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Abstract. Smooth topological surfaces embedded in 4D create
complex internal structures in their projected 3D figures. Often
these 3D figures twist, turn, and fold back on themselves, leaving
important properties behind the surface sheets. Triangle meshes
are not well suited for illustrating such internal structures and their
topological features. In this paper, we propose a new approach to
visualize these internal structures by slicing the 4D surfaces in our
dimensions and revealing the underlying 4D structures using their
cross-sectional diagrams. We think of a 4D-embedded surface as a
collection of 3D curves stacked and evolved in time, very much like a
3D movie in a time-elapse form; and our new approach is to translate
a surface in 4-space into such a movie — a sequence of time-lapse
frames where successive terms in the sequence differ at most
by a critical change. The visualization interface presented in this
paper allows us to interactively define the longitudinal axis, and the
automatic algorithms can partition the 4D surface into parallel slices
and expose its internal structure by generating a time-lapse movie
consisting of topologically meaningful cross-sectional diagrams
from the representative slices. We have extracted movies from a
range of known 4D mathematical surfaces with our approach. The
results of the usability study show that the proposed slicing interface
allows a mathematically true user experience with surfaces in four
dimensions. c© 2021 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2021.65.6.060410]

1. INTRODUCTION
Our work concerns 2-dimensional surfaces smoothly em-
bedded in 4-space, a basic class of fundamental interest in
descriptive topology. The essential difference of these 4D
entities from their 3D counterparts is that each vertex of the
surfaces has a 4D ‘‘eye coordinate,’’ or depthw, in addition to
the coordinates (x, y, z) in their 4D projection to 3D. Surfaces
embedded in 4D play many roles in analogs to those of our
familiar curves in 3D [1]; for example, spheres are the analogs
of closed curves, and knots can be generalized to ‘‘knotted
surfaces’’ (closed 2D surfaces embedded in 4D) [2].

Challenges arise when we try to visualize these 4D sur-
faces (when triangulated). Just as 2D shadows of 3D curves
lose structure where lines cross, 3D graphics projections of
smooth 4D topological surfaces are interrupted where one
surface intersects another. Furthermore, many 4D surfaces
are constructed by 3D curves spun around a plane in 4D, and
their 3D figures often leave important properties behind the
surface sheets. Most existing 4D visualization efforts employ
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a projection to 3D as a fundamental step, and exploit visual
or haptic cues (see, e.g., [3, 4]) to help the viewer to identify
salient global features of the four-dimensional object.

We, in this paper approach the problem from mathe-
maticians’ point of view, by utilizing computer graphics and
automatic algorithms to generate topological illustrations
that can potentially help depict these unfamiliar surfaces
embedded in space beyond 3D. Our work is motivated
by the movie description adopted in Carter’s book How
Surfaces Intersect in Space [5]. In this book, Carter thinks
of 4-dimensional space as a pile of 3-dimensional spaces,
stacked in time; and a surface in 4-dimensional space as a
collection of curves in 3-dimensional space. That is, each
3-dimensional cutting plane in 4-space cuts a surface in
4-dimensions, and the intersection is a collection of closed
curves that can reveal the internal structures behind the
surface in their 3D projections. For example, in Figure 1
seven representative cutting planes were shown to create
the topologically meaningful cross-sectional diagrams of a
Klein bottle [6]. These seven diagrams in the progressing
form (very much like a flip-book animation), describe the
underlying structure of the Klein bottle, a one-sided surface
which, if traveled upon, could be followed back to the point
of origin while flipping the traveler upside down.

In this paper we take the first steps towards this goal
by designing a slicing interface that is able to automatically
compute the longitudinal axis and cutting planes to generate
movies for us to analyze these surfaces in 4DEuclidean space.

2. RELATEDWORK
Traditional techniques for visualizing surfaces in 4D typically
involve creating visual pictures of 4D entities intersecting
in a 3D projection and associating the fourth dimension
(i.e., the w ‘‘eye coordinate’’) with visual cues such as 4D
depth color, texture density, etc (see e.g., [3, 4, 7]). Other
representative efforts include a variety of ways to render 4D
objects (see e.g., Banks’ interactive manipulation and display
of surface in 4D [8], Chu’s use of 4D light sources to render
4D surfaces [9], Noll’s parallel and perspective projections of
four-dimensional hyper-objects rotating in four-dimensional
space [10], and Zhang’s cloth-like modeling and rendering of
4D surfaces [11]).

