

Visualizing Semantic 3D Object Clouds
Bola Okesanjo and Stephen Brooks; Dalhousie University; Halifax, Nova Scotia, Canada

Abstract

3D object clouds, first introduced by Hong and Brooks,
visualize the pairwise similarity between a set of objects and a
central object of interest. This similarity is used to determine the
position of each object within the cloud. However, this does not
capture the semantic relationship of all the objects and the lack of
consistency may reduce the expectation of finding an object when
performing visual search. To generate a semantic 3D object cloud,
we define and subsequently minimize an energy function that
captures the pairwise similarity amongst all objects within the
cloud. The energy is minimized using several statistical machine
learning techniques and we show that the generated layouts from
such techniques outperform those of other algorithms on a variety
of metrics for evaluating layouts.

INTRODUCTION
When querying Computer-Aided Design (CAD) models from

commercial search engines results they are typically presented as a
few dozen objects in a grid of discrete rows and columns. This
arrangement of search results however can make it tedious to find
and compare different sets of result. An alternative to representing
such results is as a cloud, where all the models are clustered onto
the screen. Such a cluster can take on arbitrary shapes and allow
for a preferable arrangement of the search results. Tightly packing
the cluster also maximizes the use of the limited display space and
it has been shown to facilitate the faster recognition of 3D models
[21].

Object clouds, as their name suggests, are analogous to word
clouds in that both are a compact visual summary of various items.
Like word clouds, the items in an object cloud also have varying
sizes which indicates their degree of similarity to a given object of
interest. This similarity is based on the how many visual features
are shared between a pair of objects. Objects with the highest
degree of similarity to an object of interest are larger and objects
with lesser degree of similarity are smaller.

To facilitate faster recognition of objects, the object of interest
or the object with the most degree of similarity is placed at the
center of the cloud. This however need not be the case all the time.
Current algorithms for visualizing object clouds attempt to place
objects at a distance that also reflects their similarity to the central
object of interest. Objects that are most similar to the object of
interest are placed closer to the center of the cloud and objects that
are less similar are placed farther away. This ordering has been
shown to facilitate faster recognition of objects than a random or a
grid-based ordering [21]. However, utilizing the pairwise distance
between each object and the object of interest does not create a
semantically accurate ordering within the entire cloud. To create a
semantically accurate ordering, the pairwise distance amongst all
the objects in the cloud needs to be used instead.

To create semantically accurate and compact clouds, we
approach the problem of constructing an object cloud from an
optimization perspective. To do so, we formulate an objective
function that represents the energy within an object cloud and
encapsulates the requirements of a semantic object cloud:

• Objects should be compactly placed together without
overlaps

• Similar objects should be closer and dissimilar objects
should be farther

The objective function is then optimized using several
strategies such as gradient descent and majorize-minimize which
result in several algorithms for visualizing object clouds. Using the
energy function, we can monitor the performance of our algorithms
and for some, terminate them when they cease to minimize the
energy within the cloud. This however contrasts with other cloud
visualization algorithms that rely on a set number of iterations
from the user which may be insufficient to properly minimize the
energy.

In order to fulfil the above objectives, this work proposes a
real-valued function to describe and quantify the aesthetic of object
clouds. We also propose algorithms for the generation of object
clouds based on the optimization of the proposed function.
Furthermore, we evaluate and contextualize the performance of our
proposed algorithms in relation to existing algorithms for the
generation of object clouds. Recalling that our target application is
to browse a similar number of objects that are typically found on
commercial webpages (which generally present a few dozen
objects), we made a comparison of clouds of up to 100 objects. For
the same reason, we focussed on layout quality rather than
computation speed, since we are only browsing a few dozen
objects in practice.

We begin with a discussion of related work, including graph
drawing dimensionality reduction, word clouds and the original 3D
object cloud paper. We then introduce semantic 3D object clouds
which incorporates dimensional reduction, a graph structure and
energy minimization strategies. We then discuss our experimental
evaluation, followed by conclusions and limitations.

RELATED WORK

Graph Drawing
Graph drawing algorithms use the information contained

within a graph to generate suitable layouts. But graph drawing is a
very large area of research that incorporates many types of graphs
such as hierarchical graphs and orthogonal layouts [49]. We will
restrict our background discussion to force based and energy-based
graphs. Force-directed graphs first applies a set of spring forces to
move the edges and vertices of the graph, while energy-based
graphs optimize an energy function to move the vertices of the
graph into place.

 These graphs are typically undirected graphs with a 2D or
multi-dimensional layout. A layout can be described as suitable if
it has minimal energy or if it both exhibits some symmetry and the
pairwise vertex distances are close to some constant [24]. These
graph drawing algorithms start with an initial layout of the graph -
this can be random, circular or any other layout. From the initial
layout, both the vertices and edges of the graph are moved until a
stop criterion is achieved. This criterion includes the number of

IS&T International Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022 414-1

https://doi.org/10.2352/EI.2022.34.1.VDA-414
© 2022, Society for Imaging Science and Technology

iterations, net change in forces or net change in the energy of the
graph.

While drawing an undirected graph is thought of as matching
the pairwise vertex distances to some constant, the matching
process itself can also be thought of as a form of energy
minimization whereby the energy corresponds to the discrepancy
between the geometric pairwise distances and said constant. Based
on this principle, energy-based graph drawing algorithms generate
their layout by optimizing a given energy function for a graph.
This energy is defined over the vertices of a graph and the
optimization can be achieved using local methods such as gradient
descent or global methods like simulated annealing [12][40].

Force-directed graph drawing algorithms, as the name
suggests, are a class of algorithms that use a set of forces to
generate undirected graphs. These forces are typically modelled
after spring forces and as such are either attractive or repulsive
nature. The Fruchterman-Reingold method is a well-known force-
directed algorithm that generates an undirected graph, using a set
of spring forces that are modeled after Hooke’s law [15].

Dimensionality Reduction
Dimensionality reduction is the process of representing high

dimensional data into a lower dimension such that important
patterns within the data are preserved. There are typically 2 types
of patterns that are preserved: global and local patterns [17]. These
patterns are typically found without the aid of human labels in
what is known as unsupervised learning and as such it makes
dimensionality reduction an indispensable tool in information
visualization. Examples of dimensionality reduction techniques
include non-linear approaches, such as t-SNE and UMAP, as well
as Principal Component Analysis (PCA) and Multi-Dimensional
Scaling (MDS) [50][6]. One problem with classical MDS is that it
places too much emphasis on larger pairwise distances at the
expense of smaller pairwise distances [17]. This means that larger
distances are mostly accurate whereas smaller distances tend to be
inaccurate. In fact it does not use as much as a third of all small
distances [10][19].

