
Digital Reconstruction of Elmina Castle for Mobile Virtual Re-
ality via Point-based Detail Transfer
Sifan Ye, Computer Science Department, Stanford University, Palo Alto, CA USA
Ting Wu, eBay, San Jose, CA USA
Michael Jarvis, Department of History, University of Rochester, Rochester, NY USA
Yuhao Zhu, Department of Computer Science, University of Rochester, Rochester, NY USA

Abstract
Reconstructing 3D models from large, dense point clouds

is critical to enable Virtual Reality (VR) as a platform for en-
tertainment, education, and heritage preservation. Existing 3D
reconstruction systems inevitably make trade-offs between three
conflicting goals: the efficiency of reconstruction (e.g., time and
memory requirements), the visual quality of the constructed scene,
and the rendering speed on the VR device. This paper proposes
a reconstruction system that simultaneously meets all three goals.
The key idea is to avoid the resource-demanding process of re-
constructing a high-polygon mesh altogether. Instead, we pro-
pose to directly transfer details from the original point cloud to a
low polygon mesh, which significantly reduces the reconstruction
time and cost, preserves the scene details, and enables real-time
rendering on mobile VR devices.

While our technique is general, we demonstrate it in recon-
structing cultural heritage sites. We for the first time digitally
reconstruct the Elmina Castle, a UNESCO world heritage site at
Ghana, from billions of laser-scanned points. The reconstruction
process executes on low-end desktop systems without requiring
high processing power, making it accessible to the broad commu-
nity. The reconstructed scenes render on Oculus Go in 60 FPS,
providing a real-time VR experience with high visual quality.

Introduction
Historic sites of cultural significance are being destroyed on

a daily basis. While it is impossible to fully prevent this, we can
digitally preserve important historic sites by reconstructing these
sites in 3D before destruction for later research. Apart from aca-
demic research, reconstructing cultural heritage sites is also in-
strumental to educating and entertaining the general public; web-
sites such as CyArk [2], Open Heritage 3D [5], and Bermuda
100 [1] promise to let people virtually visit “the world’s most fa-
mous monuments in immersive and accurate 3D.” Humanities and
education researchers have long advocated using digital interac-
tive games/simulations to transport students across time and space
to better understand the past and other cultures [16, 11, 18, 35].

This paper describes our effort to reconstruct Elmina Castle,
a historical slave trade castle and a UNESCO World Heritage Site
in Ghana, from large-scale laser-scanned point clouds, which we
collected during field trips to Ghana over the past three years.
We target mobile Virtual Reality (VR) headsets, e.g., Oculus Go,
which provide an ideal platform for immersive experience but also
present the challenge of limited processing power.

Besides the historical and humanitarian significance of the
reconstructed site itself, we present a reconstruction workflow that

addresses two technical challenges: 1) the reconstruction algo-
rithm must generate 3D models that can be rendered in real-time
on resource-limited mobile VR devices with high quality, and 2)
the reconstruction algorithm itself must be lightweight so as to be
accessible to the broad archaeology community. Let us elaborate.

First, rendering large-scale 3D models on mobile VR head-
sets is challenging due to the limited amount of compute re-
sources. A 3D model of even a single room in Elmina Castle has
millions of polygons, which render at merely 10 FPS on Oculus
Go. Existing workflows either simply use a low-polygon mesh or
decimate a high-polygon mesh [13, 15] (i.e., remeshing). Both
yield smaller meshes and improve the rendering speed but usually
come at a cost of losing critical scene details, which is disruptive
when closely examining an artifact.

Second, we also aim to develop a lightweight reconstruction
workflow that makes reconstructing heritage sites from huge point
clouds more accessible to historians and archaeologists, who may
not have access to powerful computers and could not afford long
reconstruction time. For instance, the entire scan of Elmina Castle
contains 33 billions of points; reconstruct the castle on a high-end
Intel Xeon server with 256 GB RAM and 2 Nvidia GTX 1080Ti
GPUs takes three weeks, which in reality is even longer because
the constructed mesh could be iteratively edited.

Our reconstruction workflow simultaneously addresses the
two challenges above. We completely skip high-polygon meshes
altogether. Instead, we use a low-polygon mesh as the base repre-
sentation of the scene, and then transfers the details, e.g., color
and normal, directly from the original point cloud to the low-
polygon mesh. Our reconstruction workflow is lightweight and
fast since we never reconstruct a high-polygon mesh through-
out the whole process. The reconstructed model can be rendered
in real-time since the underlying representation is a low-polygon
mesh, which, critically, is associated with high-quality texture in-
formation transferred from the original point clouds.

Overall, our reconstruction system achieves a wall-clock
speedup of up to 3.1 times compared with an existing commer-
cial reconstruction workflow. On average, our reconstruction sys-
tem converts scans with over 30 million points to meshes with
200 thousand polygons, which render in 60 FPS on Oculus Go,
a representative mobile VR headset, while presenting a desirable
visual quality, evaluated both objectively and subjectively.

To encourage further digitization of the castle and pro-
vide immersive learning, research, and education experience to
people who could not visit the castle in person, our system
is available at https://github.com/horizon-research/

3D-Reconstruction-From-Point-Cloud.

IS&T International Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022 409-1

https://doi.org/10.2352/EI.2022.34.1.VDA-409
© 2022, Society for Imaging Science and Technology

https://github.com/horizon-research/3D-Reconstruction-From-Point-Cloud
https://github.com/horizon-research/3D-Reconstruction-From-Point-Cloud

Fig. 1: Overlook of Elmina Castle. Fig. 2: Scanning the exterior of the castle.

Context and Background
Why Digitally Reconstructing Elmina Castle?