Figure 2 shows some of the typical 4D visualization
techniques. Fig. 2(a) is the 3D graphics projection of a 4D
spun trefoil knot [12], with surface color keyed to 4D depth
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Figure 1. A movie description to describe the underlying structure of a
Klein bottle (modified from Carter’s book [5]). Successive frames in the
movie differ at most by one critical change.

relative to the projection center. The 3D figure contains
massive intersections in 3D, especially behind the boundary
surface. Transparency is applied in Fig. 2(b) to help the
viewer to perceive the internal structure—a trefoil knot spun
about a plane in 4D. In prior visualization efforts, the most
common techniques for exposing the internal structure of 4D
surfaces projected to 3D also include the use of cutaway view
(e.g., see Fig. 2(d)) and ‘‘banded view’’ (see e.g., Fig. 2(e)),
a different cutaway view by removing just alternating bands
from the surface to help the viewer to see through the
surface [13]. These images are undoubtedly important for
understanding the complex spatial relationships and overall
structures, but they provide limited value of helping us
understand the underlying structures and important features
behind the surface sheet in a 3D projection. It may also
result in confusion of user when the visual evidence is
difficult to interpret. For instance, making the entire surface
semi-transparent is arguably the simplest technique for
(partially) exposing occluded portions of the surface. While
the transparency view can sometimes convey the internal
structure behind the surface sheet, it is nearly impossible for
viewers to distinguish and interpret the structure in regions
where multiple semi-transparent layers overlap. Similarly,
cutaway and banded views are both limited when applied to
surfaces having very complex internal structures (e.g., the 4D
knotted spheres).

To visualize the internal structures behind a closed
surface, Karpenko et al. proposed the use of exploded views
by partitioning the surface into parallel slices, along a linear

explosion axis [14]. This approach is limited to 3D surfaces
only. Carr et al. introduced amethod to compute the contour
tree of a surface in arbitrary dimensions [15]. The contour
tree is a graph that tracks contours at the levels as they
split, join, appear, and disappear. While this work focuses on
only the topological properties of a surface, it is difficult to
visually map between the surface’s geometric shape and its
topological structure. Edelsbrunner et al. suggest that Reeb
graph [16] can be used to indicate the topological structure
of a surface by locating all saddle points along a longitudinal
axis. Similar to Carr’s work, this work mainly focuses on
how surfaces split, join, appear, and disappear, and does not
address topological deformations.

We are thus motivated to design and implement a new
visualization paradigm that can summarize and visualize
the interior structure behind the 4D surface sheet in its
3D projection. The basic idea is to slice the 4D surfaces,
in dimensions that we define. Imagine we have an infinite
number of 3-dimensional cutting planes in 4-space that cut
the knotted sphere in Fig. 2(e) in parallel. The intersection of
these cutting planes and the knotted sphere will usually be a
closed curve (or curves), except for the two cutting planes
that intersect the spun knot at a point, one on the north
pole and the other on the south. When the cutting plane
intersects a 4D surface at one single point (like on the north
or south pole), the surface has a critical point — often occur
when the curve of intersection have points of tangency, or
sometimes three sheets of the surface meet at a triple point.
Now if we examine the cutting planes between successive
critical points and the resultant intersections on these
planes, and from them we extract the most representative
cross-sections, wewill get the seven cross-sections in Fig. 2(f)
that help to describe the spun knot’s underlying structure.
With the advent of modern interactive graphics technology
and automated algorithms we can begin to appreciate the
challenge of depicting such surfaces embedded in high
dimensions by slicing and visualizing their cross-sections,
that had only existed in the hand-drawn diagrams in Refs. [5]
and [17].

3. OVERVIEWOF SLICING-BASED VISUALIZATION
TOOL

From the user’s point, our interface is a slicing-based
visualization tool, and it consists of a control panel and
a visualization area. With this tool, the user can load,
transform, and view the 3D figures of 4D surfaces with
various desired settings and parameters. For example, the
user can choose the sub-space and desired parameters to
generate the 3D picture of the 4D surface, and can toggle
between transparency view, cutaway view, and ‘‘banded
view’’ when creating the movie description.

