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Abstract

The No-reference Autoencoder VidEo (NAVE) metric is a
video quality assessment model based on an autoencoder machine
learning technique. The model uses an autoencoder to produce a
set of features with a lower dimension and a higher descriptive
capacity. NAVE has been shown to produce accurate quality pre-
dictions when tested with two video databases. As it is a common
issue when dealing with models that rely on a nested non-linear
structure, it is not clear at what level the content and the actual
distortions are affecting the model’s predictions. In this paper, we
analyze the NAVE model and test its capacity to distinguish qual-
ity monotonically for three isolated visual distortions: blocking
artifacts, Gaussian blur, and white noise. With this goal, we cre-
ate a dataset consisting of a set of short-length video sequences
containing these distortions for ten very pronounced distortion
levels. Then, we performed a subjective experiment to gather sub-
Jective quality scores for the degraded video sequences and tested
the NAVE pre-trained model using these samples. Finally, we an-
alyzed NAVE quality predictions for the set of distortions at differ-
ent degradation levels with the goal of discovering the boundaries
on which the model can perform.

Introduction

Similarly to other research areas, video quality assessment
(VQA) has experienced a great amount of progress due to the
adoption of several machine learning tools [1]. Several proposed
ML-based quality models achieved very accurate quality predic-
tions, however, in most cases, very little attention was paid to
explaining the reasons behind these results. Being able to ex-
plain a model’s output is not only important for the validation of
the model itself, but it is also determinant for gaining new in-
sights into the problem at hand. Moreover, any improvement of
the model demands a good understanding of the model function-
ality [2, 3].

The NAVE metric is a No-reference video quality model
based on an autoencoder technique [4]. The metric uses the au-
toencoder to produce a compact set of visual features, which have
a higher descriptive capacity (see Figure 1). NAVE was tested us-
ing two video databases and it produced quality predictions with
good correlations [5, 6]. Yet, it is not entirely clear at what level
the content of the video sequences, or the actual visual distortions,
are affecting the model’s prediction. In order to further develop
the model, exploration is required to better understand whether
the model is robust when responding to visual impairments or if
the quality predictions are biased and masked by the content itself.

This paper analyses the NAVE model and explores its capac-
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ity to distinguish quality monotonically for three isolated visual
distortions: blocking artifacts, Gaussian blur, and white noise. To
this end, we create a dataset of short length video sequences con-
taining these three visual artifacts at ten different distortion lev-
els. The main objective is to analyze the NAVE predictions for
these sample distortions and verify their consistency. Moreover,
by stressing out the model, we expect to discover the limits of the
model’s performance. Then, we analyze NAVE’s predictions in
accordance with the different levels of distortions of each isolated
visual artifact. We expect to observe a certain coherence between
the predictions of the model and the levels of distortion. This can
confirm (or deny) if the model is capable of differentiating visual
impairments at different distortion levels. In addition, we are able
to observe the performances at each range of distortion levels and
artifacts, which will allow us to establish certain boundaries for
the model. Overall, the findings of this experiment will serve for
the improvement of the NAVE model.

The remainder of this document is divided as follows. First,
a brief description of the NAVE’s metric architecture is presented.
Then, the synthetic dataset creation process is described along
with the corresponding subjective responses. Next, the NAVE
pre-trained model is tested over the synthetic dataset and the cor-
responding results are presented and discussed. Finally, we list
the most relevant conclusions of this study.

NAVE Metric

The No-reference Autoencoder VidEo (NAVE) is a NR-
VQA metric. This metric uses a deep autoencoder approach to
generate a set of visual descriptive features and estimates the
video quality of a video signal using these features. NAVE’s ar-
chitecture, presented in Figure 1, is composed of a two-layer au-
toencoder module and a mapping function. The metric receives,
as input, a set of visual features which are composed by Natural
Scene Statistics (NSS) and temporal-spatial measurements. The
autoencoder module takes this set of features and generates a new
encoded representation with a lower dimension and a higher de-
scription capacity. The new set of features is then mapped into
video quality scores using a classification function. NAVE takes
advantage of the ability of autoencoders in finding relevant prop-
erties among input features and producing a stronger set of de-
scriptive features, which are used to produce more accurate video
quality predictions.

