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Abstract
According to Cisco, most Internet traffic is currently com-

prised of videos. Therefore, developing a quality assessment
method for assuring that those videos are received and displayed
with quality at the user side is an important and challenging task.
As a consequence, over the last decades, several no-reference
video quality metrics have been proposed with the goal of blindly
predicting (with no access to the original signal) the quality of
videos in streaming applications. One of such metrics is NAVE,
whose architecture includes an auto-encoder module that pro-
duces a compact set of visual features with a higher descriptive
capacity. Nevertheless, the visual features in NAVE do not in-
clude descriptive temporal features that are sensitive to tempo-
ral degradation. In this work, we analyze the effect on accuracy
performance of using a new type of temporal features, based on
natural scene statistics. This approach has the goal of making
the tested video quality metric more generic, i.e. sensitive to both
spatial and temporal distortions and therefore adequate for video
streaming applications.

Introduction
Quality metrics can be divided into three classes: full-

reference (FR), where the quality assessment uses the reference
data, reduced reference (RR), where only part of the reference
information is used, and no-reference (NR), where no informa-
tion about the reference is available. In video streaming applica-
tions, the reference content is not frequently available and, there-
fore, NR metrics are the most suitable choice. Although the area
of video quality assessment (VQA) has evolved a lot in the last
decades, there are few studies about the effect of temporal degra-
dation on the overall video quality. In fact, most VQA metrics use
image quality assessment (IQA) metrics to estimate the quality of
each frame and, then, combine the frame predictions to obtain
an overall quality prediction. As expected, these approaches are
not able to satisfactorily capture common temporal degradations,
such as frame freezing and packet-loss. Among the works that
have used temporal features to estimate video quality, a recent
work by Sinno and Bovik [1] proposes temporal features, which
are based on natural scene statistics (NSS), has shown good re-
sults in previous studies [2, 3].

This study explores the usage of a refined set of temporal
features, focusing on the identification of common temporal dis-
tortions, such as packet-loss and frame freezing. In a previous
work, we designed a NR video quality metric, NAVE, that uses
an autoencoder architecture [4]. A following study explored the
performance of this model by using different architecture setups

[5]. One scenario that was not yet covered is the impact of tempo-
ral features on the overall performance of the metric. We propose
to incorporate a set of descriptive temporal features, which are ca-
pable of detecting temporal degradation, and evaluate their impact
on the performance of NAVE.

NAVE Metric
NAVE is a VQA metric composed of 2 autoencoder layers

and a classification function [4]. In this work, we excluded the
SI and TI [6], spatio-temporal features, while the spatial video
features, based on NSS and extracted as in the image quality met-
ric DIIVINE [7], were kept. The autoencoders module reduces
the input vector into a low-dimension set of features. The first
autoencoder layer receives the full input feature vector of size
m× n, where m is the number of features and n is the number
of frames, and reduces it to a low-dimension vector of size 50×n
- AE1. The second autoencoder layer takes the AE1 vector and
further reduces its size, yielding a 20× n vector. The resulting
vector AE2 is not only a reduced version of the original input, but
is thought to contain partial information of all the input features.
The AE2 vector serves as input for the classification module (soft-
max function), which returns a quality score for each single frame
in the video clip. These quality scores are then averaged to obtain
the overall video quality prediction. It is worth pointing out that
the only temporal feature used in NAVE metric is the temporal in-
dex (TI) [6], which is the difference between consecutive frames
in a video signal.

NAVE was trained using a subset of the UnB-AVQ database
[8, 9] which is an audio-visual quality database with degradations
on both video and audio components. In this work, we used
UnB-AVQ-Experiment1 subset of the database, which is com-
prised of audiovisual sequences with video-only distortions: Bi-
trate compression, Packet-Loss and Frame-Freezing. The UnB-
AVQ-Experiment1 dataset is comprised of 60 videos with spatial
resolution of 1280x720, 30 fps of temporal resolution and 4:2:0
color distribution. All videos were compressed with H.264 and
H.265 coding algorithms. Additionally, 5 degrees of Packet-Loss
and Frame-Freezing distortions were generated separately. These
distortions were combined with the different bitrate levels of com-
pression and they resulted in 12 different test conditions.