More importantly, the tool provides user interface
elements for users to slice the surface and look into the
structures behind the surface sheet. One can interactively
place a longitudinal axis for the system to automatically
place the slices and render the movie to describe the
underlying structure of the 4D surface (see Figure 3). In
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Figure 2. Various approaches to visualizing a 4D spun trefoil knotted surface. (a) A 4D depth colored 3D figure. (b) Applying semi-transparency to the
4D depth colored 3D figure of the 4D spun. (c) A cutaway view to expose the structure and intersections behind surface sheet. (d) A banded view. (e) A
movie description of the knotted sphere — a collection of 7 cross-sectional diagrams that describes the spun knot’s underlying structure.

Figure 3. System screen and major interface elements of our slicing-based visualization tool. ¬ — the toolbox to configure the slicing-based visualization
tool, user interface elements including e.g., model file dialogue, slider to set opacity level, radio button control to choose slicing mode (automatically or
manually), and checkbox control to choose 3D projection (i.e., (x,y,z), (x,y,w), (y,z,w), or (x,z,w)). ­ — central visualization panel for one to position
longitudinal axis, cutting planes, and to view the slicing results. ® — movie outcome that contains the optimal cross-sections to represent the surface’s
interior structure. ¯ — cross-section viewer where one can define an arbitrary slicing window and observe the intersection.

addition, the user can freely position a cutting plane in
our interface and examine the resultant intersection — the
cross-sectional diagrams to illustrate the surface’s topological
features behind the sheet.

The task of choosing an appropriate longitudinal axis is
significant. A slightly different longitudinal axis may result
in very different movie descriptions from the same surface
sheet. A movie might lead to user confusion, when it is too
lengthy and the intersection is difficult to make sense of.
Our interface can suggest the optimal longitudinal axis which
requires the least number of cross sectional pieces to render
the movie description.

4. IMPLEMENTATIONDETAILS
In this section, we describe the families of models used
to implement the interaction procedures, visual elements,
slicing interface, and the automated algorithm to compute
the longitudinal axis and to extract and render the resultant
movie. Our fundamental techniques are based on a wide
variety of prior art, including the use of exploded view in
surface and volume visualization [14, 18, 19], algorithms
for 3D triangle mesh slicing [20, 21], and other variants on
computer graphics and visual interfaces for mathematical
visualization including, e.g., the work of [22] and [23].
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Figure 4. Logical steps involved in the process of rendering a movie for the Klein Bottle. (a) Place longitudinal axis and slicing planes. (b) Obtain resultant
intersections. (c) Reconstruct the closed loops. (d) Identify critical changes and associated frames. (e) Selecting key frames for rendering the movie. (f) The
resulting movie.

Figure 5. Place longitudinal axis and position cutting planes. (a) An arbitrary longitudinal axis placed around the mass center of the surface’s 3D figure.
(b) Rotate the surface until the chosen longitudinal axis coincides with y -axis. (c) Place cutting planes densely along the longitudinal axis.

Our goal in this section is to interpret a surface
in 4-dimensional space as a collection of diagrams in
3-dimensional space, stacked in time. Before we lay out
details of our interaction procedures and algorithms, some
definitions are in order.

• Height function and 3D Projection. When slicing
and exposing the interior structures of a 4D surface
with ‘‘flat’’ cross-sectional images, we need a generic
height function R4

→ R to define the spatial rela-
tionship between points on the projection. In our
implementation, the height function also determines
how the projection from 4D to 3D is defined. We use
the hyper-plane perpendicular to the direction of the
chosen height function to create the 3D projection.

While arbitrary height function can be defined and
used, in our solution we fix the height function to
align with the w eye coordinate and thus 4D entities
are projected orthogonally into the xyz sub-space. The
user can still ‘‘change’’ the projection direction (the
height function), with an intuitive rolling-ball interface
to apply 4D rotation to transform the 4D entities in their
full dimensional space [3].
• Longitudinal Axis and Cutting Plane.When a surface
is projected anddisplayed in the 3D space, each vertex in
the 3D figure has aw coordinate in addition to the three-
dimensional coordinates (i.e., x ,y , and z). In our slicing-
based visualization approach, we think of the surface in
4D as a collection of cross-sectional diagrams, stacked
in time. To extract the topologically meaningful cross-
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Figure 6. Reconstruct the close loops from line segments in the intersections. (a) A cutting plane slices a Klein Bottle, and the resultant intersections have
two collection of line segments that appear to overlap each other, with different w coordinates. (b) We string line segment with each other. Based on their
w coordinates, these line segments are stringed into two close loops.

sections, we need to define a longitudinal axis time
(i.e., the time) and the cutting planes (i.e., the cross−
sections). The longitudinal axis and the cutting plane are
perpendicular to each other. For example, the red arrow
in the central area of Fig. 3 is the longitudinal axis, and
the cutting planes are perpendicularly positioned along
the longitudinal axis. The longitudinal axis defines
the direction of the densely positioned parallel cutting
planes, from which the algorithm proposed in this
work will extract the most meaningful slices and their
diagrams as the 4D surface’s topological illustration.

