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Abstract
Viewport prediction technologies are often used by most pop-

ular adaptive 360-degree video streaming solutions. These solu-
tions stream only the content considered as being more likely to be
watched by the final user, with the goal of reducing the volume of
network traffic without compromising the user’s Quality of Expe-
rience (QoE). In this paper, we propose the Most Viewed Cluster
algorithm (MVC), which is a hybrid viewport prediction method.
It estimates the user viewport using two types of information: (i)
the path of moving objects in the scene and (ii) the viewing behav-
ior of previous users. Preliminary results show that MVC yields
good results for long-term predictions.

Introduction
During the last decade, the interest for Augmented Reality

(AR) and Virtual Reality (VR) has greatly increased. Among
the most popular VR applications are the 360-degree videos, also
known as spherical or omnidirectional videos. This type of video
provides a 360-degree view of the scene captured from a single
point. Users often use head-mounted displays (HMDs) to view
these videos. In such case, the 360-degree video content encloses
the viewer completely, providing an immersive experience, i.e.,
the sensation of being in the scene. 360-degree videos are cap-
tured using special camera systems which are generally composed
of an array of cameras. These systems generate significantly more
data than what is common in rectangular (regular) video scenar-
ios.

It is worth noting that the additional information provides
the user the ability to “look around” the scene by moving his/her
head. To allow the user to explore the scene, 360-degree video
technologies use motion-tracking sensors to provide visuals that
react to the user’s movements. In HMDs, head tracking is used to
show the right camera angle and the perspective, using a combi-
nation of “inside-out”, “outside-in”, and inertia tracking. Sensors
for magnetic field tracking and inertia tracking are embedded in
the HMDs (inside-out) and this information is complemented by
optical tracking cameras (outside-in). To control the position and
orientation of the scene displayed to the user, the tracked head
movements are represented using a 3-dimensional Cartesian co-
ordinate system, with the origin point (x,y,z) = (0,0,0) being the
user’s head. Generally, these head movements are modeled by
intrinsic rotations and represented using Euler angles, which are
referred to as yaw, pitch, and roll. Yaw represents the rotation
around the y-axis, pitch represents the rotation around the x-axis,
and roll represents the rotation around the z-axis.

At each instant of time, the HMD view is limited to only a
portion of the video as seen from the center of the sphere, known
as the viewport. As illustrated in Figure 1, the total area covered

Figure 1: Illustration of the areas of a 360-degree video, a given
viewport area, and the unnecessary transmission.

by the viewport is limited by the HMD’s Field of View (FoV) and
its coordinates depend on the orientation of the user’s head [1].
For example, a typical 120◦ × 90◦ FOV has a viewing area that
corresponds to a sixth of the full spherical frame. Therefore, to
provide a good quality of experience (QoE) and to avoid any dis-
comfort, the displayed areas must be represented with high spa-
tial and temporal resolutions. This contributes to the high amount
of data necessary to display 360-degree videos, which represents
a great challenge for both compression and transmission algo-
rithms.

HMD tracking information can be used to reduce the vol-
ume of network traffic to support 360-degree video streaming. By
analyzing the user’s head-orientation, the viewing angle can be
estimated and the part of the video that is not being viewed by the
user can be discarded or streamed at a lower resolution. In other
words, content that falls in the user’s peripheral view can be ren-
dered with less quality than the content in the focus area [2, 3, 4].
In Figure 1, the red area represents the user’s peripheral view,
while the colored area shows the region of interest. In this context,
the concept of viewport prediction arises. Assuming that a trans-
mission channel is used to send 360-degree videos, being able to
predict where people will look at can help identifying the region
of interest for the next frames (or next few seconds) and trans-
mit this information with the highest priority or with more bits.
Then, instead of sending the complete 360-degree frame, we send
only the portion that contains the areas that users have a higher
probability of watching. This way, we can reduce the amount of
information transmitted over the channel without compromising
the user QoE [5, 6]. Therefore, the goal of our work is to in-
troduce a hybrid prediction algorithm that focus on where people
tend to look at in future frames, by taking into account data from
previous viewers and semantic information. This helps optimal
adaptive streaming systems to send 360-degree videos through a
transmission channel.