NAVE was trained over the UnB-AVQ-Experiment1 dataset,
which is a large dataset containing audio-visual sequences (video
plus accompanying audio) with their corresponding subjective
scores [5]. The dataset is composed of 720 processed video se-
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Table 1: Specifications of the degradation parameters used to generate the Synthetic Dataset.

Blocking Blurring White Noise
Blocking Factor | kernel  deviation sigma
Test Conditions TCO1 0.3 3 0 0.39
TCO02 0.4 3 400 0.71
TCO03 0.5 5 400 1.07
TC04 0.6 7 400 1.6
TCO05 0.7 9 400 24
TCO06 0.8 11 200 3.61
TCO7 0.9 13 0 541
TCO08 1 13 400 8.11
TC09 1.1 19 0 12.17
TC10 1.3 19 400 18.25
SRC video sl sl sl -
s2 s2 s2 -
s3 - s3 s3
s4 - s4 s4
s5 s5 - s5
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Figure 1: Architecture of the NAVE quality metric.

quences (PVSs) from 60 source sequences (SRCs). The video
sequences have a spatial resolution of 720p, a temporal reso-
lution of 30 fps, and a 4:2:0 colour space. The UnB-AVQ-
Experiment] dataset contains video-only combinations of com-
pression and transmission distortions. All video sequences were
compressed using H.265 and H.264 codecs at different levels.
Packet-loses and frame-freezing effects were added manually to
simulate transmission errors. NAVE’s performance was tested
over two datasets: UnB-AVQ-Experimentl [5] and LiveNetflix
[6]. LiveNetflix dataset is an audio-visual dataset that is com-
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posed of 420 PVSs (1080p, 24 fps, 4:2:0) with different transmis-
sion conditions and bitrate adaptation strategies. NAVE showed
a good performance not only over UnB-AVQ-Experimentl, but
also over the external LiveNetflix dataset.

These initial results encouraged researchers to explore the
usage of autoencoders to generate stronger sets of features that
can be used to produce more accurate quality predictions. A set of
ablation experiments showed the capacity of autoencoder-based
features to predict not only video but audio-visual quality as well
[7]1. However, much exploration is needed in order to confirm
if NAVE’s performance depends on the content of the video se-
quences or if its performance is in fact related to the visual dis-
tortions. In this study, the NAVE metric is tested over a dataset
containing both external content and synthetic distortions, the aim
is to stress the metric and observe its performance in a completely
external context. These findings will serve as a basis to continue
studying the usage of autoencoder-based video quality metrics.

Synthetic Database

To study the performance of the NAVE quality model and
assess its capacity to distinguish different visual distortions, a
synthetic database containing isolated artifacts was created. The
Synthetic Database was created using a set of six (6) short length
video sequences (8 seconds). The sequences have a spatial reso-
lution of 720p, a temporal resolution of 25 fps, and a 4:2:0 color
format. The source videos were collected from the VQEG HDTV
Database available at the Consumer Digital Video Library site
(www.cdvl.org). These video sequences include three (isolated)
types of visual distortions: blocking artifacts, Gaussian blur, and
white noise. For each type of distortion, ten different levels of
distortions were generated in a synthetic fashion, maintaining a
clear distinction between each level. The level of distortion of
these visual artifacts increases monotonically with every notice-
able distortion level. The Synthetic Database is composed of 120
PVSs (40 Blocking, 40 Blurring, and 40 W. Noise) plus 6 SRCs,
adding up to a total of 126 video sequences. Details regarding the
parameters of all ten (10) test conditions are presented in Table
1. In addition, sample frames showing the different test condi-
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Figure 2: Sample frames of test videos of the Synthetic Database containing Blocking, Blurring, White Noise degradations with different

levels of distortion (TCO1, TCO03, TCO05, TC07, TC10).

tions included in the Synthetic Database are depicted in Figure
2. It is worth mentioning that SRC video sequences used to cre-
ate the Synthetic Database were all different from the SRC video
sequences used in the UnB-AVQ-Experiment] dataset. This was
done to prevent using content that was familiar to the (trained)
NAVE metric.