4.1 Creating the Movie — Slicing based Visualization
The key ideas of the overall scenario should now be clear. The
logical series of modeling steps, the problems they induce,
and the ultimate resolution of the problems are as follows:

• Place the longitudinal axis and position the cutting planes.
To ensure the inclusion of all cross-sections from which
we will extract the movie, cutting planes are position
densely perpendicular to the longitudinal axis (see e.g.,
Figure 4(a)).
• Compute the intersections. Each cutting plane will slice
the 3D figure of the 4D entity, leaving intersections
on the plane. The intersections is the key to our
understanding of the underlying 4D structure (see
Fig. 4(b)).
• Reconstruct the closed loops. We think of a 4D surface
as a collection of evolving closed loops, stacked in
time. Intersections in the format of points and line
segments will be recognized and closed loop(s) will be
reconstructed in this step (see Fig. 4(c)).
• Identify critical changes and removing associated transi-
tioning frames. The third step is to locate and remove
critical time points. These time points often reveal
critical changes in movie content. These time points are
removed from the candidate elements and the candidate
frames are divided into different sections according to
the critical time points (see Fig. 4(d)).
• Choose the optimal frames between critical changes and
render the movie. Frames between successive critical

changes undergo minor changes. In the last step, we
identify the best frame from each partition divided by
successive critical changes, and the remaining frames
now are rendered into the movie (see Fig. 4(e) and (f)).

4.1.1 Compute the Intersections
Computing intersections of the surface and the parallel
cutting planes is an essential part of our resolution of
the problems. Figure 5 shows the basic idea — when the
longitudinal axis is determined, we first rotate the surface
so that its longitudinal axis coincides with the y-axis in
the world coordinate system (see Fig. 5(a) and (b)). This
transformation facilitates computation as the cutting planes
are now parallel to the xy plane, and we can simply check
on each triangle’s y coordinate range to determine the
collection of the cutting planes it intersects with. The cutting
planes are placed densely along the longitudinal axis (see
Fig. 5(c)). Intersections of cutting planes with the surface
are in the format of points and line segments. To improve
the computational efficiency, our implementation adopted
several methods introduced in Ref. [20], including the
sorting and grouping of the triangle meshes, and the binary
search method to quickly identify triangles for intersection
computing. It is worth noting that the line segments are
disordered and their endpoints still carry the w coordinate.

4.1.2 Reconstruct the Closed Loop(s)
The next step is to string the disordered line segments from
the raw intersections into one ormore closed polygons. Since
our principle test cases are closed surfaces embedded in 4D,
the line segments in the raw intersection should form one or
more closed loops. For example, in Figure 6 the cutting plane
slices through the Klein Bottle, and the raw intersections are
shown in Fig. 6(a), the collection of the line segments in the
intersections can be stringed into two close loops since they
exhibit different w eye coordinates (Fig. 6(b)).

4.1.3 Identify Critical Changes
The densely positioned cutting planes slice the surface, and
that results in a large number of cross-sectional frames. Most
of the changes between successive frames are small from
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Figure 7. The five types of critical changes. (a) The birth/death of
a component. (b)-(d) Changes corresponding to the three Reidemeister
moves. (e) The fusing/fissuring change.

a topological perspective. Occasionally, the frames undergo
significant changes such as the appearance or disappearance
of a new close loop, the change in the number of crossings
in the diagrams, or a Reidemeister type of move. In Ref. [5]
Carter summarizes five critical changes we might encounter
over the cross-sectional frames sliced from the surfaces.