Currently, there are several viewport prediction methods
available in the literature. Baek et al. [7] designed a subjective
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experiment to obtain a dataset, and used the data to propose a
VR adaptive streaming method based on saliency maps, compres-
sion, and pyramidal projection. Sun et al. [8] proposed a live
streaming system for 360-degree videos using FoV prediction and
caching. Nasrabadi et al. proposed a viewport prediction model
[9] that classifies traces into clusters by analysing periods of one
second [10]. Samples less than 30 degrees apart from one an-
other are clustered together, and the algorithm uses the center of
the cluster to predict the viewport for the following 1-10 seconds.
Their results show that the algorithm’s performance depends on
the video content and the prediction window.

Petrangeli et al. [11] proposed a trajectory-based viewport
prediction algorithm composed of two steps. First, the algorithm
clusters the trajectories based on previous user data and it creates
trend trajectories. Then, it predicts a trajectory by comparing all
trend trajectories to the trajectory of the new user. The shortest
path will be the predicted trajectory. The prediction time windows
is from 5 to 10 seconds. Qian et al. [12] designed a viewport
prediction system that uses linear regression. They showed that,
for short time intervals (e.g., 0.5 seconds), the system is able to
accurately predict the viewport. But, for longer intervals, linear
regression is not very effective.

Park et al. [14] designed a view prediction system using se-
mantic information, which is based on the Semantic Flow De-
scriptor (SFD) and View-object State Machine (VOSM) tech-
niques. SFD is responsible for finding objects in each segment,
while VOSM is responsible for predicting where the objects are
going to be in future segments.

To the best of our knowledge, there is no work in the lit-
erature that uses object tracking for long-term (e.g., over 5 sec-
onds) viewport predictions. Therefore, the main contribution of
this work is to design a viewport prediction model that is able
to predict viewports over 1-10 seconds taking into account object
tracking. To accomplish this, we propose a hybrid system that
takes into account the viewing traces of previous users and the
video content.

This paper is organized as follows. First, we describe the
proposed viewport prediction algorithm. Then, we present a
descriptive statistical analysis of the adopted head movement
dataset. Finally, we present the simulation results of the proposed
hybrid prediction algorithm, along with the conclusions and fu-
ture works.

Proposed Methodology
Human behavior while watching 360◦ videos can be quite

variable, especially in terms of head movements. For some con-
tents, most users move their heads and explore the scenes freely,
while for other contents users explore very little of the scene.
Therefore, the proposed methodology consists of a hybrid ap-
proach that combines (1) head movements from previous viewers
and (2) tracking moving objects in the video content that attract
the viewer’s attention. More specifically, the proposed hybrid so-
lution uses three types of prediction approaches: a completely
passive approach, a user cluster center approach, and an object
tracking approach. Next, we describe these three approaches and
the final prediction algorithm.

In this work, we use the 360-degree dataset of in Nasrabadi et
al. [13]. This dataset contains head movements collected from 30
participants while watching 28 high-definition 360-degree videos.

The authors classified the videos in this dataset into 15 categories,
according to camera motion and the number of moving objects in
the scenes. In total, there are five camera motion categories: fixed,
horizontal, vertical, rotational, mixture of the previous camera
motion. Also, there are three moving object categories: no mov-
ing objects, single moving object, and multiple moving objects.
Table 1 shows the classification of the 30 videos in this dataset,
along with their spatial and temporal resolutions.

Completely Passive Approach
The completely passive approach is based on the fact that

some people watch 360-degree videos passively, without moving
their heads. This means that some users basically keep their heads
fixed in the central point (yaw = 0◦ and pitch = 0◦) or move their
heads just a little. In this work, the completely passive approach
considers the central point as the center of the viewport. This ap-
proach provides a good viewing prediction for 360-degree videos
where the camera is moving and there is only one main subject
(or attention focus) in the scene.

Cluster Center Approach
For specific 360-degree contents, certain objects or areas are

universally salient, while for other contents the saliency of spe-
cific areas or objects vary from person to person. Nevertheless,
it can be observed that, on average, people can be grouped while
watching 360-degree videos, with people that share similar view-
ing behaviors [15]. In other words, it is possible to identify groups
of individuals with similar head movements (behavior) and clas-
sify them as belonging to specific user clusters. More specifically,
the head movements belonging to several users can be clustered
according to their movement characteristics, with each cluster in-
dicating a head movement behavior of a specific group of users.
In this work, we use a simple k-means algorithm to cluster user
head movement data, limiting the maximum number of clusters
to three for simplicity.