In an attempt to solve the shortcomings of classical MDS and
place equal emphasis on small pairwise distances, metric MDS
adds weights to the MDS objective. These weights are typically the
inverse of the original pairwise distances so that as much focus is
given to matching smaller distances as is given to matching larger
distances. Matching smaller distances allows us to capture patterns
between higher dimensional points that are close together. Unlike
classical MDS where the objective is solved analytically, the
objective in metric MDS cannot be solved analytically because the
weights perform a non-linear transformation of the points, 𝑄.
Instead, gradient descent or an iterative process known as
majorization is used to optimize the stress objective [17][13].

Scaling by MAjorizing a COmplicated Function (SMACOF)
is a popular majorization algorithm that is used to optimize a stress
objective Majorization itself is an optimization technique that is
used to solve a complicated function by solving a simpler surrogate
function. Using the Cauchy-Schwartz inequality, we can create a
simple surrogate function for the stress objective [14].

Word Clouds
3D object clouds were inspired by word clouds which is a

visualization of a set of words whereby the font size represents
some weighting like their frequency within a given text corpus.
Word clouds became popular as a form of visualization when
social sites such as flickr and del.icio.us started associating web

resources with keyword metadata. These words summarized the
content and allowed users to navigate other resources on the sites
[36][35]. Recently, word clouds provide a visual statistical
summary of a text corpus and are generated using specialized
algorithms and well-known software such as Wordles [20].

There are several types of word cloud generation algorithms.
They include both the random and semantic word cloud algorithms
[2]. Random word cloud algorithms generate their layout without
any emphasis on the semantic relationship between the words.
Semantic word cloud algorithms however generate their layout
based on these relationships. Having such structure along with the
frequency of the words improves the statistical summary provided
by the word cloud. A well known random algorithm is Wordle and
well known semantic algorithms are the Context Preserving Word
Cloud (CPWC) and seam carving [11][45].

Wordle is a popular algorithm that generates random word
clouds using an Archimedean spiral. After extracting the relevant
words that summarize a text, each word is successively placed at a
random position on the canvas. During placement, if a word
collides with any other word on the canvas, it is moved along an
ever increasing spiral until it no longer collides with another word
or until it is no longer on the canvas [37].

In order to generate semantic word clouds, most algorithms
first utilize some kind of dimensionality reduction to capture the
semantic relationship between high level representations for a set
of words. Such relationship exists when the text in a corpus can be
faithfully represented in some form such as vector embeddings.
Most algorithms use classical MDS for dimensionality reduction
but other algorithms like t-SNE can be used as well [2][33].

Classical MDS is used to generate an initial semantic layout
for most algorithms. However the 2D positions that are generated
by MDS does not take into account the size and geometry of the
words. As a result, when the words are initially placed, they are not
compact and in most cases may overlap. The crux of semantic
word cloud algorithms is in how they refine this initial layout.
Various algorithms take different approaches to refining the layout
of the cloud while preserving its semantic order.

The context preserving algorithm is a semantic word cloud
visualization algorithm that uses a set of forces to generate a word
cloud. These forces are: attractive, repulsive and planar forces. The
algorithm is a force-directed algorithm similar to the Fruchterman-
Reingold algorithm. A major drawback of this method is the use of
the Delaunay graph. By flipping the position of the words in order
to create each triangle within the graph, some semantic order is
lost. This in turn results in vastly different word clouds that get
generated with the insertion or removal of new words.

As the name suggest, the seam carving algorithm is inspired
by seam carving which is used to resize an image while
maintaining the important parts of the image [45]. Seam carving
operates by removing or adding connected rows or columns of
pixels that have little importance in the image [1]. For word cloud
generation, such pixels correspond to empty spaces within the
initial layout. As with the context preserving algorithm, classical
MDS is used to generate an initial layout and a repulsive force-
directed algorithm is then applied in order to separate overlapping
words. After separating the words, the seam carving algorithm
strips the empty spaces between them to generate a compact word
cloud. Unfortunately, in many cases, there are no connected paths
between words that run through one end of the canvas to another.
In such cases, the algorithm leaves empty regions between the
words and a sub-optimal word cloud is generated.

414-2
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022

3D Object Clouds
3D object clouds [21] and other pseudo-random placement

algorithms are algorithms that generate a seemingly random
layout. In most cases the layout is generated from a breadth-first
search of discrete positions within the layout. These positions
correspond to cells in a row-column grid that overlays the canvas
for the object cloud.

In order to generate a cloud, the vector embedding for each
object is first generated and its distance from that of the object of
interest is computed. Next the 2D layout for the cloud is divided
into a grid and the central object of interest is placed at the center
of the grid. Every other object is then sorted according to their
vector distance from the object of interest and placed at the next
available square in the grid. The next available square is found by
performing a breadth-first search of all the discrete positions with
the center square as the root. If an object is placed in a square but it
collides with an already placed object, it is rotated along an
Archimedean spiral until it no longer collides with any object [21].
The new grid position for the object is marked as occupied and the
process is repeated until all the objects are placed within the
layout.

But as discussed previously, emphasizing only the pairwise
relationship between all objects within the cloud and the object of
interest does not create a proper semantic order within the entire
cloud. To generate a more complete semantic order, the pairwise
relationship amongst all the objects in the cloud needs to be
computed, which is the focus of this work.

SEMANTIC OBJECT CLOUDS

Energy-based Clouds
As discussed in the previous chapter, using dimensionality

reduction methods such as MDS to visualize object clouds is
restricted to projecting high dimensional points unto a 2D canvas
without accounting for the geometry and size of the items that said
points represent [31].

We can modify the MDS algorithm so that performing
dimensionality reduction simultaneously determines the proper
position of various items within the cloud. To do this, we re-
express the metric MDS objective for dimensionality reduction as
a graph-drawing energy function. When such functions are
minimized, we obtain a resulting force-based graph drawing
algorithm. In this section we discuss the construction of this energy
function, as well as how it serves as a qualitative measure for an
object cloud. We also discuss how gradient descent and
majorization can be used to optimize it, as well as provide an
algorithmic implementation for generating such a cloud.

Metric Multi-Dimensional Scaling
One problem with classical MDS is that it places too much

emphasis on larger pairwise distances at the expense of smaller
pairwise distances [17]. This means that larger distances are mostly
accurate whereas smaller distances tend to be inaccurate. In fact, it
does not use as much as a third of all small distances [10][19].