Historical Significance Built in 1482 by the Portuguese,
Elmina Castle (Figure 1) is the first European trading base con-
structed in Sub-Saharan Africa. For more than five hundred years,
it was a commercial hub where European goods were exchanged
for gold, ivory, and slaves. During the Portuguese period (1482-
1637) and after the Dutch West India Company captured it in
1637, Elmina Castle was the central administrative base for com-
mercial operations at satellite forts stretching hundreds along the
Gold and Slave Coasts. For their central role in the trans-Atlantic
slave trade and as a unique collection of European fortifications
adapted to an African environment, Ghana’s slave trade forts and
castles were given UNESCO World Heritage Site status in 1979.

Humanity Elmina holds personal relevance for tens of
millions of people globally. Elmina Castle is a major cen-
ter for directing the African slave trade and the oldest site of
sustained Euro-African contact and commerce in Sub-Saharan
Africa. Under the Ghana Museums and Monuments Board, the
well-preserved site (along with nearby Cape Coast Castle) has
become a major pilgrimage site of African Diaspora heritage
tourism, attracting tens of thousands of African Americans annu-
ally seeking insights into their ancestors’ experiences of enslave-
ment. Creating a virtual experience through a digital surrogate has
immense humanity value for those who could not physically visit
the castle, whose importance is only heightened by COVID-19.

Research and Education Virtually reconstructing Elmina
has significant research value for archaeologists, historians, and
mechanical engineers. For instance, archaeologists use the re-
constructed fabric of the castle’s floors, walls, and ceilings to date
the castle’s various rooms and determine the structure’s evolution.
Early Portuguese parts of the castle would be indicated by the use
of mud mortar, thin red bricks, and roof tiles imported from Portu-
gal. Later Dutch repairs and expansions of the castle incorporated
lime mortal, imported yellow Dutch bricks, and angled ramparts
designed to sustain cannon fire. Mechanical engineers could view
the reconstructed model to dynamically model the monument’s
structural integrity and recommend repairs.

Scanning System
Over a three-year span, we use a FARO Focus3D X 130 laser

scanner [3] to generate colored point clouds for each of the cas-
tle’s 120 rooms and exterior areas (Figure 2). For each scan, the
time-of-flight ranging unit first generates a raw (colorless) point

cloud of the scene; on a separate pass, a color camera built-in with
the scanner captures the color images, which are then later regis-
tered with the raw point cloud to generate a colored point cloud.

Overlapped individual scans within rooms were first regis-
tered using FARO’s Scene software; the outliers were then re-
moved to create the final dense point cloud, which covers every
room. By combining a total of 427 individual scans, the point
cloud for the entire castle exceeds 33 billion points with an aver-
age resolution (distance between neighboring points) of 1.9 mm.
In tests conducted offline, our scans have a point accuracy of
4.7 mm overall; most rooms have point accuracies under 2.0 mm.

Point Cloud Reconstruction for Mobile VR
While it is possible to directly render the point clouds [34, 9],

doing so has two key disadvantages. First, pure point clouds are
just not visually appealing. Users can see “holes” in the scenes,
which is particularly disruptive when users want to closely ex-
amine a historical artifact. Second, many VR use-cases such as
virtual tours allows users to interact with the scene, e.g., walk-
ing around the castle, or observing avatars of historical figures
living/working in the castle, which in turn requires a continuous
surface to simulate collision for realistic interactions. Thus, we
reconstruct polygon meshes from the colored point clouds.

Design Objectives
Real-Time Rendering Speed and Desirable Visual Qual-

ity To faithfully represent the details of a scene a high-polygon
dense mesh is preferred. Constructing meshes from point clouds
is a well-studied problem in the literature [19, 20], and there are
mature open-source and commercial software and libraries such
as PCL [33], CGAL [37], MeshLab [12], and Metashape [7].

However, dense meshes are hard to render in real-time, es-
pecially on mobile VR devices. Oculus Go suggests to keep the
number of polygons under 100 thousand in order to achieve real-
time rendering (60 FPS) [4]1. On average, each room in the castle
is scanned with 77 million points, which when simplified to under
100 thousand polygon loses much of the surface details that are
critical for education, virtual tourism, and historical studies.

Reducing Reconstruction Overhead To mitigate the loss
of details while retaining high rendering speed, a common so-
lution would be to decimate a high-polygon mesh to generate a

1Our experiments show that this is a conservative estimate. In general,
a mesh with about 400 thousand faces renders in 60 FPS, but even a 400
thousand polygon mesh greatly loses visual details.

409-2
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022

Dense Point Cloud
(e.g., 100 million points)

Low-Polygon Mesh
(e.g., 100,000 triangles)

FARO Laser
Scanner

Mobile VR Headset
(e.g., Oculus Go)

Triangulation UV
Unwrapping

Point-Based
Detail Transfer

UV map Texture
map

Normal
map

Fig. 3: End-to-end reconstruction pipeline from the dense laser scanned point to mobile VR rendering. We transfer scene details directly
from the point cloud to the UV map generated from a low-polygon mesh. The low-polygon mesh ensures high rendering speed on mobile
VR headsets while the detail transfer ensures satisfactory visual quality.

3D Model
Reconstruction

Mobile VR
Rendering

Memory
Consumption

Rendering
Speed (FPS)

Visual
Quality

Speed

High-poly mesh

Low-poly mesh

Low-poly mesh decimated
from high-poly mesh

Low-poly mesh w/
details from point clouds

(This paper)

✓! ! !

✓ ✓ ✓ !