The selection of the levels of distortion was performed
empirically by video quality experts through a short subjective
test. The experiment was conducted at the University of Brasilia
(UnB), in a quiet and isolated room at the Grupo de Processa-
mento de Sinais Digitais (GPDS) of the Department of Engineer-
ing (ENE). Hardware equipment consisted of a desktop computer
and a LCD monitor. The experiment was conducted with 8 par-
ticipants, all of them working in video quality assessment area. !
The experiment was divided in two sessions: the training session
and the main experimental session. During the training session
participants were presented with examples of the test conditions.
This gives participants an idea of the quality range of the PVSs
of the experiment and exposes them to the three types of distor-
tion included in the experiment. After each PVS is displayed, the
interface shows a quality rating scale to the participants, who are
then asked to rate the quality of the PVS using a five-point Ab-
solute Category Rating (ACR) scale ranging from 1 to 5. The
rating scale was labeled from 1 to 5 as "Bad", "Poor", "Fair",
"Good", and "Excellent". After the training session, the partic-
ipant is hopefully familiarized with the test methodology and the
rating procedure. During the main experimental session, the ac-
tual experiment was carried out following the same procedure

'Due to the current Covid-19 scenario, special care was taken while
conducting the experiment. Only one participant was allowed during each
experimental session. Surfaces (e.g., keyboard, mouse, desks and chairs)
were wiped with disinfectant regularly. Sanitizing hand rub dispensers
were made available to all participants. Finally, the room where the ex-
periment was conducted was isolated from other parts of the building and
had natural ventilation.
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used in the training session. A single stimulus methodology was
used and each sequence was played only once. Sequences were
grouped in three sets according to their corresponding distortion:
Gaussian Blur, white noise, and blocking. Within each group, se-
quences were presented randomly to the participants. On average,
a single experiment lasted around 40 minutes.

Subjective responses were collected and the associated Mean
Opinion Score (MOS) values were computed for each test condi-
tion (of all three types of distortion). Figure 3 depicts the MOS
results obtained, grouped by type of distortion. Notice from Fig-
ure 3(a) that the different test conditions for the blocking distor-
tion were easily distinguished by the participants. In fact, among
all other types of distortion, blockiness is the only distortion that
shows a strictly monotonic behavior across all test conditions.
Similarly, we can notice from Figure 3(b) that MOS values for
blurring distortions have a monotonic behavior, although test con-
ditions TCO7 and TCO09 did not followed this pattern. Finally, as
depicted in Figure 3(c), participants seemed to have more trou-
ble distinguishing test conditions with white noise distortions, at
least for the first group (TCO1 to TCOS). Another relevant point to
mention is the quality range for different distortion types. Block-
ing distortions obtained quality scores up to 3.5 points in the MOS
scale, meanwhile blurring and white noise distortions obtained
quality scores above 4 points in the MOS scale. Overall, quality
scores obtained for sequences containing these three visual arti-
facts has a wide MOS range, which is an important requirement
to verify the performance of the pre-trained NAVE metric.

NAVE Performance Analysis

In this section, we present the results of testing the NAVE
metric on the Synthetic Database detailed in the previous session.
To obtain the quality predictions, we extracted sets of features
from the Synthetic Database PVSs and passed them to a pre-
trained NAVE metric. We compared NAVE’s quality predictions
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Figure 4: Synthetic Database - Blocking. Metrics’ performance per test condition and SRC video contents.

obtained for the Synthetic Database with the predictions obtained
with the following set of visual quality metrics:

¢ FR video metrics: VMAF [8];

* FR image metrics (adapted for video): SSIM [9] and PSNR;
and

* NR image metrics (adapted for video): BIQI [10], NIQE
[11] and BRISQUE [12].

