
 

Visualizing Semantic 3D Object Clouds    
Bola Okesanjo and Stephen Brooks; Dalhousie University; Halifax, Nova Scotia, Canada   

 
Abstract 

3D object clouds, first introduced by Hong and Brooks, 
visualize the pairwise similarity between a set of objects and a 
central object of interest.  This similarity is used to determine the 
position of each object within the cloud. However, this does not 
capture the semantic relationship of all the objects and the lack of 
consistency may reduce the expectation of finding an object when 
performing visual search. To generate a semantic 3D object cloud, 
we define and subsequently minimize an energy function that 
captures the pairwise similarity amongst all objects within the 
cloud. The energy is minimized using several statistical machine 
learning techniques and we show that the generated layouts from 
such techniques outperform those of other algorithms on a variety 
of metrics for evaluating layouts.  

INTRODUCTION 
When querying Computer-Aided Design (CAD) models from 

commercial search engines results they are typically presented as a 
few dozen objects in a grid of discrete rows and columns. This 
arrangement of search results however can make it tedious to find 
and compare different sets of result. An alternative to representing 
such results is as a cloud, where all the models are clustered onto 
the screen. Such a cluster can take on arbitrary shapes and allow 
for a preferable arrangement of the search results. Tightly packing 
the cluster also maximizes the use of the limited display space and 
it has been shown to facilitate the faster recognition of 3D models 
[21]. 

Object clouds, as their name suggests, are analogous to word 
clouds in that both are a compact visual summary of various items. 
Like word clouds, the items in an object cloud also have varying 
sizes which indicates their degree of similarity to a given object of 
interest. This similarity is based on the how many visual features 
are shared between a pair of objects. Objects with the highest 
degree of similarity to an object of interest are larger and objects 
with lesser degree of similarity are smaller.  

To facilitate faster recognition of objects, the object of interest 
or the object with the most degree of similarity is placed at the 
center of the cloud. This however need not be the case all the time. 
Current algorithms for visualizing object clouds attempt to place 
objects at a distance that also reflects their similarity to the central 
object of interest. Objects that are most similar to the object of 
interest are placed closer to the center of the cloud and objects that 
are less similar are placed farther away. This ordering has been 
shown to facilitate faster recognition of objects than a random or a 
grid-based ordering [21]. However, utilizing the pairwise distance 
between each object and the object of interest does not create a 
semantically accurate ordering within the entire cloud. To create a 
semantically accurate ordering, the pairwise distance amongst all 
the objects in the cloud needs to be used instead. 

To create semantically accurate and compact clouds, we 
approach the problem of constructing an object cloud from an 
optimization perspective. To do so, we formulate an objective 
function that represents the energy within an object cloud and 
encapsulates the requirements of a semantic object cloud: 

• Objects should be compactly placed together without 
overlaps 

• Similar objects should be closer and dissimilar objects 
should be farther 

The objective function is then optimized using several 
strategies such as gradient descent and majorize-minimize which 
result in several algorithms for visualizing object clouds. Using the 
energy function, we can monitor the performance of our algorithms 
and for some, terminate them when they cease to minimize the 
energy within the cloud. This however contrasts with other cloud 
visualization algorithms that rely on a set number of iterations 
from the user which may be insufficient to properly minimize the 
energy. 

In order to fulfil the above objectives, this work proposes a 
real-valued function to describe and quantify the aesthetic of object 
clouds. We also propose algorithms for the generation of object 
clouds based on the optimization of the proposed function. 
Furthermore, we evaluate and contextualize the performance of our 
proposed algorithms in relation to existing algorithms for the 
generation of object clouds.  Recalling that our target application is 
to browse a similar number of objects that are typically found on 
commercial webpages (which generally present a few dozen 
objects), we made a comparison of clouds of up to 100 objects. For 
the same reason, we focussed on layout quality rather than 
computation speed, since we are only browsing a few dozen 
objects in practice. 

We begin with a discussion of related work, including graph 
drawing dimensionality reduction, word clouds and the original 3D 
object cloud paper.   We then introduce semantic 3D object clouds 
which incorporates dimensional reduction, a graph structure and 
energy minimization strategies.  We then discuss our experimental 
evaluation, followed by conclusions and limitations.  

  

RELATED WORK 

Graph Drawing 
Graph drawing algorithms use the information contained 

within a graph to generate suitable layouts. But graph drawing is a 
very large area of research that incorporates many types of graphs 
such as hierarchical graphs and orthogonal layouts [49]. We will 
restrict our background discussion to force based and energy-based 
graphs. Force-directed graphs first applies a set of spring forces to 
move the edges and vertices of the graph, while energy-based 
graphs optimize an energy function to move the vertices of the 
graph into place.    

 These graphs are typically undirected graphs with a 2D or 
multi-dimensional layout. A layout can be described as suitable if 
it has minimal energy or if it both exhibits some symmetry and the 
pairwise vertex distances are close to some constant [24]. These 
graph drawing algorithms start with an initial layout of the graph - 
this can be random, circular or any other layout. From the initial 
layout, both the vertices and edges of the graph are moved until a 
stop criterion is achieved. This criterion includes the number of 
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iterations, net change in forces or net change in the energy of the 
graph. 

While drawing an undirected graph is thought of as matching 
the pairwise vertex distances to some constant, the matching 
process itself can also be thought of as a form of energy 
minimization whereby the energy corresponds to the discrepancy 
between the geometric pairwise distances and said constant. Based 
on this principle, energy-based graph drawing algorithms generate 
their layout by optimizing a given energy function for a graph. 
This energy is defined over the vertices of a graph and the 
optimization can be achieved using local methods such as gradient 
descent or global methods like simulated annealing [12][40].   

Force-directed graph drawing algorithms, as the name 
suggests, are a class of algorithms that use a set of forces to 
generate undirected graphs. These forces are typically modelled 
after spring forces and as such are either attractive or repulsive 
nature. The Fruchterman-Reingold method is a well-known force-
directed algorithm that generates an undirected graph, using a set 
of spring forces that are modeled after Hooke’s law [15].    