In an attempt to solve the shortcomings of classical MDS and
place equal emphasis on small pairwise distances, metric MDS
adds weights to the MDS objective. These weights are typically the
inverse of the original pairwise distances so that as much focus is
given to matching smaller distances as is given to matching larger
distances. Matching smaller distances allows us to capture patterns
between higher dimensional points that are close together. The new
objective formed is referred to as Stress, S, and it is expressed as

 (1)

where 𝑑𝑖𝑗 = ‖𝑞𝑖 − 𝑞𝑗‖2 and 𝑤𝑖𝑗 = 1/𝑑𝑖𝑗.
The pairwise distances, 𝑑𝑖𝑗, however need not be represented

by Euclidean distances. They can be represented by any distance
function. In order for MDS to capture local patterns within the
neighbourhood of a point 𝑞𝑖, the Euclidean distance has to be
replaced with the geodesic distance. This is because Euclidean
distance corresponds to a distance on a straight line and on curved
manifolds such as the one illustrated in figure 1, this results in
smaller pairwise distances for far away points on the manifold.

Figure 1. Geodesic & Euclidean distances between points A and B on a curve

The geodesic distance on the other hand is the shortest-path
distance between any pair of points, 𝑞𝑖 and 𝑞𝑗, on a graph. If a
manifold is represented as a graph, the geodesic distance can find
the appropriate distance between any pair of points on the
manifold. This means that on curved manifolds, far away points
will always have a larger pairwise distance than neighbouring
points. Since the shortest-path distance computation relies on the
distance between neighbouring points, MDS is able to capture
local patterns when using the geodesic distance [39].

Figure 2. Direction of 𝛼 and 𝛽 on a given point 𝑝𝑗
Energy Formulation

In order to express the energy in equation 1 as a force-based
graph-drawing algorithm, we change the weighting, 𝑤𝑖𝑗, into a
force-based weighting and replace the original pairwise distances, 𝑑𝑖𝑗, with the sum of the radii for a pair of objects. In order to
replace the weight, 𝑤𝑖𝑗, in equation 1 we decompose it into

 (2)

where 𝛽𝑖𝑗 is an attractive weighting, 𝛼𝑖𝑗 is a repulsive weighting
and 𝛿𝑖𝑗 is an indicator function. We also express the pairwise
distances, 𝑑𝑖𝑗, as

 (3)

IS&T International Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022 414-3

where 𝑟𝑖 and 𝑟𝑗 are the radii for a pair of objects. The new pairwise
distance indicates that we want all the objects to be adjacent each
other. Normally this will cause all the objects within the cloud to
collapse on each other. However, the force-based weighting will
prevent this from happening and instead results in a tight packing
of the objects within the cloud. From the above, the energy in
equation 1 becomes

 (4)

where the indicator function, 𝛿𝑖𝑗, evaluates to

 (5)

The first weighting, 𝛽𝑖𝑗, can be thought of as an attractive
weighting between points, 𝑝𝑖 and 𝑝𝑗 while the second weighting, 𝛼𝑖𝑗 , is the repulsive weighting between the pair of points. Since 𝑝𝑖
and 𝑝𝑗 represent the center of a pair of objects and 𝑑𝑖𝑗 represents
the distance at which the pair of objects become adjacent without
overlapping, the weightings control how fast or slow different pairs
of objects become adjacent to one another. When ‖𝑝𝑖 − 𝑝𝑗‖ > 𝑑𝑖𝑗, the
objects represented by 𝑝𝑖 and 𝑝𝑗 are far apart and either is attracted
to the other at a speed of 𝛽𝑖𝑗 until ‖𝑝𝑖−𝑝𝑗‖ = 𝑑𝑖𝑗. Conversely when
‖𝑝𝑖−𝑝𝑗‖ < 𝑑𝑖𝑗, the objects represented by 𝑝𝑖 and 𝑝𝑗 are too close and
either is repelled away at a speed of 𝛼𝑖𝑗 until ‖𝑝𝑖 − 𝑝𝑗‖ = 𝑑𝑖𝑗. When
‖𝑝𝑖 − 𝑝𝑗‖ = 𝑑𝑖𝑗, the weightings have no effect and there is no change
in the position of either 𝑝𝑖 or 𝑝𝑗.

Under the typical MDS objective both weightings are equal
and cancel themselves. In such a scenario the pairwise distances, 𝑑𝑖𝑗, must reflect actual distances between all the objects or the
objects will collapse unto themselves. However, when 𝛼 > 𝛽, a
given layout has a lot of space with a few overlapping objects and
when 𝛼 < 𝛽, the layout is more compact but with a lot of occluding
objects.

After decomposing the weights, we construct a graph over the
high dimensional points. This graph allows us to establish a
pairwise ordering of the objects which is lost after replacing the
original pairwise distances, 𝑑𝑖𝑗. In the next section we will discuss
what kind of graph is needed to create a semantic object cloud.
Using the high dimensional graph, we split the objective into
adjacent pairs of points, 𝑁1, and non-adjacent pairs of points, 𝑁2,
such that we have

 (6)

By setting attraction, 𝛽2 = 0 for the non-adjacent pairs of

objects and making the repulsion 𝛼1 = 𝛼2 for both adjacent and
non-adjacent pairs of objects, we end up with an energy function
that when differentiated, results in a force-based graph-drawing
algorithm. The function can succinctly be expressed as

 (7)

where 𝐴𝑖𝑗 is another indicator function that represents the
adjacency of any pair of points. In order to create non-overlapping
object clouds, especially as the number of objects increases, we
find it important to set 𝛽 < 𝛼. When the number of objects is
relatively small, 𝛽 = 𝛼 produces non-occluding objects but as the
number of objects increases, so does the number of occlusions.
Setting 𝛽 > 𝛼 on the other hand results in occluding objects
regardless of the number of objects.

Graphical Structure
In order to create a semantic object cloud, we use a K-Nearest

Neighbour (K-NN) graph. For any vector, 𝑣𝑖, in a given space, the
K-NN graph finds the 𝑘 closest vectors, {𝑤1, ...,𝑤𝑘} and constructs
an edge between 𝑣𝑖 and each of the vectors. This graph is however
directed and unconnected whereas the graph for an object or a
word cloud needs to be undirected and connected in order to exert
the proper forces amongst the nodes and compact them all. An
unconnected graph will have items that are not attracted by any
other items nor repelled by all the other items, thus creating excess
space within the cloud. To convert a graph into an undirected and
connected graph, we sum the adjacency matrix of the graph with
its transpose and take the non-zero entries as the edges.

To determine the appropriate number of neighbours for the K-
NN graph, we choose the smallest number of neighbours, 𝑘, that is
necessary to form a connected graph. We find that the smaller the
number of neighbours, the easier it is to compactly place an object
with all its neighbours, thereby reducing the energy for the object.
If the number of neighbours is high, an object cannot be placed
with all its neighbors because there is a limit to the number of non-
overlapping objects that can be placed around a given object.
Hence the energy of the object in question will increase.