It is worth mentioning that, similarly to NAVE, all these metrics
were designed with different purposes and using different content
materials and distortions. Considering that one of the goals of this
study is to analyse the behavior of NAVE using ‘foreign’ contents
and distortions, we included a wide variety of visual quality met-
rics in this analysis, each having different design characteristics.
To understand how the predictions varied across all test con-
ditions, we grouped the metrics’ quality predictions by their cor-
responding SRC video content and presented the results for each
distortion separately. First, for the PVSs containing blocking dis-
tortions, Figure 4 depicts the MOS versus test condition graph and
the corresponding quality predictions versus test condition graphs
obtained for NAVE and all tested metrics. Notice from Figure 4(e)
that the NAVE metric did not perform very well, not being able to
estimate the quality changes the 10 test conditions. A similar per-
formance was observed for the other NR metrics BIQI, BRISQUE
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and NIQE, as depicted in Figures 4(f), 4(g), and 4(h). On the
other hand, as shown in Figure 4 (b), the FR video quality met-
ric VMAF displays a good performance, with quality predictions
monotonically decreasing for the 10 test conditions, as expected.
This behavior is very similar to the one observed for the MOS re-
sponses in Figure 4 (a). As for the other FR quality metrics (SSIM
and PSNR), they seem to be able to detect the quality changes, but
show a very narrow quality range, as can be observed in Figures
4 (c) and (d).

Figure 5 presents the metrics’ quality predictions versus test
condition plots for the Gaussian blur distortions. As can be ob-
served in Figure 5(e), although in this case NAVE was able to
distinguish the several levels of distortion, the quality predictions
values do not decrease monotonically for the 10 test conditions.
In Figures 5(f), 5(g), and 5(h), we can notice that the NR image
quality metrics BIQI, BRISQUE and NIQE were able to distin-
guish some distortion levels, presenting more reasonable quality
predictions for the test conditions. As for the results obtained for
the FR video metric VMAF, which are shown in Figure 5(b)),
for the blurring distortions the performance was not as good as
for the blockiness distortions. In fact, its range of quality pre-
diction was much narrower. On the other hand, the quality pre-
dictions obtained with SSIM and PSNR, shown in Figures 5 (c)
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Figure 5: Synthetic Database - Gaussian Blur. Metrics’ performance per test condition and SRC video contents.

and 5(d), maintained a monotonically decreasing behavior across
the 10 test conditions, similar to what was obtained for blockiness
distortions.

Finally, Figure 6 presents plots of the metrics’ quality predic-
tions versus test conditions for the white noise distortions. Notice
from Figure 6(e) that NAVE was able to distinguish the variations
across some of the test conditions. However, this was not the case
for all SRC video contents. As shown in Figures 6(f), 6(g), and
6(h), the NR metrics BIQI, BRISQUE, and NIQE had a better per-
formance, being able to distinguish the quality levels of almost all
test conditions. More specifically, NIQE presented ‘well-behaved
quality predictions ’, showing a monotonically increasing curve
across the test conditions. In fact, its results are very similar to
the MOS graph displayed in Figure 6(a). Surprisingly, VMAF
did not perform very well for white noise distortions, failing to
distinguish the different levels of distortions, as shown in Figure
6(b). As for SSIM and PSNR, both metrics had a consistent per-
formance, showing a monotonically decreasing curve across the
10 test conditions, as seen in Figures 6(c) and 6(d).

Discussion

Results presented in the previous section exposed a number
of points. First, NAVE’s limited performance across all three
types of distortion is the most notorious one. However, the ob-
served performance of all the other metrics exposed a few more
interesting points relating to the objective quality metrics’ de-
sign and their performance on ‘foreign’ contents and distortions.
We believe a discussion on these issues may bring interesting in-
sights that might be beneficial, not only for the improvement of
the NAVE metric but also for the development of more accurate
quality models.

NAVE'’s training was done using a large variety of visual
contents. The UnB-AVQ-Experiment] Database contains 60 dif-
ferent SRC video sequences. Although the intention of training
NAVE over such a variety of content was to make the model ro-
bust across different types of content, there is still a risk of over-
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fitting the model. The Synthetic Database was created using six
SRC sequences takenfrom the VQEG HDTV Database. The con-
tent of these SRC sequences was different from the content used
during the training of the NAVE metric. This had the goal of
guaranteeing that the metric’s predictions were solely responding
to the visual distortions and not to the content itself. Results pre-
sented in Figures 4, 5 and 6 showed that NAVE was able to gen-
eralize their predictions across the different PVSs, except for the
distortions associated with the Gaussian blur. That is, predictions
were coherent across the video content. Further experiments can
be performed with an entirely new database, for example using the
distortions from the Synthetic Database on the source sequences
from the UnB-AVQ-Experiment1. This new database might help
to understand the dependency of the NAVE metric on the content
used during its training.

