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Abstract
Current state-of-the-art pixel-based video quality models for

4K resolution do not have access to explicit meta information such
as resolution and framerate and may not include implicit or ex-
plicit features that model the related effects on perceived video
quality. In this paper, we propose a meta concept to extend state-
of-the-art pixel-based models and develop hybrid models incorpo-
rating meta-data such as framerate and resolution. Our general
approach uses machine learning to incooperate the meta-data to
the overall video quality prediction. To this aim, in our study,
we evaluate various machine learning approaches such as SVR,
random forest, and extreme gradient boosting trees in terms of
their suitability for hybrid model development. We use VMAF to
demonstrate the validity of the meta-information concept. Our
approach was tested on the publicly available AVT-VQDB-UHD-
1 dataset. We are able to show an increase in the prediction ac-
curacy for the hybrid models in comparison with the prediction
accuracy of the underlying pixel-based model. While the proof-
of-concept is applied to VMAF, it can also be used with other
pixel-based models.

Introduction
With the advent of a variety of “over-the top” (OTT) video

streaming providers, such as YouTube, Amazon Prime Video or
Netflix, video is fast amounting to a major chunk of consumer in-
ternet traffic. Videos accounted for 76% of the consumer internet
traffic in 2016, predicted to increase to 82% by 2021 [2]. In this
context, HTTP-based adaptive streaming (HAS) such as the stan-
dardized Dynamic adaptive streaming over HTTP (DASH) has
become the preferred technology for video streaming of different
type contents such as traditional 2D videos, 360◦ videos etc. This
necessitates the development of video quality models to take into
account the specific properties of HAS-type streaming and also
the higher video resolutions such as 4K. In addition to monitoring
video quality, these models can also form a basis for optimiz-
ing adaptation algorithms applied in the player or the encoding
scheme used in the streaming backend. One such example of a
video quality model used for optimizing encoding settings and
adaptation algorithms is VMAF [14, 18] which is used by Netflix
in the dynamic optimizer [12].

Providing end-users with the best Quality of Experience
(QoE) is one of the main goals of all OTT video streaming
providers. Video quality forms a major part of the user’s Qual-
ity of Experience (QoE), beside e.g. likability or enjoyment of
the content. Here, video quality is one factor that streaming and
internet service providers can steer via technology settings such as
encoding or network properties. Hence, measuring video quality

with high accuracy becomes very important in today’s streaming
scenario.

In general, video quality models can be classified into the
following three main categories: pixel-based, bitstream-based and
hybrid models, where the model type depends on the input data
that is used for quality assessment [22, 28]. Firstly, pixel-based
models use the decoded frames to estimate video quality scores.
They can be further categorized into three types, namely, full-
reference (FR), reduced-reference (RR) and no-reference (NR),
depending on whether a undistorted reference video, partial infor-
mation about the reference video, or no reference video is being
used [9] for quality estimation. The second type of models are
bitstream-based models. Similar to the pixel-based models, de-
pending on the level of access to the bitstream, four main types
have recently been distinguished in the context of ITU-T Rec.
P.1203 [11, 22], namely Mode 0, Mode 1, Mode 2 and Mode
3 for short and long term video quality estimation. These four
model types form a hierarchy, thus, a Mode 3 model has a superset
of accessible features including those available to a Mode 0 type
model. For the short-term video quality prediction, a Mode 0 type
model only has access to meta-data such as the codec used, res-
olution, bitrate and framerate. On the other side, for longer-term
quality prediction for more real-life, several minute long viewing
sessions, additional side information is required, about stalling
events and initial loading delay. In addition to the Mode 0 input
information, a Mode 1 model also has access to the video frame
types, I, P, B, etc., and frame sizes. Finally, a Mode 3 model
can access the full encoded bitstream. Note that the intermediate
Mode 2 is a specific approach that principally uses the same in-
formation as Mode 3, but is allowed to only parse up to 2% of the
Mode-3-type information.