Visual and Temporal Features
We introduced new features to the NAVE metric in order

to improve its performance over temporal degradations such as
Packet-Loss and Frame-Freezing. The first type of temporal fea-
ture is based on Sinno and Bovik’s work [1]. These temporal
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Figure 1: Architecture of the NAVE quality metric.

features are based on the fact that different distortions change the
shape of the Gaussian distribution of the mean subtracted con-
trast normalized coefficients (MSCN) [2, 3]. These MSCN coef-
ficients are computed by performing a shifted subtraction of con-
secutive frames. More specifically, the pixels It(i, j) of the t-the
frame are subtracted from the pixels It+1(i, j− 1), It+1(i− 1, j),
It+1(i − 1, j − 1) and It+1(i − 1, j + 1) of the following frame,
yielding four directional difference frames. Then, a 7× 7 nor-
malized Gaussian filter is used to compute the local average value
of each difference frame Dt(i, j). Finally, we obtain the MSCN
coefficients by computing the Gaussian average of the directional
difference frames and dividing the result by their variance. After-
wards, the frame of coefficients is divided into 96× 96 patches,
similarly to what is done in the work by Mittal et al.[2]. The
patches of each frame are then fitted into a Generalized Gaus-
sian Distribution (GGD), using the moment matching function
proposed by Lasmar et al. [10]. Earlier results [2, 3] show that
coefficients of pristine and distorted videos tend to have differ-
ent distributions, hence, GGD coefficients can be used to predict
picture quality.

The second type of features added in this work are the coeffi-
cients of the BRISQUE quality metric [3]. Similar to the approach
proposed by Sinno and Bovik [1], BRISQUE coefficients are cal-
culated using a NSS approach. The algorithm first computes the
MSCN coefficients of each video frame. The MSCN is obtained
by subtracting the pixel value (i, j) of the local average at (i, j)
and dividing the result by the local variance at pixel (i, j). Then,
these MSCN coefficients are fitted into a GGD [11]. Differently
from the MSCN coefficients computed for the work of Sinno and
Bovik [1], the BRISQUE MSCN coefficients are computed from
the frame pixel values instead of the differences of subsequent

Table 1: Features sets combinations used as input to the autoen-
coder of NAVE.

Features set 1 DIIVINE
Features set 2 BRISQUE + SinnoP
Features set 3 DIIVINE + BRISQUE
Features set 4 DIIVINE + SinnoM
Features set 5 DIIVINE + SinnoP
Features set 6 DIIVINE + BRISQUE + SinnoM
Features set 7 DIIVINE + BRISQUE + SinnoP
Features set 8 SinnoP

frames. The local average is computed using a 7× 7 normalized
Gaussian filter and the variance is computed using a 7× 7 filter
window around the pixel. Additional coefficients are obtained
by the product of neighboring coefficients located at (i, j + 1),
(i+ 1, j), (i+ 1, j+ 1) and (i+ 1, j− 1) positions. These differ-
ences of coefficients follow an asymmetric generalized Gaussian
distribution and are fitted using the moment matching function
proposed by Lasmar et al. [10].