The K-NN graph is typically used in many dimensionality
reduction algorithms because it preserves the local ordering
amongst high dimensional points [39][4]. To that end, we find that
it helps ensure a semantically accurate ordering amongst high
dimensional points. However, we find that the Delaunay graph
which is typically used to construct word clouds does not ensure a
semantically accurate ordering due to the flipping of points that
may be required when constructing a simplex for the triangulation.
Furthermore, the Delaunay graph cannot be used for high
dimensional points because in order to construct such a graph, the
number of points needs to exceed their dimensionality. However,
for both word and object clouds, the dimensionality of the vector
embeddings can sometimes exceed the number of items to be
visualized.

In figure 3, we illustrate the advantage the KNN-graph has
over the Delaunay graph for both semantic accuracy and
dimensionality reduction. To measure the semantic accuracy, we
use the trustworthiness metric [18][41]. This measures the amount
of high dimensional neighbouring points that are present in the
neighbourhood of each 2D point. Neighbouring points from the
high dimension that are missing from the neighbourhood of a 2D
point reduces the trustworthiness of a projection. Conversely,
neighbouring points from the high dimension that are present in the
neighbourhood of a 2D point increases the trustworthiness. We
compare the trustworthiness of a 2-dimensional Delaunay, K-NN
and random graphs that are formed from an initial MDS projected
layout. We also include the trustworthiness of the MDS layout as a
baseline.

414-4
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022

(a) ModelNet 40

(b) Princeton shape benchmark

Figure 3. Trustworthiness of 2D graphs and MDS on different datasets with
different numbers of objects.

From figure 3, we can see that the classical MDS projected
ordering has a high trustworthiness which indicates that the initial
layout is quite similar to the high dimensional ordering of the
points. However, by applying both the K-NN, Delaunay and
random graphs to draw the layout, the trustworthiness decreases.
This is due to the fact that some information about the actual
closeness of neighbouring points is lost during the projection and
graphs like the Delaunay graph change some semantically correct
edges during its construction. In figure 4 we show how applying a
KNN graph to the high dimensional points themselves simply
circumvents these problems and increases the trustworthiness of an
initial layout.

Measuring Object Clouds
Formulating an objective function for object clouds allows us

to measure the quality of a cloud. By defining a semantic or
random graphical ordering over the set of objects, we can measure
how well said objects are compactly placed relative to each other
within a layout. We will briefly illustrate how the energy of a
layout quantifies its appeal, as well as what to note when using
such qualitative measure.

Consider the pair of objects in the figure 5. The farther apart
their distance, 𝐿𝑖𝑗, the larger the amount of energy, 𝐸, within the
layout. Conversely suppose we have an overlapping pair of objects
as in the figure 5. If we assume the energy of this layout is minimal
because the distance, 𝑙𝑖𝑗 < 𝐿𝑖𝑗, then the objective function will tend
towards this configuration for a pair of objects. However, since this
configuration is as equally undesirable as the previous
configuration, we scale 𝑙𝑖𝑗 - using 𝐿𝑖𝑗/𝑙𝑖𝑗 - so that the value of the
energy is as large as that of the previous configuration. Note that

compared to an overlapping configuration, we do not need to scale
a distant configuration. That being said, we are left with 2
configurations in which the distance, and subsequently the energy, 𝐸, is zero: when the objects are compactly placed side by side and
when they completely overlap. The configuration in which the
objects completely overlap is a local minimum that can only be
escaped by adding noise to their positions. If however we ignore
this case, then we see that the configuration with the most appeal -
compact placement - has no energy.

In order to determine the proximity of a pair of objects, 𝐿𝑖𝑗 or 𝑙𝑖𝑗, the energy in equation 7 calculates the position of their centers,
‖𝑝𝑖 − 𝑝𝑗‖, relative to the size of the objects, 𝑑𝑖𝑗 = 𝑟𝑖 + 𝑟𝑗 such that 𝐿𝑖𝑗, 𝑙𝑖𝑗 = 𝑑𝑖𝑗 − ‖𝑝𝑖 − 𝑝𝑗‖. When ‖𝑝𝑖 − 𝑝𝑗‖ < 𝑑𝑖𝑗, the pair of objects are
overlapping and a force 𝛼 > 𝛽 is applied to the overlapping
distance, 𝑙𝑖𝑗 in order to compute the energy value. The indicator
function in equation 5 determines which of the forces to apply and
subsequently which distance, 𝐿𝑖𝑗 or 𝑙𝑖𝑗 is in effect. We can set the
weight 𝛽 to any positive real value but in order to scale 𝑙𝑖𝑗 and
prevent the energy function from settling into an overlapping
configuration, 𝛼 > 𝛽.

(a) ModelNet 40

(b) Princeton shape benchmark

Figure 4. Trustworthiness of MDS and a high-dimensional KNN on different
datasets with different number of objects.

Figure 5. Distance in relation to the energy for a pair of objects.

IS&T International Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022 414-5

Since computing the energy involves the squared distance
between pairs of objects and the weightings are positive real
numbers, for an object cloud the energy is always a positive real
number. Ideally for every cloud, we would want this number to be
as close to 0 as possible without pairs of objects completely
overlapping but this is not always possible as the number of
objects increases. This is because as the number of objects
increases, so does the number of configurations. Many of these
configurations are sub-optimal and the objective function may not
be able to escape one of such local optima. Hence as the number of
objects increases, we may achieve a state of minimal energy rather
than a state with no energy.

Energy Minimization
In order to minimize the energy function of an object cloud,

we consider several optimization methods that have been applied
to multi-dimensional scaling and machine learning problems.

Gradient Descent
The algorithm represented by equation 7 can be converted

into a force-based algorithm by taking the negative gradient of the
energy, 𝐸. Taking the gradient with respect to 𝑝𝑖, we have

 (8)

where (𝑝𝑖 − 𝑝𝑗) / ‖𝑝𝑖 − 𝑝𝑗‖2 indicates the direction in which the
center, 𝑝𝑖, of an object should move and (𝑑𝑖𝑗 − ‖𝑝𝑖 − 𝑝𝑗‖2) indicates
by how much the center should be moved for an object in question
to be placed compactly amongst its neighbours. Using the gradient,
we can update the position of 𝑝𝑖 as

 (9)

However, the problem with this update algorithm is that it

converges slowly relative to second-order optimization methods
like the Newton-Raphson method and it has a higher likelihood of
becoming stuck at a local minimum [23]. Applying the Newton-
Raphson method as is done in the Kamada-Kawai algorithm
requires the calculation of a Hessian which can be a tedious
approach and in some cases, a semi-positive definite Hessian may
not exist. In order to avoid this while guaranteeing faster
convergence to a global minimum, we further adopt two
optimization strategies to minimize the energy function: random
reshuffling and majorization.