Dimensionality Reduction 
Dimensionality reduction is the process of representing high 

dimensional data into a lower dimension such that important 
patterns within the data are preserved. There are typically 2 types 
of patterns that are preserved: global and local patterns [17]. These 
patterns are typically found without the aid of human labels in 
what is known as unsupervised learning and as such it makes 
dimensionality reduction an indispensable tool in information 
visualization. Examples of dimensionality reduction techniques 
include non-linear approaches, such as t-SNE and UMAP, as well 
as Principal Component Analysis (PCA) and Multi-Dimensional 
Scaling (MDS) [50][6]. One problem with classical MDS is that it 
places too much emphasis on larger pairwise distances at the 
expense of smaller pairwise distances [17]. This means that larger 
distances are mostly accurate whereas smaller distances tend to be 
inaccurate.  In fact it does not use as much as a third of all small 
distances [10][19]. 

In an attempt to solve the shortcomings of classical MDS and 
place equal emphasis on small pairwise distances, metric MDS 
adds weights to the MDS objective. These weights are typically the 
inverse of the original pairwise distances so that as much focus is 
given to matching smaller distances as is given to matching larger 
distances. Matching smaller distances allows us to capture patterns 
between higher dimensional points that are close together. Unlike 
classical MDS where the objective is solved analytically, the 
objective in metric MDS cannot be solved analytically because the 
weights perform a non-linear transformation of the points, 𝑄. 
Instead, gradient descent or an iterative process known as 
majorization is used to optimize the stress objective [17][13]. 

Scaling by MAjorizing a COmplicated Function (SMACOF) 
is a popular majorization algorithm that is used to optimize a stress 
objective Majorization itself is an optimization technique that is 
used to solve a complicated function by solving a simpler surrogate 
function. Using the Cauchy-Schwartz inequality, we can create a 
simple surrogate function for the stress objective [14]. 

Word Clouds 
3D object clouds were inspired by word clouds which is a 

visualization of a set of words whereby the font size represents 
some weighting like their frequency within a given text corpus. 
Word clouds became popular as a form of visualization when 
social sites such as flickr and del.icio.us started associating web 

resources with keyword metadata. These words summarized the 
content and allowed users to navigate other resources on the sites 
[36][35]. Recently, word clouds provide a visual statistical 
summary of a text corpus and are generated using specialized 
algorithms and well-known software such as Wordles [20]. 

There are several types of word cloud generation algorithms. 
They include both the random and semantic word cloud algorithms 
[2]. Random word cloud algorithms generate their layout without 
any emphasis on the semantic relationship between the words. 
Semantic word cloud algorithms however generate their layout 
based on these relationships. Having such structure along with the 
frequency of the words improves the statistical summary provided 
by the word cloud. A well known random algorithm is Wordle and 
well known semantic algorithms are the Context Preserving Word 
Cloud (CPWC) and seam carving [11][45]. 

Wordle is a popular algorithm that generates random word 
clouds using an Archimedean spiral. After extracting the relevant 
words that summarize a text, each word is successively placed at a 
random position on the canvas. During placement, if a word 
collides with any other word on the canvas, it is moved along an 
ever increasing spiral until it no longer collides with another word 
or until it is no longer on the canvas [37]. 

In order to generate semantic word clouds, most algorithms 
first utilize some kind of dimensionality reduction to capture the 
semantic relationship between high level representations for a set 
of words. Such relationship exists when the text in a corpus can be 
faithfully represented in some form such as vector embeddings. 
Most algorithms use classical MDS for dimensionality reduction 
but other algorithms like t-SNE can be used as well [2][33]. 

Classical MDS is used to generate an initial semantic layout 
for most algorithms. However the 2D positions that are generated 
by MDS does not take into account the size and geometry of the 
words. As a result, when the words are initially placed, they are not 
compact and in most cases may overlap. The crux of semantic 
word cloud algorithms is in how they refine this initial layout. 
Various algorithms take different approaches to refining the layout 
of the cloud while preserving its semantic order. 

The context preserving algorithm is a semantic word cloud 
visualization algorithm that uses a set of forces to generate a word 
cloud. These forces are: attractive, repulsive and planar forces. The 
algorithm is a force-directed algorithm similar to the Fruchterman-
Reingold algorithm. A major drawback of this method is the use of 
the Delaunay graph. By flipping the position of the words in order 
to create each triangle within the graph, some semantic order is 
lost. This in turn results in vastly different word clouds that get 
generated with the insertion or removal of new words. 

As the name suggest, the seam carving algorithm is inspired 
by seam carving which is used to resize an image while 
maintaining the important parts of the image [45]. Seam carving 
operates by removing or adding connected rows or columns of 
pixels that have little importance in the image [1]. For word cloud 
generation, such pixels correspond to empty spaces within the 
initial layout. As with the context preserving algorithm, classical 
MDS is used to generate an initial layout and a repulsive force-
directed algorithm is then applied in order to separate overlapping 
words. After separating the words, the seam carving algorithm 
strips the empty spaces between them to generate a compact word 
cloud. Unfortunately, in many cases, there are no connected paths 
between words that run through one end of the canvas to another. 
In such cases, the algorithm leaves empty regions between the 
words and a sub-optimal word cloud is generated. 
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3D Object Clouds 
3D object clouds [21] and other pseudo-random placement 

algorithms are algorithms that generate a seemingly random 
layout. In most cases the layout is generated from a breadth-first 
search of discrete positions within the layout. These positions 
correspond to cells in a row-column grid that overlays the canvas 
for the object cloud.  