In summary, in this study, we used 3 sets of features: spa-
tial features from DIIVINE, spatial features from BRISQUE, and
temporal features from Sinno and Bovik [1]. Since the Sinno fea-
tures produce GGD coefficients for a number of patches in each
frame, we decided to use two pooling strategies to have a bet-
ter understanding of their quality assessment capability. For the
first strategy, we took the mean value for each coefficient in each
frame, which resulted in a 8× n feature vector. This strategy is
referred in this work as SinnoM. For the second strategy, we used
each coefficient as a feature. Degradations affect different parts of
the frame and, for that reason, coefficients from each patch may
carry relevant information about the video quality, which would
otherwise be lost in the averaging process. As a result, we gener-
ated a feature vector of size 184×n that is referred as SinnoP. No
processing was made to the features of BRISQUE, thus, its origi-
nal size of 36×n was maintained. No changes were made to the
architecture of NAVE with respect to the output of the two autoen-
coder layers. This means that, although the original dimension
(90×n) of the input vector changed, the dimension of the output
vector (20×n) remained the same. The different combinations of
the feature sets are presented in Table 1.

Performance Analysis
NAVE model was re-trained using as input all of the 8 sets of

features presented in Table 1. We used a 10-fold cross validation
procedure to train all 8 feature sets on NAVE’s architecture. To
do so, we extracted and combined all corresponding features from
the UnB-AVQ-Experiment1 dataset[8]. Once extracted, a tempo-
ral sub-sampling was applied to ease the training process. The
number of frames were averaged to a tenth of the total number of
frames. Further details of the training procedure can be found in
Martinez et al.’ previous work [4].

The performance analysis was organized in three parts. First,
we present and analyse the results obtained using the different fea-
ture sets displayed in Table 1. The objective is to understand the
behaviour of the NAVE autoencoder architecture when new fea-
tures are added. More specifically, we want to check which of the
new features are able to improve the NAVE performance. In the
second part of the analysis, we compare the model performance
obtained with the best set of features with other image quality
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Figure 2: Box Plots of PCC, SCC and RMSE for overall results of all 8 feature Sets (see Table 1).
Table 2: PCC, SCC, RMSE for the different feature combinations
tested on the UnB-AVQ Database.

Features set Measure Packet-Loss Freezing All

Feature set 1
PCC 0.944 0.910 0.909
SCC 0.965 0.920 0.937

RMSE 0.426 0.477 0.457

Feature set 2
PCC 0.944 0.763 0.833
SCC 0.834 0.822 0.796

RMSE 0.424 0.588 0.515

Feature set 3
PCC 0.948 0.849 0.886
SCC 0.902 0.914 0.907

RMSE 0.386 0.486 0.442

Feature set 4
PCC 0.941 0.909 0.905
SCC 0.937 0.925 0.915

RMSE 0.424 0.456 0.444

Feature set 5
PCC 0.934 0.889 0.894
SCC 0.885 0.891 0.886

RMSE 0.456 0.493 0.477

Feature set 6
PCC 0.951 0.851 0.887
SCC 0.942 0.920 0.925

RMSE 0.370 0.489 0.436

Feature set 7
PCC 0.949 0.834 0.878
SCC 0.914 0.897 0.904

RMSE 0.388 0.507 0.454

Feature set 8
PCC 0.834 0.817 0.807
SCC 0.805 0.765 0.761

RMSE 0.591 0.724 0.662

metrics over the UnB-AVQ-Experiment1 Database. Finally, we
compared the performance of the model for specific test condi-
tions, taken from the UnB-AVQ-Experiment1 Database.

Feature Sets Performance
Table 2 presents the results obtained testing all feature sets

combinations. This table depicts the average value Pearson and
Spearman correlation coefficients (PCC and SCC) and the root
mean squared error (RMSE) for the 10-fold cross-validation pro-
cedure. The average of these 3 performance metrics are reported
for each type of degradation and for the overall test cases (all types
of degradations in the database). It is worth pointing out that in
the UnB-AVQ-Experiment1 Database the Packet-loss and Frame-
Freezing appear in combination with compression distortions.