Random Reshuffling
Random reshuffling is a form of gradient descent in which the

training set is shuffled at each iteration before taking the gradient.
In our case, the training set, 𝑃, consists of pairs of objects whose
initial order is permutated at each update iteration. We can express
this as

 (10)

where 𝜎(𝑃, 𝑡) represents the permutation of 𝑃 at iteration 𝑡. While
the convergence of the random reshuffle is chaotic in nature, its
convergence rate is greater than that of the normal gradient descent
and can be even close to quadratic in some cases [7]. Additionally,
shuffling the order of the training set can allow us to escape local
optima within the energy function.

Majorization
Given that the energy for object clouds can be expressed is a

form of metric MDS, majorization can be used to minimize it. A
significant advantage of majorization is that it guarantees a set of
non-increasing energy values that allows us to stop the
minimization process when there is little to no change in the
energy values. In other words

 (11)

At which point we can be certain that the energy of the object
or word cloud is minimal and has the highest aesthetic value before
ending the minimization process. This is particularly useful
because most graph drawing algorithms such as the Fructerman-
Reingold and the context preserving algorithm as well as the
techniques mentioned above minimize the energy in a cloud within
a set number of iterations. This may result in a sub-optimal
configuration of objects within the cloud if the number of iterations
is inadequate or if the number of iterations is too long that the
energy values begin fluctuating at the valley of the energy
function.

Scaling by MAjorizing a COmplicated Function (SMACOF)
is a popular majorization algorithm that is used to optimize the
stress objective in equation 1. Majorization itself is an
optimization technique that is used to solve a complicated function, 𝑓(.), by solving a simpler surrogate function, 𝑔(., .). For a given
point, 𝑦, and a minimizer, 𝑥*, the surrogate function needs to
satisfy the following sandwich inequality

 (12)

Using the Cauchy-Schwartz inequality, we can create a simple
surrogate function for the stress objective. To do this, we begin by
rewriting equation 1 as:

 (13)

where 𝜌𝑖𝑗 = ‖𝑝𝑖 − 𝑝𝑗‖2. Using the definition of,

 (14)

we further express equation 13 in matrix form such that:

 (15)

where, 𝑃, are the coordinates of the points in the lower dimension
and the matrices 𝑉 and 𝐵(𝑃) are weighted Laplacian such that

 (16)

The last term in equation 15 is the what is most important for

constructing the surrogate function. Using the Cauchy-Schwartz
inequality

 (17)

414-6
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022

for some vectors, 𝑝 and 𝑥 [16]. We can construct a surrogate
function, 𝑔(𝑥, 𝑝), that is expressed as

 (18)

From equation 17, the following inequality holds

 (19)

Hence for a minimizer, 𝑥, 𝑓(𝑥) ≤ 𝑔(𝑥, 𝑝) and the sandwich
inequality in equation 14 holds [14]. We can find this minimizer by
setting the derivative of the 𝑔(., .) with respect to 𝑋 as zero and
then solving for 𝑋. This results in the solution

 (20)

where 𝑉+ is the pseudo-inverse of 𝑉.
This solution is also known as the Guttman transform of the

points, 𝑃 [14]. On each iteration of the majorization algorithm, the
points 𝑃 are replaced with 𝑋 and the above transformation is
repeated until 𝑓(𝑥) − 𝑓(𝑝) is less than some tolerance value, 𝜖.

In order to majorize a function, 𝑓(.), we need to construct and
minimize a surrogate function, 𝑔(.), such that the sandwich
inequality in equation 14 holds and the minimum of 𝑔(.) is the
same as that of 𝑓(.). We adopt the surrogate function that is used in
equation 14 with the minor modification that the weight, 𝑤𝑖𝑗, is no
longer constant and can be expressed as

 (21)

where 𝑤𝑖𝑗(𝑝) are the weights for a particular configuration 𝑃 such
that 𝛿𝑖𝑗(𝑝) is the activation function for a set of positions 𝑝𝑖 and 𝑝𝑗
that belong to said configuration.
 Hence the surrogate 𝑔(𝑥, 𝑝) can then be expressed as

 (22)

where 𝑉 (𝑊𝑝) and 𝐵(𝑃, 𝑊𝑝) are the Laplacian matrices computed
from the weights 𝑤𝑖𝑗(𝑝). Similarly, the energy function at a
minimizer, 𝑥, can be expressed as

 (23)

When 𝑥 = 𝑝, 𝐴𝑖𝑗 = 1 and 𝛽 = 𝛼, 𝑤𝑖𝑗(𝑝) = 𝑤𝑖𝑗(𝑥) = 1, then we
have the SMACOF equation 15. However, for object clouds, we
recompute both the weight and the Laplacian matrices at every
iteration since the value of 𝑤𝑖𝑗 depends on the amount of attracting
and colliding objects at a given iteration. At each iteration, 𝑤𝑖𝑗
changes because the objects that are being attracted or separated
changes. Therefore our weighting is not constant as in the original
SMACOF algorithm and as such the Cauchy-Schwartz inequality
in equation 19 does not always hold true.

Fluctuation in the value of, 𝑤𝑖𝑗, however does not affect the
convergence of the energy function. We still get a set of non-
increasing stress values that obey the sandwich inequality. Under
normal MDS, the equation 19 is necessary for a set of decreasing
stress values because the first two terms in 𝑓(𝑥) and 𝑔(𝑥, 𝑦) are

equal and constant when 𝑤𝑖𝑗 is constant. Therefore the difference
between the first two terms and the third term in 𝑓(𝑥) is less than
difference between the third term in 𝑔(𝑥, 𝑝).

Under the MDS formulation for object clouds, a similar
dynamic comes into play when 𝑤𝑖𝑗 fluctuates. If tr 𝑋⊤𝐵(𝑋,𝑊𝑥)𝑋 <
tr 𝑋⊤𝐵(𝑋,𝑊𝑝)𝑃 then the first two terms in equation 23 are also less
than those in equation 22 and vice versa. The value of these terms
is such that the difference between the first two terms and the third
term in equation 23 is less than difference first two terms and the
third term in equation 22. Hence despite fluctuations in the value
of 𝑤𝑖𝑗, the sandwich inequality still holds for energy-based object
clouds and we get a set of non-increasing energy values.