The last general category of video quality models are hy-
brid models, they are a combination of any of the bitstream model
types with any of the pixel-based model types and theoretically
can incorporate the best of both the pixel and bitstream models
and be better than both these model types based on prediction ac-
curacy.

In this paper, we propose a concept to develop pixel-based
hybrid models that take resolution and framerate as additional
meta-data input to improve the prediction accuracy as compared
to the underlying pixel-based model. We decided to include res-
olution and framerate as the only meta-data input, since these
are the main parameters that are required to properly play out
a given video on the corresponding end-device. Moreover, the
video codec or bitrate could be used, however, inclusion of these
may create a specific codec-dependency. Since the considered
pixel-based model was shown to work well for codec- and bitrate-

IS&T International Symposium on Electronic Imaging 2021
Image Quality and System Performance XVIII 264-1

https://doi.org/10.2352/ISSN.2470-1173.2021.9.IQSP-264
© 2021, Society for Imaging Science and Technology



related distortions [21, 23, 24], specific inclusion of this infor-
mation may reduce the otherwise rather wide applicability of the
underlying pixel-based approach. The general idea was inspired
by the observation in [23] that the performance of state-of-the-
art full-reference metrics drops in case of framerates different
from the typical 30 or 60 fps. To demonstrate the validity of
our introduced meta concept, we develop a hybrid full-reference
model that uses VMAF [14, 18] as the underlying full-reference
component, by including a compensation for the observed lim-
itations of the model. The approach is not restricted to just full-
reference pixel-based models and can be extended to reduced- and
no-reference models as well.

The paper is organized as follows. In the next section, an
overview of the existing full-reference and bitstream video qual-
ity models is provided. Following this, the proposed approach and
machine learning pipeline for feature selection and model devel-
opment are described. Subsequently, the dataset that is used for
validating the approach demonstrated using VMAF as the under-
lying pixel-based model is described and the resulting evaluation
associated with this is also presented. Finally, we conclude with a
discussion and provide an outlook for future work.

Related Work
In the quest for higher prediction accuracy across different

content types and also to take into account the effect of percep-
tion in video quality prediction, a number of pixel-based and
bitstream-based models have been proposed in literature [1, 11,
21, 22, 24, 26, 31].

There are several image quality models that are used for pre-
dicting video quality. One of the popular perception-based im-
age quality models is the Structural Similarity (SSIM) index [30].
SSIM is based on the assumption that the Human Visual Sys-
tem (HVS) is highly adapted for extracting structural information
from the scene, and thus measuring the structural similarity pro-
vides a good approximation of image quality [29]. There exists a
multi-scale variant of SSIM known as MS-SSIM [29], which can
incorporate image details at different resolutions. These variants
are also used for video quality prediction by using them to pre-
dicting the quality of each frame and then pooling the per-frame
quality to get the overall video quality, e.g. using the average
value of all frame scores.

Other popular image quality models that are used either as
video quality models or as features in a compound video qual-
ity model such as VMAF [19] are the "visual information fi-
delity" (VIF) in the pixel domain [27] and "detail loss" met-
ric (DLM) [13]. VIF is based on natural scene statistics (NSS).
Furthermore, DLM proposes two simple quality measures to cor-
relate detail losses and additive impairments with visual quality,
respectively.

Beside full-reference image and video quality metrics, there
have been also no-reference models developed. BRISQUE [16],
NIQE [17] and deimeq [5] are some of the no-reference equiv-
alents of perception-based image models, where the final model
prediction is performed using machine learning, e.g. with a sup-
port vector regression or tree-based algorithms.

All video quality models that only use image-based models
suffer from the same drawback of lack of motion-related features
and provide reduced performance at higher resolutions, because
they are usually trained on lower resolutions. For this reason mod-

ern video quality models incorporate video-specific features.
On the most popular and widely used full-reference video

quality models is Netflix’s VMAF [18]. The latest version of
VMAF is trained on 4K videos, so it overcomes the resolution
limitation of VQM [19]. Moreover, VMAF is a compound video
quality model based on two image metrics namely, VIF (at 4
different scales) and DLM. In addition to the image models, a
temporal frame-difference feature is included in VMAF. In gen-
eral, VMAF shows good performance for 4K video quality pre-
diction [7, 21, 23, 24].