In Table 2, we notice that there are no major changes in the
performance metrics results across the different features sets, spe-
cially for Packet-loss degradations. Results obtained with Fea-
ture sets 1, 4, and 6 were slightly better than what was obtained
with the other feature sets. An unexpected result was the per-

formance of DIIVINE and Sinno features. First, it was surpris-
ing that Feature set 1, which only contains the DIIVINE fea-
tures (spatial features), obtained good results for both Packet-loss
and Frame-Freezing degradations. Second, it was surprising that
the Sinno features had a smaller than expected contribution to
the quality prediction performance for Packet-Loss degradations.
More specifically, comparing Feature sets 1 and 5, it is possible
to see a negative effect of the SinnoP features on the average cor-
relation values. Furthermore, Feature set 8, which only contains
the SinnoP features, was the worst performing feature set for the
Packet-Loss degradations. On the other hand, when compared to
the Feature set 1, the SinnoM features in Feature sets 4 and 6
did not negatively impact the correlation coefficients. Also, when
concatenated with BRISQUE features in Feature set 6, these fea-
tures improved both PCC and RMSE values. Although the per-
formance improvement for Feature Set 6 cannot be credited to
BRISQUE or SinnoM alone, these results show that there is an
interaction between these two features.

For Frame-Freezing degradations, the features sets can be
clustered into two different groups. The first group is comprised
of Features sets 1 and 4, which show a better performance than the
remaining features sets. Among the feature sets with the worst re-
sults is the Feature set 2, which contains the features from the
DIIVINE and BRISQUE metrics. It can be inferred that the de-
crease in quality assessment is due to the BRISQUE insensitivity
to Frame-freezing degradations. This effect can also be observed
when comparing results of Feature sets 4 and 6. Both these sets
contain SinnoM features, but only set 6, which is the worst per-
forming set, has BRISQUE features. Feature Set 1 has a slightly
better performance, which is expected since the DIIVINE feature
vector is 11 times larger than the SinnoM feature vector. There-
fore, the good performance of the DIIVINE features alone is in-
triguing. Similarly to what happened for Packet-Loss, the SinnoP
features have an inferior performance when compared to the Sin-
noM features. This seems to indicate that the mean coefficients of
each frame already carry most of the relevant information.

For better visualization, the distribution for the overall re-
sults are presented in Figure 2. This figure depicts box-plots of
the PCC, SCC and RMSE values obtained for the test sequences
of UnB-AVQ-Experiment1 Database. The distribution of the PCC
values depicted in Figure 2 (a) show that the NAVE model per-
forms best when features sets 1 and 4 are used as input. The me-
dian PCC values for these two feature sets are higher than for the
others feature sets. Also, the lower limits of these distributions
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Table 3: PCC, SCC, RMSE for the different feature combinations
tested on the UnB-AVQ Database.

Features set Measure Packet-Loss Freezing All

PSNR
PCC 0.363 0.661 0.310
SCC 0.434 0.600 0.314

RMSE 13.623 8.664 11.436

SSIM
PCC 0.103 0.578 0.157
SCC 0.125 0.577 0.163

RMSE 2.364 2.852 2.621

DIIVINE
PCC -0.889 -0.89 -0.858
SCC -0.862 -0.85 -0.855

RMSE 2.515 2.881 2.705

VIIDEO
PCC -0.578 -0.517 -0.542
SCC 0.571 -0.440 -0.500

RMSE 2.304 2.685 2.502

BIQI
PCC -0.756 -0.576 -0.692
SCC -0.731 -0.640 -0.694

RMSE 25.380 24.532 24.326

NIQE
PCC -0.569 0.808 -0.702
SCC -0.634 0.828 -0.714

RMSE 2.226 2.109 2.179

BRISQUE
PCC -0.772 -0.887 -0.835
SCC -0.817 -0.908 -0.866

RMSE 2.226 41.726 43.367

NAVE
PCC 0.933 0.895 0.896
SCC 0.942 0.914 0.917

RMSE 0.428 0.499 0.468

NAVEv2
PCC 0.941 0.909 0.905
SCC 0.937 0.925 0.915

RMSE 0.424 0.456 0.444

were higher than the lower limits of the distributions of the other
features sets, which means that in a worst case scenario these fea-
tures obtained better results. Figures 2 (b) and (c) present the
distribution for the SCC and RMSE values. The results presented
in these figures show that the feature set 4 takes the lead as the
best performing set. Despite the fact that other features sets have
a higher upper-limit for the distribution, feature set 4 has a tighter
distribution and high median value. Overall, feature set 4 has
slightly better results when compared to the Feature set 1. Based
on these results, we used Feature set 4 as the autoencoder input
features for the NAVE model. In the following sections, we refer
to this variation of the NAVE metric as NAVEv2.