EXPERIMENTAL EVALUATION

Datasets
To evaluate the energy formulation for object clouds, we used

the Princeton Shape Benchmark (PSB) and the ModelNet40
datasets [34][46].

The PSB dataset is a collection of 1,814 3D CAD models.
The PSB dataset is unique in that it has several hierarchies of
classification. They range from general classes like "musical
instruments" and "furniture" to more specific classes like "acoustic
guitar" and "desk with hutch" respectively. These hierarchies
reflect both the primary and secondary form of each model. In total
there are 161 general and specific classes. The lowest classification
level contains at least four 3D models and the largest class (general
or specific) contains 100 3D models.

The ModelNet40 is a larger collection of about 151,128 3D
CAD models within the dataset, each of which belong to roughly
660 object categories [46]. Although there are many object
categories containing everyday objects, the ModelNet40 dataset
specifies 40 classes.

Methods Under Comparison
We evaluate the performance of each of the three energy

optimization techniques discuss above. Additionally, because our
energy-based model is related to the context preserving algorithm,
we also evaluate its performance for generating semantic object
clouds. Finally, we include the breadth-first search algorithm for
pseudo-random object clouds as a baseline for our comparisons.

Metrics
In order to compare the various object cloud algorithms, we

utilize 4 different metrics: trustworthiness, realized adjacency,
compactness and energy.

Trustworthiness
When performing dimensionality reduction, each point in the

original manifold has a neighbourhood that contains a set of close
points that should ideally be retained in a lower dimensional
manifold. Trustworthiness measures how well such neighbouring
points from the original dimension are preserved in the lower
dimension. It is defined as follows

 (24)

IS&T International Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022 414-7

where 𝒩୩ are the K-Nearest neighbours in the lower dimension
and 𝑟𝑖𝑗 is the rank of each neighbour in the original input space.
Each neighbour that is unexpected in the lower dimensional space
is penalized by its rank in the original dimension and the fractional
term helps normalize the output. Trustworthiness has a value from
0 to 1 where 0 indicates that all the points have unexpected
neighbours and 1 indicates that the neighbourhood for every point
in the higher dimensional space is well preserved.

Realized Adjacency
The realized adjacencies, defined in equation 25 are the set of

objects that are adjacent to each object [2]. An object is adjacent
another object if its boundary from that object is within 0.01-
0.05% of the size of the smaller object. This metric measures the
level of similarity across adjacent objects within the cloud. Its
value is between [0, 1] with a higher value indicating that there
many adjacent objects within the cloud are similar and vice versa.

 (25)

Compactness
Compactness measures how tightly packed each of the words

are within the given 2D layout of the cloud. It is calculated by
dividing the total area by the used area. The total area refers to the
tightest rectangular area bounding all the objects within the layout.
It is measured by multiplying the difference between the X-axis of
the leftmost and rightmost object or word with the difference
between the Y-axis of the uppermost and lowermost object. The
used area however is the sum of the area of each individual objects
within the cloud. The metric can be expressed as follows

 (26)

When the rectangular area bounding all the objects is larger than
the sum of area of all the objects, 𝐶 < 1 indicating that there is
some space between the objects. As this space increases, 𝐶 → 0.
Conversely, when all the objects are tightly packed, the rectangular
area is equal to the sum of the area of all the objects and 𝐶 = 1.
However, if many of the objects begin to overlap each other, 𝐶 > 1.
Therefore, a good value for compactness is 0.5 ≤ 𝐶 ≤ 1.

Data Preprocessing
Each of the 3D models from the PSB and ModelNet40

datasets was passed into a Blender python script in order to extract
varying views of the model. The various views are obtained from
cameras that are positioned at an angle and ground elevation of 30∘
around the model. The python script generates 12 views which are
then passed into an MVCNN that was pre-trained using the Resnet-
18 neural network. Rather than use the MVCNN network as it is,
we fine-tuned it to each dataset by training it over a dataset for 5
epochs. Each epoch was over 1000 iterations and at the end of
training, the MVCNN had an accuracy of over 85% on each of
dataset. After training, the dataset was passed into the network and
the vector output from the penultimate layer was used as high-
dimensional vector embedding for each of the algorithms to be
evaluated.

 (a) ModelNet 40

 (a) Princeton shape benchmark

Figure 4. Trustworthiness of various algorithms on different shape datasets.

Results
Recalling that our target application is to browse a similar

number of objects that are typically found on commercial
webpages (a few dozen), we compare clouds of up to 100 objects.
Likewise, we focussed on layout quality rather than computation
speed, since we are not browsing a very large number of objects.
We evaluated how well each of the optimization methods
performed on the shape datasets for 9, 25, 49, 81, and 100 objects.

Firstly, to give the reader a sense of what the clouds look,
consider the results shown in figures 8-12. These are generated
from a single run with 49 models using the various layout
algorithms (gradient decent, random replay, majorization, context
preserving algorithm and breadth-first search). But individual runs
are not very informative, so we also need to look at the results
shown in the aggregated graphs.

In figure 4 we see that on both datasets, all three optimization
layouts outperform the context preserving and breadth-first
layouts. While the context preserving and breadth-first layouts
manage to preserve some of the high-dimensional semantic
structure of the objects, they do not do so to the degree of the
optimization layouts. As discussed in the previous sections, this is
due to the fact that the optimization layouts utilize a high-
dimensional KNN graph in their operation as opposed to the lower
dimensional graph. Therefore, they lose less information about the
semantic structure of the object representations. This is illustrated
in figures 8, 9, and 10 where objects like sofas and chairs are
grouped separately but placed in such a way that they morph into
each other. Whereas in the figures 11 and 12, there is some
semantic order but those objects are not clearly grouped.

414-8
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022

 (a) ModelNet 40

 (b) Princeton shape benchmark

Figure 5. Compactness of the various algorithms on different shape datasets.

When we observe the compactness of the layouts from figure
5, we can see that the majorization, random replay and context
preserving algorithms perform well on both datasets. The relatively
poor performance of gradient descent is due to the way
compactness is calculated. The figure 8 has a wider bounding box
for its object cloud than those of figures 9 and 10. Hence the total
area is much larger. The gradient descent layout also has relatively
more overlaps which leads to a smaller used area than that of the
other two optimization layouts. The smaller used area and larger
total area therefore lead to much less compactness for the gradient
descent layout. The breadth-first layout on the other hand makes a
more uniform use of the layout as illustrated in figure 11.
However, some of the objects are too small for the grid in which
they have been placed in, leading to excess space among objects of
various grids and thus a relatively low compactness for the layout.