• Type 0: The birth/death of a simple closed curve. As
depicted in Figure 7(a), frame c is introduced when the

cutting plane is tangent to the surface, and frame c is
the transitioning frame leading to the birth of the closed
loop in the next frame.
• Type I : The critical change introduced by a type I Reide-
meister move. As shown in Fig. 7(b), the preceding and
succeeding frames of the critical change frame c appear
to have undergone a type I Reidemeister move. This
critical change also has led to the addition/reduction of
one crossing.
• Type II : The critical change introduced by a type II
Reidemeister move. For example, the preceding and
succeeding frames of the critical change frame c in
Fig. 7(c) appear to have undergone a type II Reidemeis-
ter move, which also has led to addition/reduction by
two crossings.
• Type III : The critical change introduced by a type
III Reidemeister move. For example, in Fig. 7(d),
the preceding and succeeding frames of the critical
change frame c appear to have undergone a type III
Reidemeister move.
• Type IV : The operation of fusing two components into

one, or fissuring one component into two. As depicted
in Fig. 7(e), frame c is introducedwhen the cutting plane
is tangent to the surface. The preceding and succeeding
frames of the critical change frame c appear to have
undergone a fusing/fissuring operation.

Our next task is to identify the transitioning frames
that correspond to the critical changes illustrated in Fig. 7.
These frames can be geometrically identified — they are
the transitioning frames between other frames where the
diagrams are in safe position [23]. A diagram is in a safe
position when it fulfills the following conditions:

• No twonon-adjacent edges in the components are closer
than a threshold distance dclose;
• No two crossings in the components are closer than a
threshold distance dclose;

As indicated in Fig. 7, when these five types of critical
changes occur, the diagrams on the transitioning frames
are turning into unsafe position (see e.g., Figure 8), until
the critical change is accomplished. The unsafe positions
corresponding to the five types of critical changes are
summarized in Fig. 8, where we highlight the the unsafe
regions which our system detects and recognizes as critical
changes.

The system scans all cross-sectional diagrams and
checks whether they are in a safe or unsafe position corre-
sponding to a critical change. A series of consecutive unsafe
frames are considered by the system as critical time points.
The system locates all the critical time points (see Fig. 4(d)),
and removes these unsafe frames representing the critical
time points from the candidate frames. The remaining
candidate frames are divided into sections separated by the
(removed) critical time points.
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Figure 8. Frames containing unsafe diagrams correspond to critical change moments. (a) Corresponds to critical change 0 in (Fig. 7(a)). (b) Corresponds
to critical change I in (Fig. 7(b)). (c) Corresponds to critical change II (Fig. 7(c)). (d) Corresponds to critical change IV (Fig. 7(d)) and (e) is corresponding
to critical change V (Fig. 7(e)).

Figure 9. Select optimal frame by comparing the sum of minimal distance
between candidate frames.

4.1.4 Best Frame Identification in One Section
The final step is to identify the best-shaped frame in each
section (separated by the critical changes) to represent
underlying structure of the surface sheet corresponding to
the section. The system selects the optimal frame from each
section to generate the final movie. In our implementation,
the comparison metric considers the following factors:

1. Crossing Distance. The sum of minimal crossing
distance is used to determine which frame is more
relaxed (preferred). For a given frame, we find all
the crossings, Ci(i = 1, 2, . . . , n), the distance of Ci
and Cj is defined as D(i, j), then calculate the minimum
value of the distance from each crossing to all other
crossings M(i) =min(D(i, 1), . . . ,D(1, i− 1),D(i, i+
1), . . . ,D(i, n)), and then sumup theminimumdistance
of each crossing to get the sum of minimal distance
S =

∑n
i=1 M(i). The system prefers the frame with

greater crossing distance. For example, in Figure 9, the
sum of minimal crossing distance of frame in Fig. 9(a)
is lesser than that of Fig. 9(b), which means the frame
in Fig. 9(b) is more ‘‘relaxed’’ than the other, so it is
preferred.

2. Length. Suppose two frames have the same sum of
minimal crossing distance or have fewer than two
crossings, the system counts the length of all polygons
in two frames, and the frame with greater length is
preferred.

3. Convexity. In the case where the sum of the minimum
crossings is equal or the number of crossings is less
than 2, the frame with the more ‘‘convex’’ polygon is

preferred. The convexity of a polygon can be calculated
as in Algorithm 1. For example in Figure 10, convexity of
the cross-sectional diagram in Fig. 10(a) is greater than
Fig. 10(b), so the system would prefer the cross-section
in (a). In this paper, we compare both the perimeter and
convexity to determine the frame with the best shape if
the sum of the minimum intersection distances is the
same or the number of intersections is less than 2. By
default, the weight of length is 0.7 and the weight of
convexity is 0.3.