The coordinates of the center of mass of each cluster de-
fine the reference point that represents where, on average, users
in a particular cluster look when watching a specific scene of the
360-degree video. Let us define αi and φi as the yaw and pitch
angles, respectively, for the i-the viewer. Assuming each viewer
is equally important, the center of a specific cluster composed of
n viewers can be computed simply by taking the average of the
angles for all viewers in the cluster, with α and φ representing
the average of the yaw and pitch angles, respectively. In this ap-
proach, a viewport prediction is given by the area around the user
cluster center that is most similar to the current user. This most
similar area is computed by taking the euclidean distance between
the reference points and the view of the current user. Further de-
tails will be given in the Prediction Algorithm section.

Figure 2 depicts an example of possible clustering scenar-
ios. The left image shows a frame in which the user movement
data can be grouped into a single cluster. The blue points, which
are the center of the viewports of each viewer from the training
set, represent the points in this cluster. The red point represents
the cluster center of the blue points. The right image shows a
scenario that the training set is scattered and the samples of this
training set are grouped in multiple clusters. The red, yellow, and
pink points represent points in the first, second, and third clusters,
respectively, while the light blue points are the three cluster cen-
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Table 1: Spatial and temporal resolution of taxonomy dataset [13]. Analysed videos are highlighted.

Camera Movement No Object One Object Multiple Objects

Fixed Video 1 - 3840x1920 25fps Video 3 - 3840x2048 29fps Video 5 - 3840x2048 30fps
Video 2 - 3840x2160 29fps Video 4 - 3840x1920 29fps Video 6 - 3840x2048 29fps

Horizontal Video 7 - 3840x2160 25fps Video 9 - 2560x1440 29fps Video 11 - 3840x2160 24fps
Video 8 - 3840x2048 29fps Video 10 - 3840x1920 29fps Video 12 - 3840x2160 30fps

Vertical Video 13 - 3840x1920 29fps Video 15 - — Video 17 - 3840x2048 30fps
Video 14 - 3840x1920 29fps Video 16 - — Video 18 - 3840x2160 29fps

Rotational Video 19 - 3840x1920 29fps Video 21 - 3840x2160 29fps Video 23 - 3840x1920 29fps
Video 20 - 3840x1920 29fps Video 22 - 3840x1920 29fps Video 24 - 3840x1920 29fps

Mixed Video 25 - 3840x2048 25fps Video 27 - 3840x1920 30fps Video 29 - 3840x2160 25fps
Video 26 - 3840x2160 29fps Video 28 - 3840x1920 29fps Video 30 - 3840x1906 29fps

Figure 2: Two frames of a sample 360-degree video. The user data in the 1st frame (left) can be grouped in a single cluster, while the
user data of the other frame (right) requires multiple clusters.

ters. It is worth mentioning that viewers’ attention changes over
time, i.e., objects and specific areas that attract attention in one
instant of time can change in a future instant of time.

Notice from Figure 2 (left image) that when viewers explore
similar areas of a 360-degree video, their movements can be com-
bined into a single cluster. In this very particular case, the cluster
center gives a good viewport prediction. On the other hand, when
there is a large variation among different users, i.e. users explore
the 360-degree video very differently, using a single cluster does
not provide a good viewport predictor. In fact, in these cases we
may have many user clusters and, therefore, before we can per-
form viewport prediction, we have to find the best cluster for the
current user and use its center as the center of the predicted view-
port.

Object Tracking Approach
An object tracking algorithm is able to track object paths

over a certain period of time. In this case, objects can include
faces, persons, animals, vehicles (such as cars, trucks, or motor-
cycles), aircrafts, drones, signs, buildings, books, trees, tables,
chairs, couches, and so on. Objects like buildings and signs are
fixed and do not move around the camera, while objects like peo-
ple, animals, and vehicles can be mobile and change their posi-
tion in the scene. The applications of object tracking algorithms
are very diverse, including sports analysis, autonomous driving,
robotic navigation, and viewport prediction. In this work, we fo-
cus on moving objects for viewport prediction, since movement
tends to attract viewer attention in 360-degree videos.

In a 360-degree video, objects can be closer or farther away
from the camera. Moreover, objects can initially be in the back-

ground and, after some time, come to the foreground and vice-
versa. Therefore, object size may change over time such that, the
closer an object is to the camera, the bigger it appears. Some
object tracking algorithms in the literature [16], such as boosting
[20], Multiple Instance Learning (MIL) [21], Kernelized Corre-
lation Filters (KCF)[22], Channel and Spatial Reliability Track-
ing (CSRT) [23], medianflow [24], Tracking Learning Detection
(TLD) [25], Minimum Output Sum of Squared Error (MOSSE)
[26], and go turn [27], do not take this into consideration. There-
fore, in this work, we use a tracking algorithm that takes into ac-
count object size variation over time.

