and Preview Dataset

Once the dataset and per-blob configurations are complete,
users may click on the “Generate Dataset” button. This will copy
the current configuration into the “JSON Configuration” section,
generate the dataset, and display a preview of that dataset as a
scatterplot.

The scatterplot preview includes crosshairs for the centers of
each class, which is calculated as the average x and y value for
points of that class across all blobs. Users may also optionally
animate the scatterplot preview, which continuously redraws the
points. The preview is especially helpful early in the design phases
of a user study; allowing quick iteration to determine the optimal
parameters for a specific task.

If satisfied with the generated dataset, users can then click
the “Download CSV” button to download the dataset as a CSV
file. Users may optionally download the JSON configuration as
well, which is useful to re-generate the dataset from the same set
of parameters. See Figure 1 (D) for the interface.

JSON Configuration

When a dataset is generated, its configuration is copied in
JavaScript Object Notation (JSON) format into the “JSON Config-
uration” text area. Users may click the “Download JSON” button
to download this configuration to file. Alternatively, users may
copy/paste a past configuration into this textarea and click the
“Load Configuration” button. This will set all the parameters to the
specified configuration and regenerate the dataset. See Figure 1
(C) for the interface.

This feature is useful for repeatable dataset generation, but
also for iteration. Users can download both the dataset and config-

IS&T Infernational Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022


https://vgl.cs.usfca.edu/nirmaan/
https://github.com/usfvgl/nirmaan/

"shuffle": true "shuffle": false

json: {"numPoints": 5000, "numClasses": 4, "numBlobs": 1,
"minVal": 0.15, "maxVal": 9.85, "radii": [2], "sliders": [[1250, 1250,
1250, 1250]], "centers": [[5, 5]], "shuffle": true, "seed": "1200"}

Figure 3. Demonstrates the shuffle feature with one blob and four classes.
Left: The dataset with shuffle enabled. The four classes (depicted in pink,
green, orange, and blue) are visible. Right: The dataset with shuffle disabled.
Points from the last class drawn (pink) are more predominant. This could
result in viewers interpreting the class distribution incorrectly.

uration, and later decide to tweak a single setting by reloading the
configuration and then editing the parameters. A JSON configura-
tion can also be replicated multiple times with different random
seeds to generate multiple datasets with near identical configura-
tions. Figure 4 shows an example varying the random seed.

Implementation

Nirmaan is responsive, mobile-friendly, and works in most
modern web browsers. At its core, Nirmaan is implemented with
HTML, CSS, JavaScript, and the jQuery JavaScript library [20].
Nirmaan utilizes custom JavaScript to generate datasets similar to
the make-blobs dataset generator in the scikit-learn Python
library [21]. The seedrandom.js JavaScript library [6] is used to
generate random numbers in a repeatable way when a seed is
specified.

The web-based front-end uses HTML, the open-source Bulma
CSS framework [25] with the bulma-tooltip plugin [5] for tooltips,
and the Font Awesome icon toolkit [7] for icons. The per-blob class
distribution slider widgets use the noUiSlider JavaScript library [8]
and the wNumb JavaScript library for formatting numbers [9].
The scatterplot preview is generated using the D3 version 4 [1, 2]
JavaScript library. The widgets and built-in preview use the “Dark2”
ColorBrewer scheme [3], which can be modified by changing the
colorScheme variable in the JavaScript code.

Nirmaan both relies on open-source libraries and is itself open-
source, allowing other researches to modify this tool according to
their needs. For novel visualization techniques implemented in
JavaScript, this may allow for more rapid iterative development of
datasets than relying on other programming languages and tools
for synthetic dataset generation. The tool is hosted via Github
Pages [10]. See github.com/usfvgl/nirmaan for the source code.