In addition to this, the recently standardized P.1204.4 model,
a reduced-reference model, has been reported to show good per-
formance on a wide number of different datasets [21]. Most of the
widely used pixel-based models such as VMAF suffer from the
unavailability of time-related information (e.g. a feature that can
estimate the impact on video quality cause by framerate), and also
the calculation of the temporal frame difference feature suffers in
case of a framerate different from the initial training set, as it is
shown e.g. in [23]. In addition to this, Zinner et al. [32] study the
impact of resolution and framerate on QoE metrics and proposed a
framework for QoE management for content distribution systems
based on H.264 SVC, thus showing the need to incorporate fea-
tures that quantify the impact of resolution and framerate in video
quality metrics. Moreover, Madhusudana et al. [15] in their study
on the subjective and objective quality assessment of high frame
rate videos show how the prediction accuracy varies widely across
different framerates starting from 24fps to 120fps for a number of
pixel-based metrics such as VMAF, SSIM, MS-SSIM, PSNR etc.
In essence, it can be concluded that having framerate and resolu-
tion related information as additional features would enhance the
accuracy and applicability of pixel-based models.

Similar to the pixel-based full-reference models, a wide
range of bitstream-based models have been proposed in the liter-
ature [20, 24, 25]. Also, bitstream models have been proposed for
other applications such as 360◦ videos [3]. The main advantage
of bitstream- over pixel-based models is their low computation
time since these models only use the bitstream as input and no
decoding of the bitstream to pixels is required. While generally
being of lower computational complexity than pixel-based mod-
els, bitstream models also vary in complexity, depending on the
input data. The type of models can vary from very simple mod-
els which only use meta-data such as bitrate, framerate and res-
olution, to complex ones which make use of the entire bitstream
information. The P.1203 series of recommendations [20] and the
P.1204.3 model [24] are some of the examples of very good per-
forming bitstream-based models with P.1204.3 showing a perfor-
mance of either on par or better in comparison to the existing SoA
FR metrics.

To sum up, it can be stated that different model types have
different limitations. While showing competitive performance
for condition types that they were trained for (codecs and bi-
trates used), bitstream-based models cannot easily be generalized
to other codecs than those they were trained on. In turn, pixel-
based models have to estimate the quality-impact of straight-
forward degradations such as resolution or framerate reduction
using pixel-information, with reduced prediction performance, al-
though this information may easily be available from meta-data
provided with a given stream. In addition, even though pixel-
based models include upscaling degradations, recently developed
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DNN-based models are able to outperform SoA upscaling algo-
rithms [4], whereas on the contrary such new upscaling algo-
rithms introduce unknown distortions that are not covered in the
training/development process of SoA FR models.

To overcome the respective model limitations in a mutual
way, the best features from both types of models can be combined
to develop a hybrid model that enhances the overall prediction ac-
curacy of each individual model type. The paper presents a simple
but effective approach to extend existing pixel-based models with
meta-data input about the two key issues that can easily be cap-
tured with the available meta-data.

Proposed Approach
The general model structure is shown in Figure 1. Our ap-

proach starts with extracting pixel-based features from the video
input. In case of an underlying full-reference model, the video
input are the source video and distorted video, or only the dis-
torted video or different variants, depending on the model type.
To prove the validity of the concept, we use the popular full-
reference model, Netflix’s VMAF, as feature extractor. Similar
extensions can also be used for no- or reduced-reference models.

After feature extraction, the per frame feature values are then
temporally pooled to obtain the final per-video features. Tempo-
ral feature pooling is a well-known approach to remove the time
dependency of short video sequences and therefore to provide a
constant number of features to the underlying machine learning
model. Similar methods have been used in other models, e.g.
nofu [6]. Such a temporal feature pooling can range from a sim-
ple arithmetic mean to more complex methods such as harmonic
mean, Minkowski summation, percentile etc. For the present pa-
per, the focus is on the widely used and simple arithmetic mean.