! ! ✓

✓ ✓ ✓ ✓

✓

✓

Fig. 4: The design objective of our workflow is to simultaneously
ensure high reconstruction efficiency (speed and RAM require-
ment) as well as high rendering speed and visual quality.

low-polygon mesh and, optionally, transfer the details (e.g., tex-
ture and normal) from the high-polygon mesh to the low-polygon
mesh. For each polygon in the low-polygon mesh, one could
find its corresponding polygon in the high-polygon mesh and use
the color and normal details there to generate the texture and
normal for the low-polygon mesh. The decimation and transfer
are readily supported in existing 3D modeling software such as
Blender [14] and MeshLab [12].

However, constructing high-polygon meshes (tens of mil-
lions of faces) and the texture map, either for direct rendering
or for transferring details to low-polygon meshes, is extremely
slow and requires high-end computers that are inaccessible to the
broad archaeology and history communities. Using a high-end
Intel Xeon server with 256 GB RAM and 2 Nvidia GTX 1080Ti
GPUs, we estimate that reconstructing the entire castle would take
three weeks using a typical workflow that consists of professional
software such as Blender [14] and MeshLab [12] well-optimized
for 3D modeling. In addition, since reconstruction processes huge
amount of points and polygons, it consumes ∼20 GB RAM even
for processing one single room. We thus had to reconstruct each
room individually and stitch rooms later, further complicating the
reconstruction process.

Summary Figure 4 compares the existing methods along
four dimensions: the speed and memory consumption of recon-
struction and the speed and visual quality of mobile VR render-
ing. Directly reconstructing and rendering a high-polygon mesh
is slow in both reconstruction and rendering, albeit providing the
best visual quality. In contrast, directly reconstructing and ren-
dering a low-polygon mesh is efficient in both reconstruction and
rendering, but suffers from low visual quality. Decimating a high-
polygon mesh to a low-polygon mesh requires a high-polygon
mesh to begin, and thus introduces high reconstruction overhead.

This paper proposes a reconstruction system that achieves
high reconstruction efficiency (speed and RAM requirement) as
well as high rendering speed and visual quality simultaneously.

Specifically, our goal is to combine the best of both worlds: de-
livering a reconstruction workflow that has a similar efficiency
as using low-polygon meshes only while meeting (and even out-
performing) the rendering quality of transferring details from a
high-polygon mesh to a low-polygon mesh.

Point-based Detail Transfer
We propose a new reconstruction pipeline that directly trans-

fer information from point cloud obtained from the laser scan-
ner to low-polygon meshes without reconstructing high-polygon
meshes altogether. This achieves both high reconstruction and
rendering efficiency while preserving the visual details in the laser
scan. We first provide an overview of the pipeline followed by de-
scribing our point-based detail transfer algorithm.

Pipeline Overview
Figure 3 shows the end-to-end reconstruction pipeline,

which takes a laser-scanned colored point cloud as the input, and
generates the mesh along with the texture and normal maps, which
are then used for rendering on mobile VR platforms.

The input point cloud is first triangulated to generate a low-
polygon mesh. We control the mesh to have a small amount of
polygons to enable real-time rendering. For instance, when tar-
geting Oculus Go, the mesh has at most 100 thousand polygons,
which are about the threshold to deliver a 60 FPS rendering as
suggested by Oculus [4]. We unwrap the mesh to generate the UV
map, from which we bake the texture map and the normal map.
Note that directly using these texture/normal maps for rendering
would lead to low visual quality, because the texture and normal
maps are generated from a low-polygon mesh. To increase the de-
tails in the texture/normal maps, one could increase the polygon
count in a mesh at the cost of higher mesh reconstruction time and
lower rendering speed. The left and middle panels in Figure 5 be-
low illustrate these two approaches.

Instead, our pipeline retains the same low-polygon UV map,
but generates the textures and normals using information directly
from the point cloud — hence point-based detail transfer. The
right panel in Figure 5 illustrates this idea. We first map points
from the point cloud to the low-polygon mesh (single triangle in
this illustration); each pixel in the texture map is then interpolated
using both the triangle vertices and the mapped points.

Compared to the low-polygon approach (left panel in Fig-
ure 5), our method provides more visual details because the tex-
tures/normals are generated using more information (triangle ver-
tices + points vs. just triangle vertices). Compared to the high-
polygon approach (middle panel in Figure 5), our method uses
only a low-polygon mesh, and thus is faster.

IS&T International Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022 409-3

Single Triangle
(Low-polygon Mesh)

Multiple Triangles
(High-Polygon Mesh)

Single Triangle with Points
Mapped from Point Cloud

Fig. 5: Three ways to generate texture (and normal). Left: inter-
polate from a low-polygon UV map (single triangle here); Middle:
interpolate from a high-polygon UV map; Right (our method):
map points from the point cloud to a low-polygon UV map, and
then interpolate using the vertices and points.

Detail Transfer Algorithm
Figure 6 shows the pseudo-code of the point-based detail

transfer algorithm. The goal is to map points from the point cloud
to the (low-polygon) UV map so that we can generate the texture
and normal maps with rich information to retain visual details.
For each triangle in the mesh, we identify all the points in the
point cloud that are likely on the triangle (Line 5). This is done
by filtering points using their normals and distances to the triangle
(Line 20 – 28): points that are close to the triangle and whose nor-
mals are similar to the triangle normal are likely on the triangle
and thus will be mapped to the UV map. The thresholds use for
the distance and the angle between point and triangle are 4.0 and
120◦, respectively. These parameters can be easily adjusted, and
we empirically find that this setting works the best.

We map a point p from the point cloud to the triangle in the
UV map in a way that keeps the barycentric coordinates of p con-
stant with respect to the triangle (Line 6 – 10), i.e., without chang-
ing the relative position of p in the triangle. After point mapping,
each triangle in the UV map could contain several points mapped
from the point cloud. Each point is associated with its color and
normal as in the point cloud. The right panel in Figure 5 shows an
example of a triangle with 7 points mapped from the point cloud.