As discussed in Section 2, NAVE was trained using three
types of visual distortions: packet-loss, frame-freezing, and video
compression. Out of these distortions, two of them can be clas-
sified as temporal distortions (packet-loss and frame-freezing).
This might have influenced on the poor results reported by NAVE
for the synthetic distortions, considering that they are all purely
spatial degradations. In fact, in a previous study NAVE reported
good results when tested on the LiveNetflix Database, which con-
tains several temporal distortions (transmission errors and bitrate
adaptation). Re-training the model and including these distortions
in an isolated way, might give us a lead on the capacity of NAVE
to extend its knowledge domain.

The additional quality metrics used in this work for compar-
ison purposes were the following: VMAF [8], SSIM [9], PSNR,
BIQI [10], NIQE [11], and BRISQUE [12]. These metrics were
developed to tackle different types of scenarios, distortion, and
contents. Some of the metrics were FR metrics (VMAF, SSIM,
and PSNR) and others NR metrics (NAVE, BIQI, BRISQUE, and
NIQE). Most included some machine learning training (VMAF,
NAVE, BIQI, BRISQUE, and NIQE), but we also included sim-
pler metrics that did not require training (SSIM, and PSNR). Our
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Figure 6: Synthetic Database - White Noise. Metrics’ performance per test condition and SRC video content.

goal was to analyze how such a diverse group of quality metrics
performed for the Synthetic Database.

Considering the PVSs containing blocking artifacts, we no-
tice that all three FR metrics showed a good performance. Al-
though their predictions varied across all test conditions, the cor-
responding curves were similar to the MOS curves obtained from
the experiment subjective responses. This was not the case for the
NR metrics, whose quality predictions were not able to capture
the quality variations in the 10 test conditions. This is very inter-
esting since all four NR quality metrics use natural scene statistics
(NSS) features as input for their quality predictions. These results
might suggest that such measurements have more difficulties to
capture quality changes introduced by blocking artifacts.

As for the Gaussian blur distortions, a diverse behavior was
observed across all metrics. From the FR metrics, SSIM and
PSNR reported predictions varying across all test conditions,
while VMAF had some trouble distinguishing the different qual-
ity levels. For this type of distortion, NR metrics performed much
better than for blocking artifacts. BIQI, BRISQUE, and NIQE
were capable of recognizing the different levels of distortion. This
aligns with the good performance reported over the Live IQA
Database [10, 11, 12].

For the white noise distortions, the adapted image metrics
(PSNR, SSIM, BIQI, BRISQUE, and NIQE) showed a far better
performance than the video quality metrics (VMAF and NAVE).
As with the previous distortions, the quality predictions generated
by the FR metrics SSIM and PSNR decreased monotonically with
the test conditions, as expected . The same behavior was also ob-
served for the NR metrics BIQI, BRISQUE, and, NIQE. This per-
formance should not be surprising, considering that the design of
image quality metrics often include white noise distortions, which
is a common degradation in most image quality database such as
LIVE [13] and TID [14]. This might also explain the poor per-
formance of VMAF for sequences with white noise distortions.
VMAF is a machine learning based quality metric designed for
video streaming application, which in most cases do not have
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white noise distortions. It is worth pointing out that noise is some-
times used by the film industry for artistic purposes, which do not
affect the quality of the experience. Therefore, quality metrics
used for these applications might less sensitive to noise.

Conclusions

This study aimed to test the performance of NAVE, a NR
video quality metric. In order to do so, the Synthetic Database
was created, containing distortions and SRC video contents com-
pletely different from the ones used in NAVE’s training. Such
distortions included blocking artifacts, Gaussian blur, and white
noise, with ten different test conditions of increasing impairment
levels. A subjective experiment was performed to collect sub-
jective quality scores for the dataset. Results showed that NAVE
had difficulties distinguishing quality variations across all three
types of distortions. These results bring up some interesting ques-
tions that require further exploration. For example, a possible fu-
ture work would be recreating the test conditions of the Synthetic
Database on the SRC video content that was used to train NAVE.
Also, it would be interesting to check the performance of trained-
based metrics on different distortions at different levels, including
those for which the metrics were trained on. We believe this type
of study is still lacking in the literature.
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