In order to generate a cloud, the vector embedding for each 
object is first generated and its distance from that of the object of 
interest is computed. Next the 2D layout for the cloud is divided 
into a grid and the central object of interest is placed at the center 
of the grid. Every other object is then sorted according to their 
vector distance from the object of interest and placed at the next 
available square in the grid. The next available square is found by 
performing a breadth-first search of all the discrete positions with 
the center square as the root. If an object is placed in a square but it 
collides with an already placed object, it is rotated along an 
Archimedean spiral until it no longer collides with any object [21]. 
The new grid position for the object is marked as occupied and the 
process is repeated until all the objects are placed within the 
layout.  

But as discussed previously, emphasizing only the pairwise 
relationship between all objects within the cloud and the object of 
interest does not create a proper semantic order within the entire 
cloud. To generate a more complete semantic order, the pairwise 
relationship amongst all the objects in the cloud needs to be 
computed, which is the focus of this work. 

SEMANTIC OBJECT CLOUDS 

Energy-based Clouds 
As discussed in the previous chapter, using dimensionality 

reduction methods such as MDS to visualize object clouds is 
restricted to projecting high dimensional points unto a 2D canvas 
without accounting for the geometry and size of the items that said 
points represent [31].   

We can modify the MDS algorithm so that performing 
dimensionality reduction simultaneously determines the proper 
position of various items within the cloud. To do this, we re-
express the metric MDS objective for dimensionality reduction as 
a graph-drawing energy function. When such functions are 
minimized, we obtain a resulting force-based graph drawing 
algorithm. In this section we discuss the construction of this energy 
function, as well as how it serves as a qualitative measure for an 
object cloud. We also discuss how gradient descent and 
majorization can be used to optimize it, as well as provide an 
algorithmic implementation for generating such a cloud. 

Metric Multi-Dimensional Scaling 
One problem with classical MDS is that it places too much 

emphasis on larger pairwise distances at the expense of smaller 
pairwise distances [17]. This means that larger distances are mostly 
accurate whereas smaller distances tend to be inaccurate. In fact, it 
does not use as much as a third of all small distances [10][19]. 

In an attempt to solve the shortcomings of classical MDS and 
place equal emphasis on small pairwise distances, metric MDS 
adds weights to the MDS objective. These weights are typically the 
inverse of the original pairwise distances so that as much focus is 
given to matching smaller distances as is given to matching larger 
distances. Matching smaller distances allows us to capture patterns 
between higher dimensional points that are close together. The new 
objective formed is referred to as Stress, S, and it is expressed as 

       

                   (1) 
 
 

where 𝑑𝑖𝑗 = ‖𝑞𝑖 − 𝑞𝑗‖2 and 𝑤𝑖𝑗 = 1/𝑑𝑖𝑗. 
The pairwise distances, 𝑑𝑖𝑗, however need not be represented 

by Euclidean distances. They can be represented by any distance 
function. In order for MDS to capture local patterns within the 
neighbourhood of a point 𝑞𝑖, the Euclidean distance has to be 
replaced with the geodesic distance. This is because Euclidean 
distance corresponds to a distance on a straight line and on curved 
manifolds such as the one illustrated in figure 1, this results in 
smaller pairwise distances for far away points on the manifold. 

 
Figure 1. Geodesic & Euclidean distances between points A and B on a curve 

The geodesic distance on the other hand is the shortest-path 
distance between any pair of points, 𝑞𝑖 and 𝑞𝑗, on a graph. If a 
manifold is represented as a graph, the geodesic distance can find 
the appropriate distance between any pair of points on the 
manifold. This means that on curved manifolds, far away points 
will always have a larger pairwise distance than neighbouring 
points. Since the shortest-path distance computation relies on the 
distance between neighbouring points, MDS is able to capture 
local patterns when using the geodesic distance [39].  

 
Figure 2. Direction of 𝛼 and 𝛽 on a given point 𝑝𝑗 
Energy Formulation 

In order to express the energy in equation 1 as a force-based 
graph-drawing algorithm, we change the weighting, 𝑤𝑖𝑗, into a 
force-based weighting and replace the original pairwise distances, 𝑑𝑖𝑗, with the sum of the radii for a pair of objects. In order to 
replace the weight, 𝑤𝑖𝑗, in equation 1 we decompose it into 

 
      (2) 

 
where 𝛽𝑖𝑗 is an attractive weighting, 𝛼𝑖𝑗 is a repulsive weighting 
and 𝛿𝑖𝑗 is an indicator function. We also express the pairwise 
distances, 𝑑𝑖𝑗, as 
 
                                                                                                      (3) 
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where 𝑟𝑖 and 𝑟𝑗 are the radii for a pair of objects. The new pairwise 
distance indicates that we want all the objects to be adjacent each 
other. Normally this will cause all the objects within the cloud to 
collapse on each other. However, the force-based weighting will 
prevent this from happening and instead results in a tight packing 
of the objects within the cloud. From the above, the energy in 
equation 1 becomes 
 

 
                           (4) 
 
 
where the indicator function, 𝛿𝑖𝑗, evaluates to 
 

 
                   (5) 
 
 
The first weighting, 𝛽𝑖𝑗, can be thought of as an attractive 
weighting between points, 𝑝𝑖 and 𝑝𝑗 while the second weighting, 𝛼𝑖𝑗 , is the repulsive weighting between the pair of points. Since 𝑝𝑖 
and 𝑝𝑗 represent the center of a pair of objects and 𝑑𝑖𝑗 represents 
the distance at which the pair of objects become adjacent without 
overlapping, the weightings control how fast or slow different pairs 
of objects become adjacent to one another. When ‖𝑝𝑖 − 𝑝𝑗‖ > 𝑑𝑖𝑗, the 
objects represented by 𝑝𝑖 and 𝑝𝑗 are far apart and either is attracted 
to the other at a speed of 𝛽𝑖𝑗 until ‖𝑝𝑖−𝑝𝑗‖ = 𝑑𝑖𝑗. Conversely when 
‖𝑝𝑖−𝑝𝑗‖ < 𝑑𝑖𝑗, the objects represented by 𝑝𝑖 and 𝑝𝑗 are too close and 
either is repelled away at a speed of 𝛼𝑖𝑗 until ‖𝑝𝑖 − 𝑝𝑗‖ = 𝑑𝑖𝑗. When 
‖𝑝𝑖 − 𝑝𝑗‖ = 𝑑𝑖𝑗, the weightings have no effect and there is no change 
in the position of either 𝑝𝑖 or 𝑝𝑗. 