With the transferred points, we can now generate the texture
and normal maps (Line 11 – 17). This is done by iterating over
each triangle in the UV map and calculating the color and normal
values of each pixel in the triangle. To leverage the transferred
points in each triangle T , we first triangulate {T.V,T.P}, where
T.V and T.P denote the vertices of T and the transferred points in
T , respectively. For each pixel p in T , we find its bounding trian-
gle from the triangulation results and use triangular interpolation
to calculate the pixel’s texture and normal. The same transfer
process is applied to both the texture map and normal map, which
along with the low-polygon mesh are fed into a VR rendering en-
gine, e.g., Unity in our case, finishing our end-to-end pipeline.

Evaluation
We first describe our experimental methodology. We then

show that the rendering quality of our system is competitive or
better than today’s typical reconstruction workflow, both objec-
tively and subjectively, followed up by showing that our system is
much faster and more resource efficient than today’s workflow.

Experimental Setup
Implementation Details We on average capture 8 scans of

each room in the castle. We use FARO’s Scene software to reg-

Algorithm 1: Details transfer from a colored point cloud to a
UV map, which is unwrapped from a mesh that is constructed
from the point cloud.

Input: Point cloud P represented as an octree;
1 Mesh M constructed from P;
2 UV map U unwrapped from M.

Result: Texture map T; Normal map N.
3 function TRANSFER(P, M, U)
4 foreach Triangle m in M do

// Find points in P that are likely on m
5 P FINDPOINTSINPOINTCLOUD(P,m);

// Map P to the UV map U
6 foreach Point p in P do
7 c project p to m and return the barycentric

coordinates of p w.r.t. m;
8 q the point in t whose barycentric coordinates

are the same as c;
9 Q += q;

10 end
11 t triangle in U corresponding to m;
12 S Triangulate(Q, t.vertices);

// Rasterize t by triangular interpolation
13 foreach Pixel x in Triangle t do
14 s the triangle in S that bounds x;
15 N[x] interpolating x’s normal from s;
16 T[x] interpolating x’s color from s;
17 end
18 end
19 return T, N;

20 function FINDPOINTSINPOINTCLOUD(P, m)
21 P = /0;
22 N the octree node in P that bounds m;
23 foreach Point p in N do
24 if distance(p,m) thresholdd &&

angle(p.normal,m.normal  thresholdn then
25 P.add(p);
26 end
27 end
28 return P;

Our pipeline uses a low-polygon mesh throughout the workflow and
never requires a high-polygon mesh.

Metrics We evaluate our system using three primary metrics:

• Reconstruction time: the time it takes to generate the mesh and
texture/normal maps required for VR rendering.

• Rendering speed: the FPS of rendering on Oculus Go.

• Visual quality: we use the mean-opinion-score in the HDR-VDP-
2 metric [19], which is calibrated with user experience. For both
metrics, a high value indicates better visual quality.

5.2 Results
Reconstruction Speed We find that our workflow significantly reduces
the end-to-end time to reconstruct a 3D model. Figure 7 compares the
reconstruction time of our workflow with the three baselines across the
three evaluated scenes. The stacked bar charts dissect the reconstruc-
tion time into five components: high-polygon mesh construction time,
low-polygon mesh construction time, UV unwrapping time, I/O time
(reading and writing meshes, texture/normal maps, and point clouds),
and the texture/normal map generation (baking) time. Note that the
baking time in our pipeline is dominated by the point-based transfer
algorithm.

HPM has the highest reconstruction time, which is dominated by UV
unwrapping. LPM has the lower reconstruction time by significantly

Table 1: Point cloud and mesh size of the three evaluated scenes.

D11v3 NETower D31

Point cloud 28,368,767 8,652,472 31,431,682
High-polygon mesh 4,352,296 6,857,430 3,690,788
Low-polygon mesh 240,000 442,900 224,476

600

400

200

0

S
ec

on
ds

 (s
)

HPM LPM Blender Ours

 UV unwrapping
 High-poly mesh

 construction
 Low-poly mesh

 construction
 I/O
 Texture/color

 map baking

 4744.23

(a) D11v3.

600

400

200

0

S
ec

on
ds

 (s
)

HPM LPM Blender Ours

 UV unwrapping
 High-poly mesh

 construction
 Low-poly mesh

 construction
 I/O
 Texture/color

 map baking

 12423.30

(b) NETower.

600

400

200

0

S
ec

on
ds

 (s
)

HPM LPM Blender Ours

 UV unwrapping
 High-poly mesh

 construction
 Low-poly mesh

 construction
 I/O
 Texture/normal

 map baking

 3082.82

(c) D31.

Fig. 7: End-to-end reconstruction time comparison.

reducing the UV unwrapping time, as it unwraps much smaller meshes.
It, however, has the lowest visual quality as we will show later. Mesh-
level detail transfer, BLENDER, requires constructing a high-polygon
mesh and introduces significant I/O overhead as it must manipulate
high-polygon meshes throughout the workflow. Our point-based trans-
fer is significantly faster than BLENDER by avoiding constructing and
manipulating a high-polygon mesh. Across the three scenes, our sys-
tem achieves 2.3 ⇥ and 33.8 ⇥ speedup over BLENDER and HPM,
respectively.

Reconstruction RAM Consumption Figure 8 shows that our re-
construction workflow requires much less CPU RAM compared to
HPM and BLENDER since we avoid reconstructing and processing
high-polygon meshes. On average, we reduce the peak RAM consump-
tion by 51.8% and 22.7% compared to HPM and BLENDER. Note that
the peak memory consumption of our workflow is slightly higher on
D31 compared to BLENDER. Further investigation shows that this is
because D31 has the largest point cloud (Table. 1), on which our point
transfer algorithm consumes high RAM.