In addition to the pooled features, we include resolution and
framerate as meta-data features, resulting in a hybrid extension
of the considered FR model. The rationale behind including the
meta-data as additional features is that in an HTTP-based adap-
tive streaming (HAS) scenario as with DASH, such information
is accessible to the DASH client via the manifest file required for
selecting and playing the current video segments. Moreover, in
any kind of play-out scenario the resolution and framerate meta-
data is required to ensure a correct playing of the video. In this
paper, we use ffprobe which is part of ffmpeg to estimate the re-
quired meta-data.

In the hyperparameter and feature optimization step, we con-
sider a large combination of (hyperparameter, feature set) val-
ues while training the machine learning algorithm for enhancing
the pixel-based model using meta-data and choose the combina-
tion that performs the best in terms of Pearson correlation coeffi-
cient.

Model Instances and Evaluation
This section presents the dataset that was used to train and

validate the described meta-data-based hybrid models. We further
describe several instances of hybrid models that rely on different
machine learning based models. All models use VMAF as the
underlying FR model. We also show how our introduced models
perform in various evaluation experiments.

Dataset
To evaluate the proposed framework and the resulting hy-

brid variant of VMAF, we use the publicly available AVT-VQDB-
UHD-1 dataset [23]. This dataset consists of four different sub-
jective video quality tests. All four tests follow a full-factorial test
design. All degraded videos videos were presented on a 4K/UHD-
1 screen. The video resolutions used in these tests ranged from
360p to 2160p, with framerates between 15 fps and 60 fps and
bitrates between 200 kbps and 40000 kbps. In total, three codecs,
namely, H.264, H.265 and VP9, were used for encoding. These
codecs cover the range of practically used video codes.

Test #1 of the AVT-VQDB-UHD-1 is a codec comparison
test using all three codecs H.264, H.265 and VP9. In total, 6
different source contents of 10s duration were used in the test.
The framerate of the encoded videos was not changed for this
test. A total of 180 processed video sequences (PVSs) were used
in the test, collecting quality ratings from 29 participants for each
of the videos. A Pearson Correlation Coefficient (PCC) of 0.75
between the individual subjects’ ratings to the mean ratings across
all subjects was used as criterion for outlier detection [11], with
no outliers being detected for this test.

Furthermore, Tests #2 and #3 followed a similar design as
that of Test #1, using three source contents from Test #1 and three
new source contents. Like in Test #1, the framerate of the encoded
videos was kept at the source video framerate. Due to increase in
the number of Hypothetical Reference Circuits (HRCs), each test
was a codec comparison test between 2 codecs with Test #2 using
H.264 and H.265, and Test #3 H.265 and VP9. Each of the 2 tests
had a total of 192 PVSs. There was a total of 24 participants in
Test #2 and 25 participants in Test #3, with no outliers detected
using the criterion of 0.75 PCC.

The last included test, Test #4 differed in design to the other
three tests, with the framerate of the encoded videos now being
varied from 15fps to 60fps using 8 different source contents of
originally 60fps. Also, this test was not a codec comparison test
but focused mostly on the difference in perceived quality with
videos of different bitrates, resolutions and framerates. Hence,
only one codec, H.264, was used for encoding. A total of 192
PVSs were rated by each of the 26 participants. Overall 2 outliers
were detected using the criterion of 0.75 PCC.

In total, across the 4 tests 756 PVSs were rated by 104 par-
ticipants.

Evaluation
To validate the proposed approach, we use VMAF as the un-

derlying FR model to develop the hybrid models. In total, three
machine learning algorithms, namely, support vector regression
(SVR), random forest (RF) and extreme gradient boosting trees
(XGBoost), are considered for this purpose. Besides evaluation
of different machine learning approaches, we further optimize the
hyper-parameters and feature set of the different hybrid-FR mod-
els. We selected these machine learning algorithms, because they
have been used already in other models, e.g. SVRs in VMAF, RF
in P.1203/1204.3 and extreme gradient boosting trees to predict
the number of video encoding passes in [8]. Other models are
possible, however, due to the still low number of training samples
within the used databases, other models like neural networks are
out of the scope.