After the system identifies the best frame from each
partition of the original movies and renders them into
a movie, as Fig. 4(e) and (f) shows, the movie contains
the minimum number of frames that are topologically
meaningful to describe the underlying structure of the 4D
surface.

4.2 Automatically Computed Longitudinal Axis
Given a specific longitudinal axis, our system can generate a
movie to describe the surface’s structure, with a minimum
number of frames that are topologically representative.
Choosing an optimal longitudinal axis is a significant task.
A slightly different longitudinal axis can possibly result in a
very different or an unnecessarily complicated movie. The
movies can differ in the number of frames, the contents of the
frames in the movie. In this section, we discuss an algorithm
to automatically compute the optimized longitudinal axis
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Figure 10. Select optimal frame with better convexity. (a) Convexity = 1.0. (b) Convexity = 0.5.

Figure 11. Auto-computed longitudinal axis. (a) Generating candidate longitudinal axes by rotating the surface around x -axis and y -axis incrementally,
180 in total. (b)→ (c) generate movies from each candidate longitudinal axis. (d) Ranking and recommending the best movie from all movie outcomes.

Figure 12. A series of movies generated for the Klein bottle, evolving from the classic shape to the pinched torus shape.

with which our system will render the shortest movie
containing the most relaxed and topologically meaningful
cross-sections.

The basic components of the algorithm is described
in Figure 11. The algorithm rotates the surface so that its
longitudinal axis coincides with z-axis as the initial step.

The algorithm subsequently rotates the surface around the
x-axis and y-axis, respectively, s degree each time for 180◦

in total. In this way, we get a total of
(

180
s

)2
longitudinal

axes differently positioned to search for the best movie
outcome (see e.g., the three representative longitudinal axes
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in Fig. 11(b)). For each longitudinal axis, a movie outcome is
generated (see Fig. 11(c)). Then the system compares all the
candidate movies and ranks the movies for the viewer (see
Fig. 11(d) and (f)). Themetric used to compare the candidate
movies follows the following rules:

1. Movie Length. Compare the length of the two movies,
and the shorter movie is preferred. For example, in
Fig. 11, different longitudinal axes were tested for
generating the best movie to describe a 4D torus. In
Fig. 11 ¬, the candidate longitudinal axes results in a
one-frame movie, which perfectly describes underlying
S1
× S1 structure behind the 3D figure of the 4D torus.

The candidate longitudinal axis in Fig. 11 ­ results
in a movie of three frames, and in Fig. 11 ® the
movie contains 5 frames. Our algorithm ranks themovie
outcome in Fig. 11 ¬ the best.

2. Crossings. In the events of two movies having the same
length, our algorithm calculates the number of crossings
from each frame, and prefer the movie outcome with the
lesser total crossing number.

3. Total Length of Close Loop(s).When twomovies are of
same length and same crossing number, the total length
of the close loop(s) in the two movies are compared.
The algorithm recommends the movie with greater total
length of close loop(s).

5. MORE EXAMPLES
We implemented the presented algorithms in C++. Our core
rending capability, including the planar knot diagramand the
3D rendering for surface is based on OpenGL. The software
currently runs on a MacBook Pro with 2.2GHz 6-Core Intel
Core i7 Processor and Radeon Pro 555X graphic processor.

We utilized the interface to render movies for a family
of surfaces in 4-space. In Figure 12, we show a series of
movies rendered for a Klein bottle being relaxed from the
traditional bottle shape into a pinched torus shape [11]. The
Klein bottle is a closed non-orientable surface that has no
inside or outside, first described by Felix Klein [24]. Our tool
starts with the standard shape of Klein bottle, and renders
movies across difference phases while the Klein bottle was
being relaxed with a energy based relaxationmodel [11]. The
Klein bottle reaches its minimum energy state and appears to
be a pinched torus in our dimensions (see e.g., the movie in
Fig. 12 at the end).