Under the typical MDS objective both weightings are equal 
and cancel themselves. In such a scenario the pairwise distances, 𝑑𝑖𝑗, must reflect actual distances between all the objects or the 
objects will collapse unto themselves. However, when 𝛼 > 𝛽, a 
given layout has a lot of space with a few overlapping objects and 
when 𝛼 < 𝛽, the layout is more compact but with a lot of occluding 
objects. 

After decomposing the weights, we construct a graph over the 
high dimensional points. This graph allows us to establish a 
pairwise ordering of the objects which is lost after replacing the 
original pairwise distances, 𝑑𝑖𝑗. In the next section we will discuss 
what kind of graph is needed to create a semantic object cloud. 
Using the high dimensional graph, we split the objective into 
adjacent pairs of points, 𝑁1, and non-adjacent pairs of points, 𝑁2, 
such that we have 

              (6) 

      
 
By setting attraction, 𝛽2 = 0 for the non-adjacent pairs of 

objects and making the repulsion 𝛼1 = 𝛼2 for both adjacent and 
non-adjacent pairs of objects, we end up with an energy function 
that when differentiated, results in a force-based graph-drawing 
algorithm. The function can succinctly be expressed as 

 
                 (7) 

 
where 𝐴𝑖𝑗 is another indicator function that represents the 
adjacency of any pair of points. In order to create non-overlapping 
object clouds, especially as the number of objects increases, we 
find it important to set 𝛽 < 𝛼. When the number of objects is 
relatively small, 𝛽 = 𝛼 produces non-occluding objects but as the 
number of objects increases, so does the number of occlusions. 
Setting 𝛽 > 𝛼 on the other hand results in occluding objects 
regardless of the number of objects. 

Graphical Structure 
In order to create a semantic object cloud, we use a K-Nearest 

Neighbour (K-NN) graph. For any vector, 𝑣𝑖, in a given space, the 
K-NN graph finds the 𝑘 closest vectors, {𝑤1, ...,𝑤𝑘} and constructs 
an edge between 𝑣𝑖 and each of the vectors. This graph is however 
directed and unconnected whereas the graph for an object or a 
word cloud needs to be undirected and connected in order to exert 
the proper forces amongst the nodes and compact them all. An 
unconnected graph will have items that are not attracted by any 
other items nor repelled by all the other items, thus creating excess 
space within the cloud. To convert a graph into an undirected and 
connected graph, we sum the adjacency matrix of the graph with 
its transpose and take the non-zero entries as the edges. 

To determine the appropriate number of neighbours for the K-
NN graph, we choose the smallest number of neighbours, 𝑘, that is 
necessary to form a connected graph. We find that the smaller the 
number of neighbours, the easier it is to compactly place an object 
with all its neighbours, thereby reducing the energy for the object. 
If the number of neighbours is high, an object cannot be placed 
with all its neighbors because there is a limit to the number of non-
overlapping objects that can be placed around a given object. 
Hence the energy of the object in question will increase. 

The K-NN graph is typically used in many dimensionality 
reduction algorithms because it preserves the local ordering 
amongst high dimensional points [39][4]. To that end, we find that 
it helps ensure a semantically accurate ordering amongst high 
dimensional points. However, we find that the Delaunay graph 
which is typically used to construct word clouds does not ensure a 
semantically accurate ordering due to the flipping of points that 
may be required when constructing a simplex for the triangulation. 
Furthermore, the Delaunay graph cannot be used for high 
dimensional points because in order to construct such a graph, the 
number of points needs to exceed their dimensionality. However, 
for both word and object clouds, the dimensionality of the vector 
embeddings can sometimes exceed the number of items to be 
visualized. 

In figure 3, we illustrate the advantage the KNN-graph has 
over the Delaunay graph for both semantic accuracy and 
dimensionality reduction. To measure the semantic accuracy, we 
use the trustworthiness metric [18][41]. This measures the amount 
of high dimensional neighbouring points that are present in the 
neighbourhood of each 2D point. Neighbouring points from the 
high dimension that are missing from the neighbourhood of a 2D 
point reduces the trustworthiness of a projection. Conversely, 
neighbouring points from the high dimension that are present in the 
neighbourhood of a 2D point increases the trustworthiness. We 
compare the trustworthiness of a 2-dimensional Delaunay, K-NN 
and random graphs that are formed from an initial MDS projected 
layout. We also include the trustworthiness of the MDS layout as a 
baseline. 
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(a) ModelNet 40 

 
(b) Princeton shape benchmark 

 
Figure 3. Trustworthiness of 2D graphs and MDS on different datasets with 
different numbers of objects. 

From figure 3, we can see that the classical MDS projected 
ordering has a high trustworthiness which indicates that the initial 
layout is quite similar to the high dimensional ordering of the 
points. However, by applying both the K-NN, Delaunay and 
random graphs to draw the layout, the trustworthiness decreases. 
This is due to the fact that some information about the actual 
closeness of neighbouring points is lost during the projection and 
graphs like the Delaunay graph change some semantically correct 
edges during its construction. In figure 4 we show how applying a 
KNN graph to the high dimensional points themselves simply 
circumvents these problems and increases the trustworthiness of an 
initial layout. 

Measuring Object Clouds 
Formulating an objective function for object clouds allows us 

to measure the quality of a cloud. By defining a semantic or 
random graphical ordering over the set of objects, we can measure 
how well said objects are compactly placed relative to each other 
within a layout. We will briefly illustrate how the energy of a 
layout quantifies its appeal, as well as what to note when using 
such qualitative measure. 