Rendering Speed Using low-polygon meshes for VR rendering
achieves 60 FPS, whereas using high-polygon meshes generally leads
to an FPS below of 20. Table. 2 compares the FPS across the four
workflows on the three scenes. Note that all except HPM use low-
polygon meshes and thus have the same 60 FPS.

Rendering Quality We show that our reconstruction system gener-
ates 3D models that, when rendered in mobile VR headsets, achieve
higher visual quality than simply downsampling the mesh (i.e., LPM)
and match, sometimes outperform, the visual quality of transferring

Fig. 6: Pseudocode of our details transfer algorithm, which trans-
fers details from a colored point cloud to a UV map, which is
unwrapped from a mesh that is constructed from the point cloud.

ister point clouds of individual scans. The register point cloud
becomes the input to our pipeline. We construct meshes using
Meshlab [12], a popular open-source mesh manipulation system,
which implements the Screened Poisson Surface Reconstruction
algorithm to build a triangulated mesh out of a point cloud [21].
We experimented with other mesh reconstruction tools, such as
the commercial Agisoft Metashape software [7]. The choice of
reconstruction algorithm does not qualitatively change our con-
clusion. We use Meshlab in this paper because it allows us to build
a completely open-source workflow that we will make available.

We use Blender [14] for UV unwrapping to generate a UV
map, from which Blender is also used to generate the texture and
normal map. We implement our point-based detail transfer in C++
based on the widely-used CGAL [37]. The code is accelerated
using OpenMP [6].

Hardware The reconstruction is done on a Dell Precision
Workstation, which is equipped with a 4-core Intel Xeon W-2123
processor operating at 3.6 GHz, an Nvidia Quadro RTX4000
GPU, and 48 GB of RAM. This machine costs about $2,100 to
build, which we believe is a reasonable and representative ma-
chine specification for historical and archaeological researchers.
We use Unity on Oculus Go for VR rendering. Oculus Go is a

409-4
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022

Table 1: Point cloud size (number of points) and mesh size (num-
ber of polygons) of the three evaluated scenes.

D11v3 NETower D31

Point cloud 28,368,767 8,652,472 31,431,682
High-polygon mesh 4,352,296 6,857,430 3,690,788
Low-polygon mesh 240,000 442,900 224,476

standalone VR headset that does not require tethering to a PC.
Dataset We focus on three scenes in the Elmina castle:

D11v3, NETower, and D31. They represent different indoor and
outdoor scenes in Elmina Castle and are deemed representative by
the archaeologists and historians in our team. For each scene, the
camera viewpoint is chosen so that different geometries and tex-
tures are visible, e.g., including corners, windows, doors, uneven
grounds, and walls with non-monotone colors.

For each scene, we generate a high-resolution mesh and a
low-resolution mesh. Table. 1 shows the number of faces in each
mesh along with the corresponding point cloud size (measured in
the number of points). We validate that the low-polygon meshes
are able to be rendered on Oculus Go in 60 FPS.

Baseline We compare with three baselines (Figure 4):

• HPM: constructing and rendering a high-polygon mesh.
• LPM: constructing and rendering a low-polygon mesh.
• REMESHING: constructing a high-polygon mesh, simplify-

ing/decimating it to a low-polygon mesh, and transferring
color/normal details from the high-polygon mesh to the low-
polygon mesh. The transfer is done in Blender, a profes-
sional 3D modeling software.

Meshlabs use the Octree to control the resolution of the point
cloud. We use two different octree depths in the surface recon-
struction algorithm to obtain the HPM and LPM. Our pipeline
uses a low-polygon mesh throughout the workflow and never re-
quires a high-polygon mesh.

It is worth noting again that our goal is not to directly ren-
der points in the point cloud. As discussed in Section , doing so
would result in “holes” in the structure upon close examinations,
which researchers in archaeology are strongly against. Therefore,
we use HPM as the “ground-truth” for quality comparison, as it
constructs a high-quality, water-tight model.

We also have experimented with level-of-detail (LOD) ren-
dering [38] in Unity by manually providing meshes with different
polygons and specifying when to use which mesh depending on
the camera pose. While LOD is efficient when objects are viewed
at distance, it still requires a high-polygon mesh, and thus does
not provide real-time rendering, when viewing objects up close.
In contrast, we address the speed issue by always rendering only
a low-polygon mesh.

Metrics We evaluate our system using three metrics:

• Reconstruction time: the time it takes to generate the mesh
and texture/normal maps required for VR rendering.

• Rendering speed: the FPS of rendering on Oculus Go.
• Visual quality: the mean-opinion-score in the HDR-VDP-2

metric [27], which is calibrated with user experience.

Rendering Quality Comparison
We show that our reconstruction system generates 3D mod-

els that, when rendered in mobile VR headsets, achieve higher vi-

Table 2: Rendering quality comparison in HDR-VDP-2.

D11v3 NETower D31

LPM 54.01 51.34 50.50
REMESHING 52.90 52.31 53.60

OURS 55.58 52.24 54.00

sual quality than simply downsampling the mesh (i.e., LPM) and
match, sometimes outperform, the visual quality of transferring
details from high-polygon mesh (i.e., REMESHING).

Objective Comparison To quantitatively measure user ex-
perience, we export the rendering frames from the user perspec-
tive from Unity Player, and then compare our system with the
baselines using the HDR-VDP-2 metric on the rendered frames.
We use the frames from HPM as the reference frames to calcu-
late the HDR-VDP-2 metric for the other three systems. Table. 2
shows the results on the three scenes.