In case of RF and XGBoost-based models, only the number
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Figure 1: General Machine Learning Pipeline, indicating the involved steps from pixel-based feature extraction based on any kind of
pixel-based model, over temporal feature pooling to the final training of the included machine learning algorithm.

of trees parameter was considered for hyper-parameter optimiza-
tion. Otherwise, default values were used for all other parameters
as included in the scikit-learn and xgboost implementation of RF
and XGBoost, respectively. For the proof-of-concept provided
with this paper, no hyper-parameter optimization for the SVR-
based approach was employed. For SVR, we used the radial basis
function (RBF) as the kernel and default values for all the param-
eters that are included in scikit-learn; this is similar to VMAF,
BRISQUE and NIQE.

For optimizing the feature set, we perform a full grid search
selecting all possible combinations of features, finally selecting
the combination of features that results in the best performance in
terms of PCC and root mean square error (RMSE). In our case it
results in 255 possible feature combinations, where 6 features are
based on VMAF’s pixel-based calculations and 2 result from our
added meta-data, namely resolution and framerate. The hyper-
parameter and feature set optimization is a joint optimization pro-
cess where for every value of the number of trees parameter, all
possible feature combinations were tested and finally the (num-
ber of trees; feature set) that results in the best performance is
selected. We considered 20 different values for the number of
trees parameter ranging between 1 and 101 with a step size of 5.

Other parameters of RF and XGBoost can be optimized in a
similar manner. In our case, some of the parameters were checked
with several pre-tests, and it was finally decided to use the de-
fault values, as the optimization of additional parameters did not
show any significant improvement of the overall performance of
the models. For each of the aforementioned variations of param-
eters, a separate model is trained and evaluated, considering the
prediction performance of the validation set.

The training-validation ratio for all three machine learning
algorithms was chosen to be 50:50, ensuring that none of the com-
mon sources are used in training, so that the model variants are
validated with completely unknown videos.

Table 1 shows the results using the best combination of
(number of trees; feature set). In addition, in Table 2 summa-
rizes the performance using a (number of trees; feature set) set
with as few values as possible for both parameters, with compa-
rable performance with the best case. For the case of SVR, even
with just 4 features, the performance is comparable to the best
case.

The best combination is 26 trees with 4 features for the RF
case, and 101 trees with 4 features for the XGBoost-based model.

Even with only 6 trees and 4 features, the RF model has com-
parable performance with the best RF case. Similarly, a model
with 71 trees and 4 features shows comparable performance with
the best case for the XGBoost based model. All these best per-
forming cases included resolution and framerate as features. We
further perform a detailed feature relevance analysis by counting
the number of occurrence of features which is detailed in Figure 2.
It can be observed that all hybrid-VMAF instances outperform the
retrained VMAF significantly, in terms of all applied performance
criteria, namely Pearson correlation coefficient (PCC), Spearman
Rank Order Correlation (SROCC), Kendall rank correlation coef-
ficient and Root Mean Squared Error (RMSE). This demonstrates
the validity of our approach and also the suitability of the used
machine learning algorithms to develop such models. In addition
to the performance metrics, a significance analysis was performed
according to ITU-T P.1401 [10].

Besides VMAF, we have compared model performance with
a number of further metrics, as shown in Tables 1 and 2. It should
be noted that for BRISQUE and NIQE, the performance numbers
reported in Tables 1 and 2 result after retraining, as described in
the AVT-VQDB-UHD-1 study [23].