From figure 6, we once again observe that the optimization
algorithms out-performed both the context preserving and breadth-
first layouts on the realized adjacency. This is likely due to the fact
that the optimization layouts minimize the squared pairwise
distance between neighbouring objects while maintaining a high
degree of semantic similarity between said objects. By minimizing
the distance, similar pairs of objects touch each other which in turn
increases the realized adjacency of the layouts. The context
preserving layout does the same thing but additionally it tries to
maintain the planarity of its underlying Delaunay graph.

 (a) ModelNet 40

 (b) Princeton shape benchmark

Figure 6. Realized adjacency of various algorithms on the shape datasets.

As discussed earlier, this graph has a lower degree of
semantic similarity and so when neighbouring objects do touch
each other, they might not be very similar which in turn reduces
the realized adjacency of the layout. Furthermore, as can be seen in
figure 12, the highly compact nature of the context preserving
layout means that neighbours that are colliding do not get included
in the realized adjacency sum thus leading to a lower value for the
layout.

While a highly compact layout in which there are significant
collisions may reduce the realized adjacency, a less compact layout
such as that of the breadth-first layout also reduces the realized
adjacency because fewer object are touching each other. Since
many of the objects in the breadth-first layout are smaller than
their grid, the space between neighbouring objects was too large
for the objects to be considered as touching each other. Hence the
very low realized adjacency for the layout.

In figure 7 we observe that except for the context-preserving
layout, the layouts for the other algorithms minimize the energy of
an object cloud. This may be due to the large amount of colliding
objects within the context-preserving layout. As discussed in the
previous sections, a larger repulsive weighting is needed to repel
colliding objects. Therefore, when computing the energy of a
cloud, colliding objects have higher energy. Since our experiment
utilized a repulsive weighting that is 8 times that of the attractive
weighting, this may account for the high energy within the context-
preserving cloud.

IS&T International Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022 414-9

 (a) ModelNet 40

 (b) Princeton shape benchmark

Figure 7. Energy of the various algorithms on different shape datasets.

CONCLUSION
We proposed an energy function for object clouds. By

optimizing the energy function, we showed that we can create a
semantic object cloud. This is due to the fact that we minimized
the squared distance between similar objects in the K-NN graph
while maximizing the squared distance between dissimilar objects
in the graph. To that end, we explored 3 optimization strategies:
gradient descent, random replay and majorization.

We discussed each of these strategies and their advantages
over each other. Random replay is like gradient descent, but it
randomizes the order in which the objects are adjusted thereby
allowing it to escape local minima that gradient descent may get
stuck in. Majorization however is a very different strategy in that
all the objects are adjusted at the same time and the adjustment is
based on the minimization of a surrogate for the proposed energy
function. This allows it to construct object clouds faster and it
decreases the energy function monotonically. Using the decreasing
monotonicity, we can stop the construction of an object cloud
whenever the energy function ceases to decrease rather than
specifying a set number of iterations within which to minimize it.

From the minimization strategies, we proposed a set of
algorithms for constructing object clouds. We then compared the
layout from these algorithms against other the layout of algorithms
that include the breadth-first search and context preserving
algorithms. We used metrics such as trustworthiness, compactness,
and realized adjacency to facilitate our evaluation.

The optimization algorithms outperformed the other
algorithms on trustworthiness due to the fact that less semantic

information is lost when using a high dimensional graph as
opposed to a lower dimensional graph like the Delaunay graph. In
terms of compactness, both the context preserving layout and the
optimization layouts were compact. The breadth-first search layout
was not as compact because of its uniform use of layout space.
Finally in terms of realized adjacency, the optimized layouts did
outperform the other algorithms due to a combination of high
semantic order and compactness. The context preserving algorithm
did not perform as well because the semantic order of the layout
was not as high and some objects were too close to be considered
as touching each other. The breadth-first search in a similar vein
did not perform as well because the space between the objects was
too large for them to be considered as touching.

Finally, we note that there are several important limitations of
this work. Given our target application of presenting clouds of
objects normally found in online webpages we only considered a
maximum of 100 objects that could be browsed at a reasonable
size. In addition, we compared 5 methods for computing the
layouts of 3D clouds, but this is not exhaustive, and others could
be tried. We also note that all the methods produced some degree
of overlap due to competing constraints which is reflected in the
adjacency metric scores. Moreover, a second user study on
semantic 3D clouds may offer additional insights into user
preferences.

References
[1] S. Avidan and A. Shamir. “Seam carving for content-aware

image resizing”. ACM Trans. Graph, page 10. SIGGRAPH,
2007.

[2] L. Barth, S. Kobourov, and S. Pupyrev. “Experimental
comparison of semantic word clouds”. Experimental
Algorithms, 247–258. Springer, 2014.

[3] G. Begelman, P. Keller, F. Smadja, et al. “Automated tag
clustering: Improving search and exploration in the tag space”.
WWW2006, Edinburgh, Scotland, pages 15–33, 2006.

[4] M. Belkin and P. Niyogi. “Laplacian eigenmaps for
dimensionality reduction and data representation”. Neural
computation, 15(6):1373–1396, 2003.

[5] M. Billinghurst, A. Clark, and G. Lee. “A survey of augmented
reality”. Foundations and Trends in Human-Computer
Interaction, pages 73–272, 2015.

[6] C. Bishop. “Pattern recognition and machine learning”.
Springer, 2006.

[7] L. Bottou. “Curiously fast convergence of some stochastic
gradient descent algorithms”. Learning and Data Science, Paris,
2009.

[8] S. Chaudhuri. “Shape Descriptors - iii”, Indian Institute of
Technology Bombay, May 2016.

[9] D. Chen, X. Tian, Y. Shen, and M. Ouhyoung. “On visual
similarity based 3D model retrieval”. Computer graphics forum,
volume 22, 223–232, 2003.

[10] L. Chen and A. Buja. “Local multidimensional scaling for
nonlinear dimension reduction, graph drawing, and proximity
analysis”. Journal of the American Statistical Association,
104(485):209–219, 2009.

414-10
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022

[11] W. Cui, Y. Wu, S. Liu, F. Wei, M. Zhou, and H. Qu. “Context
preserving dynamic word cloud visualization”. PacificVis, 121–
128. IEEE, 2010

[12] R. Davidson and D. Harel. “Drawing graphs nicely using
simulated annealing”. ACM Transactions on Graphics (TOG),
15(4):301–331, 1996.

[13] J. De Leeuw. “Convergence of the majorization method for
multidimensional scaling”. J. of classification, 5(2):163–180,
1988.

[14] J. De Leeuw and Patrick Mair. “Multidimensional scaling using
majorization: Smacof”. Journal of Statistical Software, 31(3),
2009.