Example Case Study

We tested Nirmaan by using it to generate synthetic datasets
in a user study exploring overdraw in multiclass scatterplots. We
used the Experimentr [12] framework to conduct the user study.
See Figure 5 for screenshots.
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"seed": "750"

"seed": "1500"

json: {"numPoints": 400, "numClasses": 3, "numBlobs": 1,
"minVal": 0.15, "maxVal": 9.85, "radii": [3], "sliders": [[167, 166,
67]], "centers": [[5, 5]], "shuffle": true, "seed": "1500"}

Figure 4. Demonstrate the ability to generate similar datasets by only vary-
ing the random seed value. This feature can be used to generate multiple,
similar synthetic datasets for user evaluation.

Visualization Task

Our goal was to measure how well users are able to estimate
the center of each class in a multiclass scatterplot with different
levels of overdraw. The center of a class is defined as the average
x and y value for all points belonging to that class.

We used synthetic datasets with three blobs for this task,
where a “blob” is a set of randomly generated points in a circle
around a central (x,y) coordinate within a given radius. The blobs
have fixed locations arranged in a triangle, so that all class centers
would lie within this triangle. Each blob had the same number of
points and equal radius. See Figure 5 for an example.

Study Design

The study started with an information and consent page, col-
lected optional user demographics, and asked users their familiar-
ity with multiclass scatterplots. Users had to be 18 years or older,
and could not have a form of color blindness nor photosensitive
epilepsy to participate.

Next, the study included four questions to train the user on
the visualization task. Users were asked to drag four slightly
transparent filled circles from the top of the plot to where they
felt the center was for the class with the corresponding color. See
Figure 5 (left) for an example of the initial interface.

After users dragged each of these circles to the plot area, the
“Click for real answer” button was enabled. Clicking this button
displayed the real centers of each class, allowing users to see how
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Figure 5. Screenshots from the example user study. Left: An example training question in its initial state. Right: The same training question after the user has

guessed the centers of each class and clicked the “Click for real answer” button.

well they were performing on the training questions. See Figure 5
(right) for an example. Users had to click this button before being
able to continue to the next question.

After a break, we asked the user to perform the visualization
task four times followed by an engagement check and additional
break. We then asked the user to perform the visualization task
another four times after the break, followed by debrief questions
at the end. Except for the engagement check, the order users saw a
specific dataset was randomized.

Dataset Generation

We tested two overdraw conditions: (1) a “sparse” condition
with less overdraw having 350 points per blob, and (2) a “dense”
condition with more overdraw having 700 points per blob. The
blobs for both conditions had the same radius and center positions.

For the training questions, we made sure users saw each
condition twice in random order. Users could not continue until
they attempted to find the centers for each class and clicked the
“Click for real answer” button to see how well they performed.
Here is an example Nirmaan JSON configuration for one of the
“dense” training datasets, which is also depicted in Figure 5:

{"numPoints": 700, "numClasses": 4, "numBlobs": 3, "minVal":
0.15, "maxVal": 9.85, "radii": [1, 1, 1], "sliders": [[102, 95, 470,
33], [352, 145, 42, 161], [39, 105, 42, 514]], "centers": [[5, 8],
[2.25, 8], [7.75, 3]], "shuffle": true, "seed": "217"}

For the non-training questions, we generated 4 dense datasets
and 4 sparse datasets with various class distributions per blob. Here
is an example sparse dataset used for a non-training question:

{"numPoints": 350, "numClasses": 4, "numBlobs": 3, "minVal":
0.15, "maxVal": 9.85, "radii": [1, 1, 1], "sliders": [[140, 70, 103,

37], [141, 79, 48, 82], [35, 66, 110, 139]], "centers": [[5, 8,
[2.25, 3], [7.75, 3]}, "shuffle": true, "seed": "529"}

For the engagement check inserted midway just before the
break, we used a sparse dataset. We designed the dataset to be
trivial to answer, with a distinct class in each blob making up over
70% of the points. The engagement check configuration was:

{"numPoints": 350, "numClasses": 4, "numBlobs": 3, "minVal":
0.15, "maxVal": 9.85, "radii": [1, 1, 1], "sliders": [[35, 235, 45,
35], [35, 35, 245, 35], [35, 35, 35, 245]], "centers": [[5, 8], [2.25,
3], [7.75, 3]], "shuffle": true, "seed": "217"}

We piloted the study twice, first with 11 users and then with
48 users. Based on the results and collected feedback, we are
confident we can use Nirmaan and its generated datasets to conduct
a larger user study measuring this visualization task to compare
different techniques for alleviating overdraw.