Consider the pair of objects in the figure 5. The farther apart 
their distance, 𝐿𝑖𝑗, the larger the amount of energy, 𝐸, within the 
layout. Conversely suppose we have an overlapping pair of objects 
as in the figure 5. If we assume the energy of this layout is minimal 
because the distance, 𝑙𝑖𝑗 < 𝐿𝑖𝑗, then the objective function will tend 
towards this configuration for a pair of objects. However, since this 
configuration is as equally undesirable as the previous 
configuration, we scale 𝑙𝑖𝑗 - using 𝐿𝑖𝑗/𝑙𝑖𝑗 - so that the value of the 
energy is as large as that of the previous configuration. Note that 

compared to an overlapping configuration, we do not need to scale 
a distant configuration. That being said, we are left with 2 
configurations in which the distance, and subsequently the energy, 𝐸, is zero: when the objects are compactly placed side by side and 
when they completely overlap. The configuration in which the 
objects completely overlap is a local minimum that can only be 
escaped by adding noise to their positions. If however we ignore 
this case, then we see that the configuration with the most appeal - 
compact placement - has no energy. 

In order to determine the proximity of a pair of objects, 𝐿𝑖𝑗 or 𝑙𝑖𝑗, the energy in equation 7 calculates the position of their centers, 
‖𝑝𝑖 − 𝑝𝑗‖, relative to the size of the objects, 𝑑𝑖𝑗 = 𝑟𝑖 + 𝑟𝑗 such that 𝐿𝑖𝑗, 𝑙𝑖𝑗 = 𝑑𝑖𝑗 − ‖𝑝𝑖 − 𝑝𝑗‖. When ‖𝑝𝑖 − 𝑝𝑗‖ < 𝑑𝑖𝑗, the pair of objects are 
overlapping and a force 𝛼 > 𝛽 is applied to the overlapping 
distance, 𝑙𝑖𝑗 in order to compute the energy value. The indicator 
function in equation 5 determines which of the forces to apply and 
subsequently which distance, 𝐿𝑖𝑗 or 𝑙𝑖𝑗 is in effect. We can set the 
weight 𝛽 to any positive real value but in order to scale 𝑙𝑖𝑗 and 
prevent the energy function from settling into an overlapping 
configuration, 𝛼 > 𝛽. 
 

 
(a) ModelNet 40 

 
(b) Princeton shape benchmark 

 
Figure 4. Trustworthiness of MDS and a high-dimensional KNN on different 
datasets with different number of objects. 

      
 
Figure 5. Distance in relation to the energy for a pair of objects. 
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Since computing the energy involves the squared distance 
between pairs of objects and the weightings are positive real 
numbers, for an object cloud the energy is always a positive real 
number. Ideally for every cloud, we would want this number to be 
as close to 0 as possible without pairs of objects completely 
overlapping but this is not always possible as the number of 
objects increases. This is because as the number of objects 
increases, so does the number of configurations. Many of these 
configurations are sub-optimal and the objective function may not 
be able to escape one of such local optima. Hence as the number of 
objects increases, we may achieve a state of minimal energy rather 
than a state with no energy. 

Energy Minimization 
In order to minimize the energy function of an object cloud, 

we consider several optimization methods that have been applied 
to multi-dimensional scaling and machine learning problems. 

Gradient Descent 
The algorithm represented by equation 7 can be converted 

into a force-based algorithm by taking the negative gradient of the 
energy, 𝐸. Taking the gradient with respect to 𝑝𝑖, we have 

 
 
                (8) 
 

where (𝑝𝑖 − 𝑝𝑗) / ‖𝑝𝑖 − 𝑝𝑗‖2 indicates the direction in which the 
center, 𝑝𝑖, of an object should move and (𝑑𝑖𝑗 − ‖𝑝𝑖 − 𝑝𝑗‖2) indicates 
by how much the center should be moved for an object in question 
to be placed compactly amongst its neighbours. Using the gradient, 
we can update the position of 𝑝𝑖 as  

           
     (9) 

 
However, the problem with this update algorithm is that it 

converges slowly relative to second-order optimization methods 
like the Newton-Raphson method and it has a higher likelihood of 
becoming stuck at a local minimum [23]. Applying the Newton-
Raphson method as is done in the Kamada-Kawai algorithm 
requires the calculation of a Hessian which can be a tedious 
approach and in some cases, a semi-positive definite Hessian may 
not exist. In order to avoid this while guaranteeing faster 
convergence to a global minimum, we further adopt two 
optimization strategies to minimize the energy function: random 
reshuffling and majorization. 

Random Reshuffling 
Random reshuffling is a form of gradient descent in which the 

training set is shuffled at each iteration before taking the gradient. 
In our case, the training set, 𝑃, consists of pairs of objects whose 
initial order is permutated at each update iteration. We can express 
this as 

                
                                                                                                    (10)  
 
where 𝜎(𝑃, 𝑡) represents the permutation of 𝑃 at iteration 𝑡. While 
the convergence of the random reshuffle is chaotic in nature, its 
convergence rate is greater than that of the normal gradient descent 
and can be even close to quadratic in some cases [7]. Additionally, 
shuffling the order of the training set can allow us to escape local 
optima within the energy function. 
 

Majorization 
Given that the energy for object clouds can be expressed is a 

form of metric MDS, majorization can be used to minimize it. A 
significant advantage of majorization is that it guarantees a set of 
non-increasing energy values that allows us to stop the 
minimization process when there is little to no change in the 
energy values. In other words 
 
                                (11) 

At which point we can be certain that the energy of the object 
or word cloud is minimal and has the highest aesthetic value before 
ending the minimization process. This is particularly useful 
because most graph drawing algorithms such as the Fructerman-
Reingold and the context preserving algorithm as well as the 
techniques mentioned above minimize the energy in a cloud within 
a set number of iterations. This may result in a sub-optimal 
configuration of objects within the cloud if the number of iterations 
is inadequate or if the number of iterations is too long that the 
energy values begin fluctuating at the valley of the energy 
function. 