Moving objects are tracked in 360-degree videos using a mo-
tion tracking algorithm, which is a two-step method. First, we de-
tect the object(s) of interest in a frame F using Yolo [17]. Second,
we track this object over the following frames (from frame F +1
to frame F +k−1) using an object tracking technique. For exam-
ple, let us say that we have a video with 100 frames. The motion
tracking algorithm is executed every k frames, which means the
algorithm follows the object size variation over an interval of k
frames. If we set k = 10, the object detection algorithm would be
applied to frames 1,11,21, . . . ,91, while the object tracking algo-
rithm would be applied in the intermediate frames 2-10, 12-20,
. . . , 92-100. So, if the object detection algorithm fails to find an
object in a given frame, the algorithm tries to identity objects in
the subsequent frame. Given that a reference object is found in a
given frame F in the position (l,c), the object tracking algorithm
tries to identify the most similar object by searching the area in
each subsequent frame that is close to the reference object. This
area can range from (l −d,c−d) to (l +d,c+d), where d is the
distance in pixels from the (l,c) position. To measure the sim-
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Figure 3: Pipeline of MVC Prediction algorithm in the (a) Training and (b) Test phases.

ilarity of two areas, we use a correlation measure, given by the
following equation:

rxy =
Cov(x,y)

σxσy
=

∑
N
i=o(xi − x)(yi − y)√

∑
N
i=o(xi − x)2 ∑

N
i=o(yi − y)2

, (1)

where x and y are the two areas (sets) being compared, x and y
are their average values, xi and yi are the values in x and y, respec-
tively, and N is the total number of elements (pixels) in both areas.
The areas in each subsequent frames with the highest correlation
values are the corresponding detected object for each subsequent
frame. It is worth pointing out that the center of the predicted
moving object is going to be the center of the predicted viewport.

Prediction Algorithm
Figure 3 shows the block diagram of the proposed viewport

prediction algorithm, the MVC. The method requires a training
stage to obtain the predicted trajectories, using the previously de-
scribed approaches. The data processing of this phase is done off-
line. Notice in Figure 3(a) that the method takes two inputs: the
user head movement data acquired from previous users and the
360-degree video frames. The first stage of the method is the pre-
dictor (indicated in the “data prediction” block), which is respon-
sible for finding candidate areas for the viewport algorithm using
the three approaches described in the previous sections. The al-
gorithm computes a central point (CP) using the Completely Pas-
sive Approach, identifies the scene main objects (Obj) using the
object tracking approach, and computes user clusters using the
central cluster approach. In summary, the predictor outputs the 8
following candidates for viewport prediction:

• 1 Central point (CP - Completely Passive Approach);
• 1 object position (Obj);
• 1 cluster center (1C) considering only one k-means cluster

(k = 1);
• 2 cluster centers (2C_C1, 2C_C2) considering two k-means

clusters (k = 2);
• 3 cluster centers (3C_C1, 3C_C2, 3C_C3) considering three

k-means clusters (k = 3).

The next stage of the method, the “Candidate Selector block”
stage, is responsible for deciding what is the best prediction based
on the computed candidates. The best candidate corresponds to
the cluster that is closer to the head position of the current user.
In this case, we use the Euclidean distance to identify the closest
candidate and, then, we apply this metric to the entire training set.

The cluster that is more populated, or has more people looking
at, will be the predicted cluster (PCl_i) for the ith-frame. In sum-
mary, we compute a predicted candidate PCl_i for each frame i,
where 1 ≤ i ≤ N (N is the number of video frames). Therefore,
after running the algorithm for N frames, we build a predicted
trajectory (as depicted in Figure 3(b)), showing the areas where
people are likely to look.

To verify if the predictions generated are accurate, we com-
pare the viewport areas that users (in the dataset) watched to the
viewport areas predicted by the proposed method. Figure 3(b)
shows the procedure used to test the proposed method. For ex-
ample, consider that t = 10s and the temporal resolution is equal
to 30 frames per second (fps), which means that this time instant
corresponds to the 300-th frame (F = 300) of the video. To pre-
dict ∆t = 1s, i.e., an interval of one second into the future, the
algorithm computes the predicted viewport for all frames from
Fi = 300 to Ff = Fi +∆× 30 = 330. To verify if our prediction
is accurate, we use the viewport overlap as our performance met-
ric [18].