Our reconstructed 3D models consistently outperform LPM,
indicating the benefit of transferring details. Compared to
REMESHING, our reconstructed models have better visual quality
in 2 out of the 3 scenes and come very close on the other (< 0.1 in
HDR-VDP-2 score). Considering that our reconstruction system
delivers much faster speed (2.3 × speedup as we will show next),
we believe our workflow provides a desirable design point.

Subjective Comparison Our rendering quality is subjec-
tively competitive or better than that of REMESHING. Figure 7
shows the rendered frames of the three scenes under LPM and
ours; each frame has two zoom-in regions, for which we show the
results of LPM, ours, REMESHING, and HPM.

Not surprisingly, HPM consistently delivers the highest vi-
sual quality, due to the much larger meshes it constructs. Ours
and REMESHING generate much better visual quality than LPM.
Comparing ours and REMESHING, our result is visually slightly
worse in the NETower scene, but competitive or better in D11v3
and D31 scenes, which is also confirmed by the HDR-VDP-2 met-
ric. In particular for D31 (the last scene), REMESHING generates
significant blocking artifacts, which are invisible in our system.

Efficiency Results
Reconstruction Speed We find that our workflow signif-

icantly reduces the end-to-end time to reconstruct a 3D model.
Figure 8 compares the reconstruction time of our workflow with
the three baselines across the three evaluated scenes. The stacked
bar charts dissect the reconstruction time into five components:
high-polygon mesh construction time, low-polygon mesh con-
struction time, UV unwrapping time, I/O time (reading and writ-
ing meshes, texture/normal maps, and point clouds), and the tex-
ture/normal map generation (baking) time, which in our pipeline
is dominated by the point-based transfer algorithm.

HPM has the highest reconstruction time, which is domi-
nated by UV unwrapping. LPM has the lower reconstruction time
by significantly reducing the UV unwrapping time, as it unwraps
much smaller meshes. LPM, however, has the lowest visual qual-
ity as we will show later. REMESHING requires constructing a
high-polygon mesh and introduces significant I/O overhead as it
must manipulate high-polygon meshes throughout the workflow.
Our point-based transfer is significantly faster than REMESHING

by avoiding constructing and manipulating a high-polygon mesh.
Across the three scenes, we achieve a 2.3 × and 33.8 × speedup

IS&T International Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022 409-5

Fig. 7: Visual results on three scenes in the castle and their HDR-VDP-2 scores. Our system generates frames that are visually competitive
or better than REMESHING, a typical 3D reconstruction workflow.

Table 3: FPS comparison.

D11v3 NETower D31

HPM 16 10 17
OURS/LPM/REMESHING 60 60 60

over REMESHING and HPM, respectively.
RAM Consumption Figure 9 shows that our reconstruc-

tion workflow requires much less CPU RAM compared to HPM
and REMESHING since we avoid reconstructing and processing
high-polygon meshes. On average, we reduce the peak RAM con-
sumption by 51.8% and 22.7% compared to HPM and REMESH-
ING. Note that the peak memory consumption of our workflow
is slightly higher on D31 compared to REMESHING. This is be-
cause D31 has the largest point cloud (Table. 1), on which our
point transfer algorithm consumes high RAM.

Rendering Speed Using low-polygon meshes for VR ren-
dering achieves 60 FPS, whereas using high-polygon meshes gen-
erally leads to an FPS below of 20. Table. 3 compares the FPS
across the four workflows. Note that all except HPM use low-
polygon meshes and thus have the same 60 FPS.

Evaluation on Low-end Systems To further demonstrate
that our workflow is resource-efficient and can be easily deployed
even on a laptop, we also evaluate our end-to-end system on a
2015 MacBook Pro, which has 16 GB of CPU RAM and a four-
core Intel i7-4870HQ processor running at 2.8 GHz.

Figure 10 shows the reconstruction time on the laptop for the

three scenes. While in generally it is slower on the laptop than on
the workstation, the reconstruction time is consistently below 200
seconds for the three scenes, indicating that it is feasible to deploy
our workflow on a mobile, low-end system. On average, running
our reconstruction system on the mobile laptop is 10.6% slower
than on the Xeon workstation. Our system is also 33.1 × and 1.7
× faster than HPM and REMESHING on the laptop.

Related Work
Digitizing Cultural Heritage Digital modeling and recon-

struction has helped preserve and archive many cultural artifacts
and heritage sites before. Perhaps the most well-known example
is the efforts to digitally model the sculptures of Michelangelo by
Levoy et. al. [24] and Rushmeier et. al. [8, 30, 31] two decades
ago. The latter uses a structured-light scanner to capture range,
color cameras to capture color, and a photometric stereo system
to capture surface reflectance and normals. The former uses a
laser-stripe scanner and a color camera to model the statues of
Michelangelo and a time-of-flight rangefinder to scan building in-
teriors. Our project relies on a time-of-flight ranging unit and a
color camera (built in the FARO Focus3D X 130 scanner). As
mentioned in Section , some rooms in the castle have to remain
pitch-black, which excludes any device using visible light.

Compared to art objects, scanning and modeling large her-
itage sites tends to produce larger datasets with lower resolution,
because heritage sites are much bigger. For instance, Michelan-
gelo’s statues are typically several meters tall; both of the prior

409-6
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022

600

400

200

0

S
ec

on
ds

 (s
)

HPM LPM Remeshing Ours

 4744.23

(a) D11v3.

600

400

200

0

S
ec

on
ds

 (s
)

HPM LPM Remeshing Ours

 12423.30

(b) NETower.

600

400

200

0

S
ec

on
ds

 (s
)

HPM LPM Remeshing Ours

 UV unwrapping
 High-poly mesh

 construction
 Low-poly mesh

 construction
 I/O
 Texture/normal

 map baking

 3082.82

(c) D31.
Fig. 8: End-to-end reconstruction time comparison. Our system is
consistently faster (2.3 × speedup) than the typical REMESHING-
based workflow, and is 33.8 × faster than HPM.