[15] T. Fruchterman and E. Reingold. “Graph drawing by force
directed placement”. Software: Practice and experience,
21(11):1129–1164, 1991.

[16] E. Gansner, Y. Koren, and S. North. “Graph drawing by stress
majorization”. Graph Drawing, 239–250, 2004.

[17] H. Geoffrey. “Non-linear dimensionality reduction”. University
of Toronto Dept of Computer Science, May 2013.

[18] A. Gracia, S. González, V. Robles, and E. Menasalvas. “A
methodology to compare dimensionality reduction algorithms in
terms of loss of quality”. Information Sciences, 270:1–27, 2014.

[19] J. Graef and I. Spence. “Using distance information in the
design of large multidimensional scaling experiments”.
Psychological Bulletin, 86(1):60, 1979.

[20] F. Heimerl, S. Lohmann, S. Lange, and T. Ertl. “Word cloud
explorer: Text analytics based on word clouds”. System
Sciences, pages 1833–1842. IEEE, 2014.

[21] X. Hong and S. Brooks. 2020. “3D Objects Clouds: Viewing
Virtual Objects in Interactive Clouds”. IEEE Transactions on
Visualization and Computer Graphics 26, 3, 1442–1453.

[22] Y. Hu. “Efficient, high-quality force-directed graph drawing”.
Mathematica Journal, 10(1):37–71, 2005.

[23] T. Kamada, S. Kawai, et al. “An algorithm for drawing general
undirected graphs”. Information processing letters, 31(1):7–15,
1989.

[24] S. Kobourov. “Spring embedders and force directed graph
drawing algorithms”. arXiv preprint arXiv:1201.3011, 2012.

[25] A. Lambie. “Directing Attention in an Augmented Reality
Environment: An Attentional Tunneling Evaluation”. PhD
thesis, Rochester Institute of Technology, 2015.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-
based learning applied to document recognition”. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[27] M. Leginus, P. Dolog, R. Lage, and F. Durao. “Methodologies
for improved tag cloud generation with clustering”. Web
Engineering, 61–75. Springer, 2012.

[28] W. Lu, H. Duh, S. Feiner, and Q. Zhao. “Attributes of subtle
cues for facilitating visual search in augmented reality”. IEEE
transactions on visualization and computer graphics, 20(3):404–
412, 2013.

[29] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient
estimation of word representations in vector space”.
arXiv:1301.3781, 2013.

[30] K. Murphy. “A Probabilistic Perspective”. MIT Press, 2012.

[31] F. Paulovich, F. Toledo, G. Telles, Minghim, and L. Nonato.
“Semantic wordification of document collections”. Computer
Graphics Forum, volume 31, 1145–1153, 2012.

[32] K. Petersen, M. Pedersen, et al. “The matrix cookbook, vol. 7.”
Technical University of Denmark, 15, 2008.

[33] E. Schubert, A. Spitz, M. Weiler, J. Geiß, and M. Gertz.
“Semantic word clouds with background corpus normalization
and tdistributed stochastic neighbor embedding”. arXiv preprint
arXiv:1708.03569, 2017.

[34] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. “The
princeton shape benchmark”. Shape Modeling Applications,
167–178. 2004.

[35] J. Sinclair and M. Cardew-Hall. “The folksonomy tag cloud:
when is it useful?”, Journal of Information Science, 34(1):15–
29, 2008.

[36] G. Smith. “Tagging: people-powered metadata for the social
web”, safari. New Riders, 2007.

[37] J. and N. Iliinsky. “Beautiful visualization: Looking at data
through the eyes of experts”, ch. 3, 37–58. O’Reilly Media,
2010.

[38] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. “Multi-
view convolutional neural networks for 3D shape recognition”.
ICCV, 2015.

[39] J. Tenenbaum, V. De Silva, and J. Langford. “A global
geometric framework for nonlinear dimensionality reduction”.
Science, 290(5500):2319–2323, 2000.

[40] D. Tunkelang, D. Sleator, P. Heckbert, and B. Maggs. “A
numerical optimization approach to general graph drawing”.
Technical report, Carnegie-Mellon, 1999.

[41] J. Venna and S. Kaski. “Neighborhood preservation in nonlinear
projection methods: An experimental study”. Artificial Neural
Networks, pages 485–491. Springer, 2001.

[42] K. Vyshenska. “How to build a parameterized archimedean
spiral geometry”, Jul 2016.

[43] C. Wickens, S. Gordon, Y. Liu, et al. “An introduction to
human factors engineering”. Longman New York, 1998.

[44] J. M Wolfe. “Visual search”. The handbook of attention, 27–56,
2015.

[45] Y. Wu, T. Provan, F. Wei, S. Liu, and K. Ma. “Semantic
preserving word clouds by seam carving”. Computer Graphics
Forum, vol. 30, 741–750, 2011.

[46] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J.
Xiao. “3D shapenets: A deep representation for volumetric
shapes”. CVPR, pages 1912–1920, 2015.

[47] J. Xu, Y. Tao, and H. Lin. “Semantic word cloud generation
based on word embeddings”. PacificVis, 239–243. IEEE, 2016.

[48] M. Yeh and C. Wickens. “Visual search and target cueing: A
comparison of head-mounted versus hand-held displays on the
allocation of visual attention”. Technical report, Army Research
Lab Aberdeen, 1998.

IS&T International Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022 414-11

[49] M. Kaufmann and D. Wagner, eds. “Drawing Graphs: Methods
and Models”, Lecture Notes in Computer Science, vol. 2025,
Springer-Verlag, 2001.

[50] M. Espadoto, R. M. Martins, A. Kerren, N. S. T. Hirata and A.
C. Telea, "Toward a Quantitative Survey of Dimension
Reduction Techniques," in IEEE Transactions on Visualization
and Computer Graphics, vol. 27, no. 3, pp. 2153-2173, 2021.

Author Biography

Bola Okesanjo received his BSc from the University of Toronto (2016), and
his Master of Computer Science from Dalhousie University (2020). His
interests include visualization and machine learning.

Stephen Brooks is a professor of computer science at Dalhousie University.
He received his MSc from the University of British Columbia (2000), and
his PhD in computer science from Cambridge (2005). His research
interests include visualization, computer graphics, and interaction.

Figure 8: Gradient Descent Layout on ModelNet40 dataset. (# objects = 49)

Figure 9: Random Replay Layout on ModelNet40 dataset. (# objects = 49)

Figure 10: Majorization Layout on ModelNet40 dataset. (# objects = 49)

Figure 11: Breadth First Search on ModelNet40 dataset. (# objects = 49)

Figure 12: Context Preserving Layout on ModelNet40 dataset. (# objects = 49)

414-12
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022