Head Movement Data analysis
In this section, we present a descriptive statistical analysis

of the behavior of viewers that watched the dataset videos in the
dataset subjective experiment. Our statistical analysis, as well as
the prediction simulations, are implemented on a subset of the
dataset, which consisted of videos containing only one moving
object (videos 3, 9, 10, 21, 22, 28). These videos were selected
because they were the simplest parametric case with fewer factors
impacting viewers’ attention that could compromise our analysis.

For the analysis, a single head gaze direction is defined by
angles pitch (α) and yaw (φ ). For a single video, we represent
pitch and yaw data as matrices of concatenated participants angle
arrays. So, for a video with F frames and N participants there will
be two F ×N matrices, one for each head motion angle. Finally,
to match video temporal resolution (30fps) and the experiment
device sample rate (60Hz), the matrices are sub-sampled by aver-
aging every two sub-sequential angles of the original data.

In order to describe head movement data, we first explored
the overall head navigation behavior of the users. Table 2 shows
a summary of the statistics of the pitch and yaw values captured
from the head movements of viewers for the considered subset
of videos. From this table, we notice that videos 9 and 21 have
low deviations in pitch, but the highest deviations in yaw. This
illustrates the significant challenges in predicting head movement,
since navigation variability depends on multiple factors, including
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Table 2: Overall statistics of analysed videos.

Video Yaw Pitch Yaw Pitch
std. dev. std. dev. Mean Mean

3 125◦ 13◦ −18◦ −0.57◦

9 150◦ 7◦ −34◦ 0.29◦

10 135◦ 11◦ 20◦ −0.31◦

21 143◦ 5◦ 18◦ 0.70◦

22 97◦ 9◦ 20◦ −0.45◦

28 135◦ 13◦ −45◦ −0.96◦

Figure 4: Histogram showing the overall pitch distribution for
each video. Better seen with colors.

the video content and individual user viewing preferences.
For a closer look on pitch values, Figure 4 shows a his-

togram of the captured pitch values. Notice that, for all videos,
the pitch values are concentrated between −25◦ and 25◦. There-
fore, in terms of pitch head movement direction, viewers tended
to gaze mostly around the equator (pitch = 0◦). This feature is
known in the literature as the equator bias [19]. However, for
video 03, we observe a second pronounced peak around −25◦.
This could be due to the narrator’s position, which is below the
equator in the majority of the frames in this video. This effect
shows that, depending on the content, there can be significant de-
viations from equator bias. However, the majority of the distri-
butions shows the same equator bias tendency. This tendency is
especially pronounced for videos 10 and 21. It is worth point-
ing out that, even though video 10 has relevant visual contents at
different positions, the narrator, who is the most prominent visual
cue, stays at the equator line for the entire video. Figure 5 shows a
rain cloud of pitch data gathered from a subset of 15 participants
while watching video 10. The graph shows the distribution of
pitch head motion across the different viewers (experiment par-
ticipants) coincidentally in terms of maximums (box plot), dis-
persion (scatter plot) and means (probability density function).
Notice that, from this inter-viewer visualization, that pitch dis-
tribution is very different across viewers. For example, users 4
and 5 have low pitch variability (around 20◦), while users 10 and
11 have high pitch variability (more than 80◦). Considering dis-
persion patterns, plato-like and peak-like exploration distinguish
viewers, for example viewer 13 the most concentrated distribution
while 11 had the most diffuse one. However, highly concentrated
navigation do not determine exploration limits, for example, par-
ticipant 4 explored less angles but had more diffuse navigation
than participant 13.

Figure 5: Rain cloud plot of pitch values gathered from a subset
of 15 participants while watching video 10. Average pitch values
are connected by a red line.

Figure 6: Polar histogram showing yaw distribution for each
video.

Figure 6 depicts the distribution of the captured yaw values
in a polar histogram. This visualization of yaw distribution is ade-
quate due to the head navigability of the spherical grid continuity
in yaw direction, in contrast with pitch direction where users can-
not rotate their heads. Notice that, in general, yaw fixations peak
in the central position (yaw = 0◦), gazing around the equator,
and stabilizes mostly in the viewer frontal regions (−30◦ <yaw
< 30◦). Another observed pattern is that videos with higher pitch
also have a higher standard deviation in yaw angles. Specifically,
video 22 has a higher yaw variability, even for back-regions (with
yaw around −180◦)), where the content has low movement.