In addition to the performance analysis in terms of correla-
tion and RMSE, we also analyzed the number of times of occur-
rence of all the features for the top 100 performing (number of
trees; feature set) set. It can be seen from Figure 2 that for all
the three cases (SVR, RF, XGBoost), resolution and framerate oc-
curred the highest number of times. Also, in the best performing
(number of trees; feature set) set in both Tables 1 and 2, resolu-
tion and framerate were part of the feature set for all three ML al-
gorithms. This further shows that the additional meta-data-based
input features, resolution and framerate, indeed plays an impor-
tant role in improving the performance of FR models. It further
indicates that only a small amount of additional data is required
to develop a hybrid model variant with good overall performance.
As mentioned before, we also evaluated the inclusion of bitrate
and video codec as meta-data features, but no improvement was
observed; hence these meta-data features were removed for our
proposed hybrid model framework.

Conclusion
We evaluated the performance of SoA video quality models

with the focus towards pixel-based models. The existing pixel-
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Figure 2: Frequency of occurrence of features in top 100 performing cases
Table 1: Performance comparison between Hybrid-VMAF and
other SoA Objective Metrics (considering the best performing
feature combination)

Metric RMSE PCC SROCC Kendall #Tree #Feature

VMAF 0.592 0.807 0.811 0.624 NA NA

BRISQUE 0.641 0.813 0.833 0.646 NA NA

NIQE 1.006 0.393 0.387 0.265 NA NA

PSNR 1.004 0.313 0.491 0.352 NA NA

SSIM 0.871 0.497 0.580 0.418 NA NA

MS-SSIM 0.832 0.559 0.581 0.421 NA NA

ADM2 0.598 0.803 0.806 0.615 NA NA

VIFP 0.789 0.618 0.612 0.449 NA NA

VMAF (50:50

retraining)

0.588 0.849 0.870 0.690 NA 6

Hybrid-VMAF

(SVR)

0.397 0.939 0.929 0.774 NA 5

Hybrid-VMAF

(RF)

0.434 0.921 0.918 0.756 26 4

Hybrid-VMAF

(XGBoost)

0.433 0.924 0.927 0.772 101 4

Table 2: Performance comparison between Hybrid-VMAF and
other SoA Objective Metrics (considering lowest number of trees
and features with comparable performance as the best case)

Metric RMSE PCC SROCC Kendall #Tree #Feature

VMAF 0.592 0.807 0.811 0.624 NA NA

BRISQUE 0.641 0.813 0.833 0.646 NA NA

NIQE 1.006 0.393 0.387 0.265 NA NA

PSNR 1.004 0.313 0.491 0.352 NA NA

SSIM 0.871 0.497 0.580 0.418 NA NA

MS-SSIM 0.832 0.559 0.581 0.421 NA NA

ADM2 0.598 0.803 0.806 0.615 NA NA

VIFP 0.789 0.618 0.612 0.449 NA NA

VMAF (50:50

retraining)

0.588 0.849 0.870 0.690 NA 6

Hybrid-VMAF

(SVR)

0.438 0.930 0.913 0.744 NA 4

Hybrid-VMAF

(RF)

0.442 0.919 0.920 0.751 6 4

Hybrid-VMAF

(XGBoost)

0.438 0.921 0.925 0.769 71 4

based models may not implicitly or explicitly include features

that are capable of modeling the effect of resolution and framerate
scaling on perceived video quality. To overcome such limitations,
in this paper we propose a concept to include meta-data like reso-
lution and framerate explicitly as additional features to the exist-
ing pixel-based models, to more accurately address their effects
and thereby increase the prediction accuracy of corresponding
video quality models. Although we consider VMAF to demon-
strate the validity of our approach, this approach can also be
used for reduced- and no-reference models. We performed sev-
eral evaluation experiments to analyze the performance of sev-
eral machine learning algorithm used within our proposed model
pipeline. Our results show that the inclusion of meta-data im-
proves the performance in all cases. In addition, the concept
also shows that the performance of the existing models can be
enhanced in a rather simple manner compared to developing com-
pletely new pixel-based models. In future extensions, we will in-
vestigate our proposed hybrid model extension considering dif-
ferent application scopes, e.g. considering 360◦ or gaming video
quality prediction.
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