Comparison with Other Quality Metrics
We compare the NAVEv2 performance with the performance

of the following popular FR and NR quality metrics:

• FR IQA metrics: SSIM [12] and PSNR;
• NR IQA metrics: DIIVINE [7], BIQI [13], NIQE [2], and

BRISQUE [3];
• FR VQA metrics: VIIDEO [14] and NAVE [4].

All the metrics were tested using a 10-fold cross-validation train-
ing and testing methodology. Table 3 depicts the PCC, SCC and
RMSE average values for different FR and NR quality metrics.
Results are organized by degradation and overall score, with the
best values highlighted in bold. Notice that the NAVEv2 metric is
the best performing video quality assessment metric for the UnB-
AVQ-Experiment1 Database, i.e. it achieves the highest PCC and
SCC values and the lowest RMSE values. The distributions of the
PCC and SCC values, presented in the box-plots in Figure 3, have
much smaller variances than what is achieved by other metrics.
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Figure 3: Pearson and Spearman coefficients for the FR and NR
metrics trained and tested on the UnB-AVQ database.

The tighter distributions shows that even when the lowest perfor-
mance values of NAVEv2 still perform better than other metrics.

Temporal and Compression Degradations
Finally, we analyse the performance of NAVEv2 across dif-

ferent contents, compression codecs, and temporal degradations.
With this goal, we studied NAVEv2 performance for a couple of
test conditions of the UnB-AVQ-Experiment 1 database. Figures
4 and 5 depict scatter plots of the quality predictions versus the
mean opinion score (MOS), grouped by Packet-Loss and Frame-
Freezing and the compression codec algorithm. More specifically,
Figure 4 (a) and (b) show the scatter plots for all test conditions
using H.264 codec. Notice that there is a clear difference in the
predictions for Packet-Loss and Frame-Freezing scenarios. From
Figure 4 (a), we observe that predictions for test conditions HRC1
(H.264, Bitrate = 500kb/s, PLR=10%) and HRC3 (H.264, Bi-
trate = 2000kb/s, PLR=5%) overlapped, meanwhile, ANC1 (no
degradtions) predictions grouped separately. For Frame-Freezing
in Figure 4 (b), the HRC7 (H.264, Bitrate = 800kb/s, N=3 freezing
events at 3 different positions with lengths L = 2s and 3s), HRC9
(H.264, Bitrate = 2000kb/s, N=2 freezing events at 2 different po-
sitions with lengths L = 1s and 3s) and HRC10 (H.264, Bitrate
= 200kb/s, N=1 freezing events at the begining of the video with
length of L = 2s). Notice that these conditions were better clus-
tered and aligned with the diagonal of the plot. It is worth point-
ing out that the UnB-AVQ database has a high content diversity,
which might explain the high vertical spread in the MOS axis. In
other words, the different contents are differently affected by the
distortion and the quality prediction are spread out.

This behaviour also affects the videos encoded with the
H.265 standard, as seen in Figure 4 (c) and (d). In this figure,
we see an opposite behaviour with respect to each degradation
scenario. Now, the best performance happens for Packet-Loss
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Figure 4: Scatter plot of the videos of the UnB-AVQ database compressed with H.264 and H.265 codecs, separated by Packet-Loss and
Frame-Freezing degradations.

degradation with a better distribution around the diagonal of the
plot and a better separation between degradation scenarios. The
Frame-Freezing test conditions, HRC8 and HRC6, have predic-
tion scores with similar values. This effect is worse for the group
of videos with the largest amount of degradations, HRC6 and
HRC7. In these test conditions, similar quality scores were at-
tributed to most video sequences.