20

15

10

5

0P
ea

k
R

A
M

 (G
B

)

D11v3 NETower D31

 HPM LPM
 Blender Ours

Fig. 9: CPU RAM consumption comparison. Our system typi-
cally uses much less RAM than REMESHING and HPM.

modeling efforts produced geometry at (sub)-millimeter scale.
In contrast, the footprint of the entire Elmina Castle is over
8,000 m2; in our scans points are about 1.9 millimeters apart.
Such a resolution is empirically sufficient for general entertain-
ment, but higher resolution is preferred for historical education
and research that require close-up examinations. It took us 500+
working hours to scan the castle at the current resolution.

Mobile VR Rendering Our reconstruction targets mobile
VR, which is resource-constrained and computationally weak.
Much of the recent work focuses improving the VR/360◦ video
rendering speed without sacrificing, using techniques ranging
from memoization [10], remote/offloaded rendering [28, 22, 26],
specialized hardware support [36, 23].

Fundamentally, these techniques focus only on VR rendering
without considering the inputs to the render: mesh, texture/normal
maps. This paper optimizes the reconstruction phase, which gen-
erates low-complexity mesh but highly detailed texture and nor-
mal maps by directly transferring details from the point cloud.

Point-based Graphics Our point-based detail transfer

200
150
100

50
0

S
ec

on
ds

 (s
)

D11v3 NETower D31

 UV unwrapping
 High-poly mesh

 construction
 Low-poly mesh

 construction
 I/O
 Texture/normal

 map baking

Fig. 10: End-to-end reconstruction time on a mobile system.

algorithm draws inspiration from classic point-based graph-
ics/rendering ligerature [17, 25, 32, 29], which skips meshes al-
together and renders images from points. While our algorithm
does not completely avoid reconstructing a mesh, it avoids re-
constructing high-polygon meshes by directly transferring details
from points to low-polygon meshes in order to reduce the mesh
reconstruction overhead.

In the future, it would be interesting to study if we could
directly apply classic point-based rendering techniques by skip-
ping mesh altogether. This is especially relevant as 1) point cloud
acquisition devices (e.g., time-of-flight laser scanners such as the
one we used for our project) become more accessible, and 2) mod-
eling high-resolution heritage sites requires huge point clouds, for
which mesh reconstruction is prohibitively expensive.

Conclusion
We propose a system that efficiently reconstructs large her-

itage sites from laser-scan point clouds while enabling real-time
mobile VR rendering. We demonstrate the system on Elmina Cas-
tle in Ghana. We show that it is possible to deliver real-time ren-
dering on mobile VR devices with high visual quality of a com-
plicated architecture without requiring a high-polygon mesh. The
key is to directly transfer details from the point cloud, which also
significantly speeds up the reconstruction time and makes it more
accessible for archaeologists and historians to reconstruct large
heritage sites from huge point clouds using everyday computers.

References
[1] Bermuda 100. http://bermuda100.ucsd.edu/.
[2] Cyark. https://www.cyark.org/.
[3] Faro laser scanner focus3d x 130 manual. https://faro.app.

box.com/s/r45cyjqengcts8vnh5kawemgsvdfxt81.
[4] Oculus testing and performance analysis. https://developer.

oculus.com/documentation/unity/unity-perf/.
[5] Open heritage 3d. https://openheritage3d.org/.
[6] Openmp. https://www.openmp.org/.
[7] Agisoft, LLC. Agisoft metashape. https://www.agisoft.com.
[8] Fausto Bernardini, Holly Rushmeier, Ioana M Martin, Joshua Mit-

tleman, and Gabriel Taubin. Building a digital model of michelan-
gelo’s florentine pieta. IEEE Computer Graphics and Applications,
22(1):59–67, 2002.

[9] Daniele Bonatto, Ségolène Rogge, Arnaud Schenkel, Rudy Ercek,
and Gauthier Lafruit. Explorations for real-time point cloud render-
ing of natural scenes in virtual reality. In 2016 International Con-
ference on 3D Imaging (IC3D), pages 1–7. IEEE, 2016.

[10] Kevin Boos, David Chu, and Eduardo Cuervo. Flashback: Immer-
sive virtual reality on mobile devices via rendering memoization. In
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys’16), pages 291–304.
ACM, 2016.

[11] Erik Champion. Applying game design theory to virtual heritage

IS&T International Symposium on Electronic Imaging 2022
Visualization and Data Analysis 2022 409-7

http://bermuda100.ucsd.edu/
https://www.cyark.org/
https://faro.app.box.com/s/r45cyjqengcts8vnh5kawemgsvdfxt81
https://faro.app.box.com/s/r45cyjqengcts8vnh5kawemgsvdfxt81
https://developer.oculus.com/documentation/unity/unity-perf/
https://developer.oculus.com/documentation/unity/unity-perf/
https://openheritage3d.org/
https://www.openmp.org/
https://www.agisoft.com

environments. In Proceedings of the 1st international conference on
Computer graphics and interactive techniques in Australasia and
South East Asia, pages 273–274, 2003.

[12] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo
Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. MeshLab:
an Open-Source Mesh Processing Tool. In Vittorio Scarano,
Rosario De Chiara, and Ugo Erra, editors, Eurographics Italian
Chapter Conference. The Eurographics Association, 2008.

[13] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-
preserving simplification. In Proceedings of the 25th annual confer-
ence on Computer graphics and interactive techniques, pages 115–
122, 1998.

[14] Blender Online Community. Blender - a 3d modelling and rendering
package, 2018.

[15] Michael Garland and Paul S Heckbert. Surface simplification using
quadric error metrics. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques, pages 209–216,
1997.