Scaling by MAjorizing a COmplicated Function (SMACOF) 
is a popular majorization algorithm that is used to optimize the 
stress objective in equation 1.  Majorization itself is an 
optimization technique that is used to solve a complicated function, 𝑓(.), by solving a simpler surrogate function, 𝑔(., .). For a given 
point, 𝑦, and a minimizer, 𝑥*, the surrogate function needs to 
satisfy the following sandwich inequality 

 
               (12) 

 
Using the Cauchy-Schwartz inequality, we can create a simple 
surrogate function for the stress objective. To do this, we begin by 
rewriting equation 1 as: 
 
  

                (13) 
 
 

where 𝜌𝑖𝑗 = ‖𝑝𝑖 − 𝑝𝑗‖2. Using the definition of, 
 
 
                (14) 
 

we further express equation 13 in matrix form such that: 
 
                 (15) 
 
 
where, 𝑃, are the coordinates of the points in the lower dimension 
and the matrices 𝑉 and 𝐵(𝑃) are weighted Laplacian such that 
 

                (16) 
 
 
 
The last term in equation 15 is the what is most important for 

constructing the surrogate function. Using the Cauchy-Schwartz 
inequality 

 
 
                (17) 
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for some vectors, 𝑝 and 𝑥 [16]. We can construct a surrogate 
function, 𝑔(𝑥, 𝑝), that is expressed as 
 
                 (18) 
 
 
From equation 17, the following inequality holds 
 
                 (19) 
 

Hence for a minimizer, 𝑥, 𝑓(𝑥) ≤ 𝑔(𝑥, 𝑝) and the sandwich 
inequality in equation 14 holds [14]. We can find this minimizer by 
setting the derivative of the 𝑔(., .) with respect to 𝑋 as zero and 
then solving for 𝑋. This results in the solution 

 
                (20) 
 

where 𝑉+ is the pseudo-inverse of 𝑉. 
This solution is also known as the Guttman transform of the 

points, 𝑃 [14]. On each iteration of the majorization algorithm, the 
points 𝑃 are replaced with 𝑋 and the above transformation is 
repeated until 𝑓(𝑥) − 𝑓(𝑝) is less than some tolerance value, 𝜖. 

In order to majorize a function, 𝑓(.), we need to construct and 
minimize a surrogate function, 𝑔(.), such that the sandwich 
inequality in equation 14 holds and the minimum of 𝑔(.) is the 
same as that of 𝑓(.). We adopt the surrogate function that is used in 
equation 14 with the minor modification that the weight, 𝑤𝑖𝑗, is no 
longer constant and can be expressed as 

 
                (21) 
 

where 𝑤𝑖𝑗(𝑝) are the weights for a particular configuration 𝑃 such 
that 𝛿𝑖𝑗(𝑝) is the activation function for a set of positions 𝑝𝑖 and 𝑝𝑗 
that belong to said configuration. 
 Hence the surrogate 𝑔(𝑥, 𝑝) can then be expressed as 
 

                 (22) 

 

where 𝑉 (𝑊𝑝) and 𝐵(𝑃, 𝑊𝑝) are the Laplacian matrices computed 
from the weights 𝑤𝑖𝑗(𝑝). Similarly, the energy function at a 
minimizer, 𝑥, can be expressed as 

 
                (23) 
 

When 𝑥 = 𝑝, 𝐴𝑖𝑗 = 1 and 𝛽 = 𝛼, 𝑤𝑖𝑗(𝑝) = 𝑤𝑖𝑗(𝑥) = 1, then we 
have the SMACOF equation 15. However, for object clouds, we 
recompute both the weight and the Laplacian matrices at every 
iteration since the value of 𝑤𝑖𝑗 depends on the amount of attracting 
and colliding objects at a given iteration. At each iteration, 𝑤𝑖𝑗 
changes because the objects that are being attracted or separated 
changes. Therefore our weighting is not constant as in the original 
SMACOF algorithm and as such the Cauchy-Schwartz inequality 
in equation 19 does not always hold true. 

Fluctuation in the value of, 𝑤𝑖𝑗, however does not affect the 
convergence of the energy function. We still get a set of non-
increasing stress values that obey the sandwich inequality. Under 
normal MDS, the equation 19 is necessary for a set of decreasing 
stress values because the first two terms in 𝑓(𝑥) and 𝑔(𝑥, 𝑦) are 

equal and constant when 𝑤𝑖𝑗 is constant. Therefore the difference 
between the first two terms and the third term in 𝑓(𝑥) is less than 
difference between the third term in 𝑔(𝑥, 𝑝). 

Under the MDS formulation for object clouds, a similar 
dynamic comes into play when 𝑤𝑖𝑗 fluctuates. If tr 𝑋⊤𝐵(𝑋,𝑊𝑥)𝑋 < 
tr 𝑋⊤𝐵(𝑋,𝑊𝑝)𝑃 then the first two terms in equation 23 are also less 
than those in equation 22 and vice versa. The value of these terms 
is such that the difference between the first two terms and the third 
term in equation 23 is less than difference first two terms and the 
third term in equation 22. Hence despite fluctuations in the value 
of 𝑤𝑖𝑗, the sandwich inequality still holds for energy-based object 
clouds and we get a set of non-increasing energy values. 
 

EXPERIMENTAL EVALUATION 

Datasets 
To evaluate the energy formulation for object clouds, we used 

the Princeton Shape Benchmark (PSB) and the ModelNet40 
datasets [34][46].  