In summary, in terms of viewers’ behavior, there is some
variability in users head movements. The yaw standard deviation
is greater than 97◦ for all videos, reaching 150◦ for some videos.
Despite the fact that the pitch standard deviation is low for all
videos, when we examine the pitch angles user-by-user, we find
a high variability. As mentioned earlier, these variations in head
movements are probably due to the video content and the individ-
ual viewer preferences.
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Figure 7: Comparison between MVC Performance and different prediction methods.

Viewport Prediction Results
As mentioned earlier, to assess the performance of the MVC

algorithm, we use a subset of six videos from Nasrabadi’s dataset
[13]: videos 3, 9, 10,21, 22, and 28. These videos had a single
moving object, which made the object tracking approach more
feasible. In our tests, we examine two versions of the MVC al-
gorithm. The first one uses an outlier threshold, which excludes
samples where the angular distance between test and predicted
sample are greater than 90 degrees. The second version consid-
ers all samples, without taking into account an outlier threshold.
We compared the performance of the MVC algorithm with five
viewport prediction algorithms [9]: Linear Regression (LR), Last
Sample (LS), Cluster-Results (CR), Overall-Cluster-Results (OC)
and Last-sample-on-Cluster-Results (LC).

Figure 7 presents the viewport predictions obtained for each
of the 6 videos. The graphs show the viewport overlap [18] versus
the prediction window (in seconds). The viewport overlap metric
computes how close 2 viewports are to each other. If, for exam-
ple, 2 viewports completely overlap, that would be the case of a
perfect viewport prediction and the computed viewport overlap
value would be 1. If there is no overlap area between two view-
ports, the viewport overlap value is 0. From the graphs in Figure
7, we notice that the MVC without an outlier threshold generally
outperforms the MVC with an outlier thresold.

Results in Figure 7 are in accordance with previous re-
sults [9] that show that when the time window increases, the
prediction accuracy decreases for most viewport prediction algo-
rithms. This happens because the predictions for these 5 tech-
niques listed are based solely on information available at the client
side. So, future viewport predictions are based only on the last
samples watched by the viewer. In the case of the proposed MVC
algorithm, the prediction is based on information gathered from
previous viewers. For this reason, the predictions remain steady
over the prediction window.

It is worth pointing out that the results for the LR algorithm
are very similar for all videos. LR only presents good results
for prediction windows with sizes ranging from 0.5 to 1 second.
Comparing the results obtained with the LS, CR, OC, and LC
prediction techniques, we observe that they all have similar re-
sults, with LC performing the best and OC performing the worst.
The CR prediction technique has the best long-term performance,
while the LS prediction technique has the worst performance. If
we compare the MVC and these techniques, we notice that, in
general, its performance is worse for prediction windows smaller
than 2 or 3 seconds. For videos 9 and 28, MVC has a better perfor-
mance beyond the 2-seconds prediction window. For the videos
3, 10 and 21, MVC performs better than the other techniques for
prediction windows beyond 3-seconds. However, MVC does not
perform well for the video 22. We believe this happens because
the 6 test viewers had a higher variability of head movements, as
can be seen in Figure 5.

Conclusions
In this paper, we presented the Most Viewed Cluster (MVC)

viewport prediction algorithm. The proposed algorithm uses a hy-
brid approach to predict the viewport of 360-degree videos using
two types of information: (i) the path of moving objects in the
scene and (ii) the viewing behavior of previous users. In this pa-
per, we conducted a statistical analysis of head movement data of
the 360-degree dataset introduced by Nasrabadi et al. [13]. The
analysis showed that there is a great inter-user head movement
variability, which reinforces our assumption that predicting head
motion is a great challenge. The proposed MVC algorithm was
tested on Nasrabadi et al.’s dataset and the prediction results were
compared to 5 other viewport prediction algorithms. On the one
hand, MVC achieves superior performance for long-term predic-
tion windows (e.g., 2-10 seconds or 3-10 seconds). On the other
hand, for shorter time windows (e.g., 0-2 seconds or 0-3 seconds),
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the other viewport prediction algorithms perform better. For fu-
ture work, we intend to examine multiple moving objects and ex-
plore different behavior patterns so that we can make predictions
for the whole dataset used in this work.
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