Possible Use Cases

The utility of this tool goes beyond the case study presented.
As discussed in the introduction and related work, several visu-
alization user studies rely on synthetic datasets [4, 11, 16, 18,
26, 27, 28]. Nirmaan may be used to generate synthetic datasets
for similar low-level visualization tasks on multiclass scatterplots.
Consider the dataset depicted in Figure 1. This multiclass dataset
was generated with the following configuration:

{"numPoints": 3000, "numClasses": 4, "numBlobs": 2, "minVal":
-10, "maxVal": 10, "radii": [7, 5], "sliders": [[2000, 800, 200, 0],
[500, 1000, 750, 750]], "centers": [[2, -2], [-2, 4]], "shuffle":
true, "seed": "615"}
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Figure 6. Example datasets for density or diversity-related visualization tasks. See the “Possible Use Cases” section for the JSON configurations. Left: The
dataset with four classes. The densest and most diverse region is centered at (3, 4). Right: The same dataset, except with only a single class. The densest

region is again centered in the same position.

This dataset and its variations may be used for several tasks
that fall under the “numerosity comparisons” tasks identified by
Sarikaya and Gleicher [22]. For example, we could ask users
to identify the class with the most points (green), or the most
prevalent class for each blob (or cluster).

We can also use Nirmaan to generate datasets for tasks related
to identifying the densest the most diverse (in terms of classes)
region in a scatterplot, similar to the tasks studied by Chen et al. [4].
Consider the following configuration, as depicted in Figure 6 (left):

{"numPoints": 6000, "numClasses": 4, "numBlobs": 3, "minVal":
-0.15, "maxVal": 10.15, "radii": [5, 4, 1], "sliders": [[1500, 1500,
1500, 1500], [2000, 2000, 2000, 0], [2000, 2000, 0, 2000]], "
centers": [[5, 5], [5, 5], [3, 4]], "shuffle": true, "seed": "532"}

Note that this example also works even if there is only one class,
as depicted in Figure 6 (right):
{"numPoints": 6000, "numClasses": 1, "numBlobs": 3, "minVal":
-0.15, "maxVal": 10.15, "radii": [5, 4, 1], "sliders": [[6000, 0],
[6000, 0], [6000, 0]], "centers": [[5, 5], [5, 5], [3, 4]], "shuffle":
true, "seed": "532"}

In both cases, the region near the center of blob 3 will be the most
dense. It will also be the most diverse for the multiclass variant.
It is also possible to generate datasets focused on outlier
or anomaly detection. See Figure 7 for an example dataset and
configuration where there are five blobs, but only one contains a
point of the second class. We can raise the difficulty of this task by
increasing the number of “distractor” classes present in each blob.

Conclusion

We present Nirmaan, an open-source web-based tool available
at vgl.cs.usfca.edu/nirmaan for generating synthetic datasets with
one or more multiclass blobs for use in scatterplot user studies.
This tool allows users to specify the number of classes, blobs, and
points per blob. Users may then configure the class distribution,
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radius, and center for each blob. A preview of the generated dataset
is displayed, and users may opt to download both the dataset and
the configuration JSON needed to regenerate the dataset.

We used Nirmaan to rapidly iterate different parameters and
preview the resulting datasets to design a user study on overdraw
in multiclass scatterplots. We were also able to save specific
configurations as JSON, load those configurations, and tweak them
as needed to generate different conditions for our study.

We also discussed how Nirmaan may be used to gen-
erate datasets for other visualization tasks as well.  Nir-
maan is open-source and the source code is available at
github.com/usfvgl/nirmaan online. Other researchers may adapt
this tool to meet their needs, including integrating other custom
visualization techniques into the preview feature for rapid iterative
development.
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