[16] James Paul Gee. What video games have to teach us about learning
and literacy. Computers in Entertainment (CIE), 1(1):20–20, 2003.

[17] Markus Gross and Hanspeter Pfister. Point-based graphics. Elsevier,
2011.

[18] Matthew Wilhelm Kapell and Andrew BR Elliott. Playing with the
past: Digital games and the simulation of history. Bloomsbury Pub-
lishing USA, 2013.

[19] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson
surface reconstruction. In Proceedings of the Fourth Eurographics
Symposium on Geometry Processing, SGP ’06, page 61–70, Goslar,
DEU, 2006. Eurographics Association.

[20] Michael Kazhdan and Hugues Hoppe. Screened poisson surface
reconstruction. ACM Trans. Graph., 32(3), July 2013.

[21] Michael Kazhdan and Hugues Hoppe. Screened poisson surface
reconstruction. ACM Transactions on Graphics (ToG), 32(3):1–13,
2013.

[22] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, Ningwei Dai, and
Hung-Sheng Lee. Furion: Engineering high-quality immersive vir-
tual reality on today’s mobile devices. IEEE Transactions on Mobile
Computing, 2019.

[23] Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao
Zhu. Energy-efficient video processing for virtual reality. In Pro-
ceedings of the 46th International Symposium on Computer Archi-
tecture, pages 91–103, 2019.

[24] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz,
David Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James
Davis, Jeremy Ginsberg, et al. The digital michelangelo project:
3d scanning of large statues. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages
131–144, 2000.

[25] Marc Levoy and Turner Whitted. The use of points as a display
primitive. Citeseer, 1985.

[26] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jian-
song Zhang, Lintao Zhang, and Marco Gruteser. Cutting the cord:
Designing a high-quality untethered vr system with low latency re-
mote rendering. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services, pages
68–80, 2018.

[27] Rafat Mantiuk, Kil Joong Kim, Allan G Rempel, and Wolfgang Hei-
drich. Hdr-vdp-2: A calibrated visual metric for visibility and qual-
ity predictions in all luminance conditions. ACM Transactions on

graphics (TOG), 30(4):1–14, 2011.
[28] Jiayi Meng, Sibendu Paul, and Y Charlie Hu. Coterie: Exploiting

frame similarity to enable high-quality multiplayer vr on commodity
mobile devices. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 923–937, 2020.

[29] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus
Gross. Surfels: Surface elements as rendering primitives. In Pro-
ceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 335–342, 2000.

[30] Holly Rushmeier, Fausto Bernardini, Joshua Mittleman, and Gabriel
Taubin. Acquiring input for rendering at appropriate levels of de-
tail: Digitizing a pieta. In Rendering Techniques’ 98, pages 81–92.
Springer, 1998.

[31] Holly Rushmeier, Gabriel Taubin, and André Guéziec. Applying
shape from lighting variation to bump map capture. In Rendering
Techniques’ 97, pages 35–44. Springer, 1997.

[32] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolu-
tion point rendering system for large meshes. In Proceedings of
the 27th annual conference on Computer graphics and interactive
techniques, pages 343–352, 2000.

[33] Radu B Rusu and S Cousins. Point cloud library (pcl). In 2011 IEEE
International Conference on Robotics and Automation, pages 1–4,
2011.

[34] Markus Schütz, Katharina Krösl, and Michael Wimmer. Real-time
continuous level of detail rendering of point clouds. In 2019 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), pages
103–110. IEEE, 2019.

[35] Kurt Squire. Video games and learning. Teaching and participatory
culture in the digital age, 2011.

[36] Qiuyue Sun, Amir Taherin, Yawo Siatitse, and Yuhao Zhu.
Energy-efficient 360-degree video rendering on fpga via algorithm-
architecture co-design. In The 2020 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, pages 97–103, 2020.

[37] The CGAL Project. CGAL User and Reference Manual. CGAL
Editorial Board, 5.0 edition, 2019.

[38] Julie C. Xia, Jihad El-Sana, and Amitabh Varshney. Adaptive real-
time level-of-detail based rendering for polygonal models. IEEE
Transactions on Visualization and Computer graphics, 3(2):171–
183, 1997.

Author Biography
Sifan Ye is a graduate student at Stanford University. He obtained

his BS in Computer Science from University of Rochester. His work was
done in part while at University of Rochester.

Ting Wu is a software engineer at eBay. She obtained Bachelor’s
degree in Vehicle Engineering from Tongji University (2017) and Master’s
degree in Computer Science from University of Rochester (2020). Her
work was done entirely while at University of Rochester.

Michael Jarvis is an Associate Professor of History, Director of Dig-
ital Media Studies Program, and Director of Smiths Island Archaeology
Project at the University of Rochester. He works onEarly American, At-
lantic, Maritime, Public and Digital history and historical archaeology.
He obtained his Ph.D. from College of William and Mary (1998).

Yuhao Zhu received his BS in Computer Science from Beihang Uni-
versity (2010) and his Ph.D. in Electrical and Computer Engineering from
The University of Texas at Austin (2017). He is an Assistant Professor of
Computer Science at University of Rochester. His work focuses on appli-
cations, algorithms, and systems for visual computing.

409-8
IS&T International Symposium on Electronic Imaging 2022

Visualization and Data Analysis 2022

	Abstract
	Introduction
	Context and Background
	Why Digitally Reconstructing Elmina Castle?
	Scanning System
	Point Cloud Reconstruction for Mobile VR
	Design Objectives
	Point-based Detail Transfer
	Pipeline Overview
	Detail Transfer Algorithm
	Evaluation
	Experimental Setup
	Rendering Quality Comparison
	Efficiency Results
	Related Work
	Conclusion
	Author Biography