The PSB dataset is a collection of 1,814 3D CAD models. 
The PSB dataset is unique in that it has several hierarchies of 
classification. They range from general classes like "musical 
instruments" and "furniture" to more specific classes like "acoustic 
guitar" and "desk with hutch" respectively. These hierarchies 
reflect both the primary and secondary form of each model. In total 
there are 161 general and specific classes. The lowest classification 
level contains at least four 3D models and the largest class (general 
or specific) contains 100 3D models. 

The ModelNet40 is a larger collection of about 151,128 3D 
CAD models within the dataset, each of which belong to roughly 
660 object categories [46]. Although there are many object 
categories containing everyday objects, the ModelNet40 dataset 
specifies 40 classes. 

Methods Under Comparison 
We evaluate the performance of each of the three energy 

optimization techniques discuss above. Additionally, because our 
energy-based model is related to the context preserving algorithm, 
we also evaluate its performance for generating semantic object 
clouds. Finally, we include the breadth-first search algorithm for 
pseudo-random object clouds as a baseline for our comparisons. 

Metrics 
In order to compare the various object cloud algorithms, we 

utilize 4 different metrics: trustworthiness, realized adjacency, 
compactness and energy. 
 

Trustworthiness 
When performing dimensionality reduction, each point in the 

original manifold has a neighbourhood that contains a set of close 
points that should ideally be retained in a lower dimensional 
manifold. Trustworthiness measures how well such neighbouring 
points from the original dimension are preserved in the lower 
dimension. It is defined as follows 

 

 
                (24) 
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where 𝒩୩ are the K-Nearest neighbours in the lower dimension 
and 𝑟𝑖𝑗 is the rank of each neighbour in the original input space. 
Each neighbour that is unexpected in the lower dimensional space 
is penalized by its rank in the original dimension and the fractional 
term helps normalize the output. Trustworthiness has a value from 
0 to 1 where 0 indicates that all the points have unexpected 
neighbours and 1 indicates that the neighbourhood for every point 
in the higher dimensional space is well preserved. 

 

Realized Adjacency 
The realized adjacencies, defined in equation 25 are the set of 

objects that are adjacent to each object [2]. An object is adjacent 
another object if its boundary from that object is within 0.01-
0.05% of the size of the smaller object. This metric measures the 
level of similarity across adjacent objects within the cloud. Its 
value is between [0, 1] with a higher value indicating that there 
many adjacent objects within the cloud are similar and vice versa. 

 

 
                (25) 
 
 

Compactness 
Compactness measures how tightly packed each of the words 

are within the given 2D layout of the cloud. It is calculated by 
dividing the total area by the used area. The total area refers to the 
tightest rectangular area bounding all the objects within the layout. 
It is measured by multiplying the difference between the X-axis of 
the leftmost and rightmost object or word with the difference 
between the Y-axis of the uppermost and lowermost object. The 
used area however is the sum of the area of each individual objects 
within the cloud. The metric can be expressed as follows 
 

  
                 (26) 
 
When the rectangular area bounding all the objects is larger than 
the sum of area of all the objects, 𝐶 < 1 indicating that there is 
some space between the objects. As this space increases, 𝐶 → 0. 
Conversely, when all the objects are tightly packed, the rectangular 
area is equal to the sum of the area of all the objects and 𝐶 = 1. 
However, if many of the objects begin to overlap each other, 𝐶 > 1. 
Therefore, a good value for compactness is 0.5 ≤ 𝐶 ≤ 1. 

Data Preprocessing 
Each of the 3D models from the PSB and ModelNet40 

datasets was passed into a Blender python script in order to extract 
varying views of the model. The various views are obtained from 
cameras that are positioned at an angle and ground elevation of 30∘ 
around the model. The python script generates 12 views which are 
then passed into an MVCNN that was pre-trained using the Resnet-
18 neural network. Rather than use the MVCNN network as it is, 
we fine-tuned it to each dataset by training it over a dataset for 5 
epochs. Each epoch was over 1000 iterations and at the end of 
training, the MVCNN had an accuracy of over 85% on each of 
dataset. After training, the dataset was passed into the network and 
the vector output from the penultimate layer was used as high-
dimensional vector embedding for each of the algorithms to be 
evaluated. 

 
  (a) ModelNet 40 

 
    (a) Princeton shape benchmark 

 
Figure 4. Trustworthiness of various algorithms on different shape datasets. 

Results 
Recalling that our target application is to browse a similar 

number of objects that are typically found on commercial 
webpages (a few dozen), we compare clouds of up to 100 objects. 
Likewise, we focussed on layout quality rather than computation 
speed, since we are not browsing a very large number of objects. 
We evaluated how well each of the optimization methods 
performed on the shape datasets for 9, 25, 49, 81, and 100 objects.   

Firstly, to give the reader a sense of what the clouds look, 
consider the results shown in figures 8-12.   These are generated 
from a single run with 49 models using the various layout 
algorithms (gradient decent, random replay, majorization, context 
preserving algorithm and breadth-first search). But individual runs 
are not very informative, so we also need to look at the results 
shown in the aggregated graphs. 

In figure 4 we see that on both datasets, all three optimization 
layouts outperform the context preserving and breadth-first 
layouts. While the context preserving and breadth-first layouts 
manage to preserve some of the high-dimensional semantic 
structure of the objects, they do not do so to the degree of the 
optimization layouts. As discussed in the previous sections, this is 
due to the fact that the optimization layouts utilize a high-
dimensional KNN graph in their operation as opposed to the lower 
dimensional graph. Therefore, they lose less information about the 
semantic structure of the object representations. This is illustrated 
in figures 8, 9, and 10 where objects like sofas and chairs are 
grouped separately but placed in such a way that they morph into 
each other. Whereas in the figures 11 and 12, there is some 
semantic order but those objects are not clearly grouped. 

414-8
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022



 

 

 
  (a) ModelNet 40 

 

 
        (b) Princeton shape benchmark 

 
Figure 5. Compactness of the various algorithms on different shape datasets. 