Figure 5 shows the scatter plot of the quality predictions ver-
sus the mean observer scores (MOS) for test conditions HRC3
and HRC4 (Packet-loss) and HRC8 and HRC9 (Frame-freezing).
These plots contain tests conditions where the effect of bitrate
compression is equivalent, which allows comparing the results re-
gardless of the compression artifacts and, therefore, checking to
see if our model is able to detect the temporal degradations. In
Figure 5 (a), test condition HRC4 (orange) has a packet-loss ra-
tio of 3% and HRC3 (blue) has a packet-loss ratio of 5% . This
smaller levels of degradation is evident in the plot, since the distri-

bution of the orange points have both higher values of prediction
score and MOS. There is a big vertical spread of the points for
each case, which is attributed to how the different video contents
are affected by the degradations. Figure 5 (b) show the results for
test conditions HRC8 and HRC9, with Frame-Freezing degrada-
tions. Test condition HRC8 had the freezing pauses inserted in
the middle and at the end of the video sequence, while the HRC9
had the pauses at the beginning and in the middle of the video
sequence. It is known that events in the begining of the video are
less annoying to viewers than events in the middle or beginning of
the video [15]. This is evident in Figure 5 (b) where lower predic-
tion scores and MOS values were reported for HRC8. The mean
values of each scenario are found near the main diagonal of the
plot, indicating a good quality assessment accuracy.
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Figure 5: Scatter plot of the videos of the UnB-AVQ database compressed with H.265 separated by Packet-Loss and Frame-Freezing
degradations.

Discussion
Video Streaming grew in popularity over the last decade

and so grew the occurrence of temporal degradation. Temporal
degradations have not been explored as much as spatial degra-
dations due to its recent history. The results shown in the pre-
vious sections raised some points about the quality of videos
containing temporal degradations. First, it is evident that the
good performance of NSS-based features depends on their sen-
sitivity to temporal degradations. Image quality metrics like DI-
IVINE and BRISQUE, which were originally designed to identify
spatial degradations, presented a good performance for temporal
degradations. Our initial hypothesis was that features from the
DIIVINE metric, which were used in the original NAVE met-
ric, captured partially the temporal degradations and, therefore,
the addition of Sinno features would increase the metric perfor-
mance. Nevertheless, our results showed that features from the
DIIVINE metric were able to capture temporal degradations and
only a small improvement was achieved with the addition of Sin-
noM features. Second, the metric was able to predict the differ-
ent levels of Packet-Loss and Frame-Freezing degradations, even
when the video was compressed. Since the H.265 codec requires
a smaller bitrate than the H.264, the quality of the videos com-
pressed with H.265 is going to be more impacted by packet-loss.
On the other hand, the higher bitrate required by H.264 makes the
frame-freezing events stand out. We believe that the interaction
between the bitrate compression and the other temporal degrada-
tions needs to be further explored in other databases with more
specific tests conditions.

Conclusions
The main focus of this work was to improve the NAVE met-

ric at assessing the quality of videos with temporal degradations
and better understand how these degradations affect the quality
perception. We first tested different combinations of previously
used features and new features. Among the features sets, the com-
bination of DIIVINE and SinnoM features had the best perfor-

mance, improving the correlation between the prediction scores
and the database MOS values. We tested the metric NAVEv2 with
different scenarios of the UnB-AVQ database and found that for
scenarios where the bitrate of the two codecs provided compa-
rable visual quality, the metric was able to detect the different
levels of degradations. Results found in this work bring up many
future work possibilities, including the studying the contribution
of combinations of compression, packet-loss, and frame-freezing
degradations to visual quality.
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