In addition to the automatic method, our interface also
provides a manual way to generate a movie of a surface.
The manual method has its own advantages, one of which
is that the direction of motion of the cutting plane can be
defined by the user. In the examples depicted in Figure 13(a)
and (b), the user places cutting planes around the 4D spun
trefoil knotted sphere and the 1-twist spun knot to explore
the underlying structure. The 6 user-defined cutting planes
positioned in Fig. 13(a) generate identical cross-sectional
diagrams, revealing the underlying spinning structure of the
4D spun the 4D surface is constructed by a three-dimensional
knot spun about a plane in four dimensions. The resultant

Figure 13. Apply user-defined slices to explore the 4D spun knotted
sphere in (a), and the 1-twist spun knotted surface in (b).

cross-sectional diagrams in Fig. 13(b) reveal a different
spinning process— the 1-twist spun knot was constructed by
a twist spinning trefoil knot, which rotates 360◦ itself while
spun about a plane in 4D.

In Figure 14 is a Boy’s surface, a surface embedded
in three-dimensional space, first studied by Werner in
1901 [25]. The algorithm and interface presented in this
paper can also be exploited to generate themovie description
to help us understand the underlying structure of the Boy’s
surface. Fig. 14(c) reveals the complex internal structure of
the surface through our slicing interface.

6. PRELIMINARY USABILITY EVALUATION
We have performed a preliminary usability study in the UofL
VCL (Visual Computing Lab) to evaluate our interface. The
study invited a group of 12 non-expert participants to play
two games we designed and adapted from our visualization
tool. In both games, the participants were asked to interact
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Figure 14. Generating movie for the Boy’s surface. (a) A hand-drawn figure of the Boy’s surface in Carter’s book [5]. (b) The longitudinal axis and cutting
positions in our interface. (c) A movie of 4 frames generated to describe the interior structure of the Boy’s surface.

with the fivemathematical surfaces, shown in Fig. 11, Fig. 12,
Fig. 13(a), Fig. 13(b) and Fig. 14 respectively. Participants
were asked to perform two tasks:

1. Drawing game — participants were given an interface
capable of rendering a surface and allowing the user
to rotate, scale, cut, and adjust the rendering of the
surface (such as the opacity level). After interacting with
the mathematical surface, participants were asked to
describe the structure of the surface by drawing the
contours of the surface they experimented with.

2. Matching game — participants were presented a col-
lection of 3D static images of the surfaces, as well as
flip-books of cross-sectional diagrams. Participants were
asked to match the surface plots with the equivalent
flip-books of diagrams.

Table I summarizes the completion rates of the partici-
pants from the two games. All the participants were able to
complete the tasks of matching the flip-books and the image
of the surfaces. However with the drawing game, results
showed that the more complicated surfaces had a lower
completion rate. Interviews with participants reveals that it
was nearly impossible for them to understand the internal
structure of the complicated surfaces. All participants agreed
that our slicing interface canhelp themvisualize how surfaces
intersect in 4-space by ‘‘seeing’’ the key frames of the internal
structures.

The study results suggest this new visualization tool
can enable and enrich one’s mathematical experience with
mathematical surfaces, particular those embedded in high
dimensional surfaces.

7. CONCLUSION
In this paper, we discuss a novel visualization method to
slice 2-manifold embedded in 4 dimensions and explore
their underlying topological structures. Through this novel
visualization method, we can begin to appreciate the

Table I. Completion rate of the two games in usability study.

Model Drawing game Matching game
completion rate completion rate

4D torus 75% 100%
Klein bottle 83% 100%
4D spun trefoil 50% 100%
1-twisted spun 33% 100%
Boy’s surface 17% 100%

Average 53% 100%

underlying mathematics and topological features behind
the surface sheets of 4D surfaces of 3D figures. We
further provide an automated interface of recommended
slice directions to discover the most suitable slice sequence
possible for the study. Several case studies have shown that
our method works well in extracting useful geometric or
topological properties on many classical surfaces, and this
new automated approach could be applied to the study of
knotted surfaces inmore complex and general 4-dimensional
spaces.

Starting from this basic slicing and movie-rendering
framework, we plan to proceed to solve more 4D visual-
ization problems such as the interactive manipulation of
apparently knotted, but actually unknotted, spheres in 4D.
Planned future work will also extend the range of objects
for which we can support the interactive visualization of the
smooth deformation between Boy and Roman surface, and
the evolution of various 3D figures of the Klein bottle that
have given the same surface in 4-space. In order to implement
an interactive interface, improving computational efficiency
is an essential part, both in the slicing process and in the
recommendation of longitudinal axes, with the possibility
of using parallel computing to improve the computing
efficiency.
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