When we observe the compactness of the layouts from figure 
5, we can see that the majorization, random replay and context 
preserving algorithms perform well on both datasets. The relatively 
poor performance of gradient descent is due to the way 
compactness is calculated. The figure 8 has a wider bounding box 
for its object cloud than those of figures 9 and 10. Hence the total 
area is much larger. The gradient descent layout also has relatively 
more overlaps which leads to a smaller used area than that of the 
other two optimization layouts. The smaller used area and larger 
total area therefore lead to much less compactness for the gradient 
descent layout. The breadth-first layout on the other hand makes a 
more uniform use of the layout as illustrated in figure 11. 
However, some of the objects are too small for the grid in which 
they have been placed in, leading to excess space among objects of 
various grids and thus a relatively low compactness for the layout. 

From figure 6, we once again observe that the optimization 
algorithms out-performed both the context preserving and breadth-
first layouts on the realized adjacency. This is likely due to the fact 
that the optimization layouts minimize the squared pairwise 
distance between neighbouring objects while maintaining a high 
degree of semantic similarity between said objects. By minimizing 
the distance, similar pairs of objects touch each other which in turn 
increases the realized adjacency of the layouts. The context 
preserving layout does the same thing but additionally it tries to 
maintain the planarity of its underlying Delaunay graph. 

 

 
  (a) ModelNet 40 

 
        (b) Princeton shape benchmark 

 
Figure 6. Realized adjacency of various algorithms on the shape datasets. 

As discussed earlier, this graph has a lower degree of 
semantic similarity and so when neighbouring objects do touch 
each other, they might not be very similar which in turn reduces 
the realized adjacency of the layout. Furthermore, as can be seen in 
figure 12, the highly compact nature of the context preserving 
layout means that neighbours that are colliding do not get included 
in the realized adjacency sum thus leading to a lower value for the 
layout. 

While a highly compact layout in which there are significant 
collisions may reduce the realized adjacency, a less compact layout 
such as that of the breadth-first layout also reduces the realized 
adjacency because fewer object are touching each other. Since 
many of the objects in the breadth-first layout are smaller than 
their grid, the space between neighbouring objects was too large 
for the objects to be considered as touching each other. Hence the 
very low realized adjacency for the layout. 

In figure 7 we observe that except for the context-preserving 
layout, the layouts for the other algorithms minimize the energy of 
an object cloud. This may be due to the large amount of colliding 
objects within the context-preserving layout. As discussed in the 
previous sections, a larger repulsive weighting is needed to repel 
colliding objects. Therefore, when computing the energy of a 
cloud, colliding objects have higher energy. Since our experiment 
utilized a repulsive weighting that is 8 times that of the attractive 
weighting, this may account for the high energy within the context-
preserving cloud. 
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  (a) ModelNet 40 

 
        (b) Princeton shape benchmark 
 

Figure 7. Energy of the various algorithms on different shape datasets. 

CONCLUSION 
We proposed an energy function for object clouds. By 

optimizing the energy function, we showed that we can create a 
semantic object cloud. This is due to the fact that we minimized 
the squared distance between similar objects in the K-NN graph 
while maximizing the squared distance between dissimilar objects 
in the graph. To that end, we explored 3 optimization strategies: 
gradient descent, random replay and majorization.  

We discussed each of these strategies and their advantages 
over each other. Random replay is like gradient descent, but it 
randomizes the order in which the objects are adjusted thereby 
allowing it to escape local minima that gradient descent may get 
stuck in. Majorization however is a very different strategy in that 
all the objects are adjusted at the same time and the adjustment is 
based on the minimization of a surrogate for the proposed energy 
function. This allows it to construct object clouds faster and it 
decreases the energy function monotonically. Using the decreasing 
monotonicity, we can stop the construction of an object cloud 
whenever the energy function ceases to decrease rather than 
specifying a set number of iterations within which to minimize it. 

From the minimization strategies, we proposed a set of 
algorithms for constructing object clouds. We then compared the 
layout from these algorithms against other the layout of algorithms 
that include the breadth-first search and context preserving 
algorithms. We used metrics such as trustworthiness, compactness, 
and realized adjacency to facilitate our evaluation.  

The optimization algorithms outperformed the other 
algorithms on trustworthiness due to the fact that less semantic 

information is lost when using a high dimensional graph as 
opposed to a lower dimensional graph like the Delaunay graph. In 
terms of compactness, both the context preserving layout and the 
optimization layouts were compact. The breadth-first search layout 
was not as compact because of its uniform use of layout space. 
Finally in terms of realized adjacency, the optimized layouts did 
outperform the other algorithms due to a combination of high 
semantic order and compactness. The context preserving algorithm 
did not perform as well because the semantic order of the layout 
was not as high and some objects were too close to be considered 
as touching each other. The breadth-first search in a similar vein 
did not perform as well because the space between the objects was 
too large for them to be considered as touching. 

Finally, we note that there are several important limitations of 
this work.  Given our target application of presenting clouds of 
objects normally found in online webpages we only considered a 
maximum of 100 objects that could be browsed at a reasonable 
size.  In addition, we compared 5 methods for computing the 
layouts of 3D clouds, but this is not exhaustive, and others could 
be tried.   We also note that all the methods produced some degree 
of overlap due to competing constraints which is reflected in the 
adjacency metric scores. Moreover, a second user study on 
semantic 3D clouds may offer additional insights into user 
preferences.  
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Figure 8: Gradient Descent Layout on ModelNet40 dataset. (# objects = 49) 

 

 
 
Figure 9: Random Replay Layout on ModelNet40 dataset. (# objects = 49) 

 
 
Figure 10: Majorization Layout on ModelNet40 dataset. (# objects = 49) 

 
 
Figure 11: Breadth First Search on ModelNet40 dataset. (# objects = 49) 

 
 
Figure 12: Context Preserving Layout on ModelNet40 dataset. (# objects = 49) 
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