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Abstract
Assessing the quality of images is a challenging task. To

achieve this goal, the images must be evaluated by a pool of sub-
jects following a well-defined assessment protocol or an objective
quality metric must be defined. In this contribution, an objective
metric based on neural networks is proposed. The model takes
into account the human vision system by computing a saliency
map of the image under test. The system is based on two mod-
ules: the first one is trained using normalized distorted images.
It learns the features from the original and the distorted images
and the estimated saliency map. Furthermore, an estimate of the
prediction error is performed. The second module (non-linear re-
gression module) is trained with the available subjective scores.
The performances of the proposed metric have been evaluated by
using state of the art quality assessment datasets. The achieved
results show the effectiveness of the proposed system in matching
the subjective quality score.

Introduction
Image quality is an important factor that may influence the

use of information conveyed by an image. We are witnessing the
proliferation of multimedia transmission services in which video
and images are the main media for sharing information. De-
spite huge advances in both hardware and software, it is worth
remembering that imaging devices, storage systems, encoding al-
gorithms, or the transmission systems themselves can create arti-
facts that affect the image quality. The ability to reliably measure
the final quality is a key element in the development of such sys-
tems.

In the literature, many authors have faced this problem,
trying to define a multipurpose quality measure that match, as
closely as possible,to the human judgment [1–5]. These methods
can be classified according to the possibility of using original
image information during the evaluation phase. Full Reference
Image Quality Assessment (FRIQA), Reduced Reference Image
Quality Assessment (RRIQA), or No Reference Image Quality
Assessment (NRIQA) methods respectively exploit the availabil-
ity of the original image [4, 6, 7], some of its features, or any
information.
NRIQA is performed either using conventional methods or
the Convolutional Neural Network (CNN). Conventional
NRIQA [2, 8, 9] depends on the computation of handcrafted [10]
or low level features from a distorted image and performing
classification or regression operations [3]. Innovative approaches
based on Deep Neural Network (DNN) have recently been
proposed. A DNN is an artificial neural network inspired by
human biology that seeks to mimic the way neurons in the human
brain process inputs from human senses. In particular, DNN are
machine learning algorithms representing neural networks with

Figure 1: Block diagram of the proposed (DIQAS) model

many hidden layers. CNN, a class of DNN, automatically and
adaptively learns spatial hierarchies of features through back
propagation using multiple building blocks, such as convolution
layers, pooling layers, and fully connected layers.
In this work, we propose a no reference image quality assessment
technique by exploiting information on the saliency of the
distorted image. In the following, the proposed model is denoted
as Deep Image Quality assessment based on Saliency (DIQAS).
This model can be considered as an extension of the DIQA
model proposed in [5]. The saliency map of the distorted image
is generated by extracting the foreground object in the image
and it represents the most influential feature of the visually
sensitive area of the distorted image. It is worth noticing that the
available datasets used to evaluate the performance of blinded
image quality assessment algorithms have a very limited number
of distorted images. For this reason, deep learning models often
suffer from overfitting during the training process.
To overcome this issue, the deep learning system is divided into
primary and secondary training modules. The primary training
module is called objective error map prediction (OEMAP) while
the secondary training module is called non-linear regression
module. OEMAP is used as an objective quality measure of
the distorted image. The saliency map is used in the back-
propagation phase to to modify the loss function parameters. This
stage helps to minimize the limitation of small size dataset by
minimizing the overfitting problem of the deep learning system.
The secondary training module, designed using fully connected
layers, is used to generate the estimate the subjective quality
scores. The predicted scores are compared, by using SROCC and
PLCC, to the subjective Mean Opinion Scores available in the
dataset. LIVE IQA, CSIQ and TID2013 are the three datasets
used to train and test our model.

Proposed Model
As mentioned in the previous section, a deep blind im-

age quality assessment technique based on saliency information
(DIQAS) is proposed. The block diagram of the proposed model
is shown in Figure 1. In the following, each block of DIQAS is

IS&T International Symposium on Electronic Imaging 2021
Image Quality and System Performance XVIII 225-1

https://doi.org/10.2352/ISSN.2470-1173.2021.9.IQSP-225
© 2021, Society for Imaging Science and Technology



described.

Deep CNN model architecture
The convolutional network [5, 11] used in the DIQAS is

shown in Figure 2. This unit implements the objective error map
prediction and nonlinear regression modules shown in Figure 1.
The CNN can be divided in 3 parts. The first section consists of
8 different convolution layers designed using different parameters
such as 3x3 kernel size, the unity batch size in the input layer, the
2X2 size of the max pooling strides in the second and fourth layer
and different feature channels as shown in the Figure. Symbols
B : 1, S : 2x2, and Conv 3x3 represent the batch size, the stride
size for max pooling, and the convolution kernel size. The rec-
tifier linear unit (Relu) is the activation function adopted in each
convolutional layer. This complete set of layers is symbolically
represented as F(.). F(.) is also considered as the feature map and
it is used also for second stage training. In the last layer of first
stage training, the output of primary block F(.) is fed to a convo-
lution layer G(.) having kernel size 1x1, feature channel 1, and a
linear activation function. Thus, it performs the linear combina-
tions of the feature maps to generate the error map (E). The size of
the output of G(.) is 1/4 times the input image. The downscaling
size of the model output is determined by the max-pooling layers
(strides) and its size. Meanwhile, the ground truth error map of
the distorted image is also scaled to the same size. Finally, the
feature map F(.) is fed into the Global Average Pooling (GAP)
layer, followed by the three fully connected layers with one hun-
dred twenty-eight features channels in the first two and sixty-four
features channels in the last layers. These fully connected layers
are represented as H(.).

Figure 2: Architecture of CNN used as a sub-network to predict the
objective error and subjective score of the input distorted image.

Image normalization
In this preprocessing stage the RGB input image is converted

to the grayscale image and then subtracted the low pass filtered
image obtained from the following three-stages function: to ob-
tain a blurred version of the grayscale image, downsize it by 1/4
and then to upscale of the image to the original size. Let Id be the
distorted input image, Idg the grayscale image obtained from Id ,
and Idl the corresponding low pass filtered image. The normalized
form of the input image (Idn) [3, 13] is defined as:

Idn = |Idg− Idl | (1)

The normalization phase is performed for two main reasons. First,
distortion present in the image hardly impact on the lower fre-
quency band. Similarly, the human visual system (HVS) is less
sensitive at the low-frequency band of the image [13]. Hence, the
image normalization process helps to remove the unnecessary in-
formation contained in the input image that may impact the CNN

learning process during the training stage. Likewise, it helps im-
prove the efficiency of the model by reducing the overall computa-
tional cost and increasing the prediction accuracy. However, there
is a drawback of losing some information contained in the input
image. To compensate for this, the saliency map of the distorted
image obtained from the foreground object detection method is
combined with the reliability map, which is used to improve the
objective error map obtained from the first training phase.

Reliability map prediction
Most distortion methods like JPEG and JPEG2000 compres-

sion, Gaussian blur, etc. may cause image blurring. It is diffi-
cult to determine if the blurry region is due to distortion or not
without knowing the reference image [5]. Similarly, in some im-
ages, severe distortion is applied during the creation of the dataset.
When severe distortion is applied to an image, its error map (dif-
ference between the normalized distorted and the reference im-
age) receives the higher frequency component. Meanwhile, the
distorted image loses high frequency detail. Blurry and severely
distorted images could generate a significant portion of image
having the nearly same range of pixels and we may consider it
as a homogeneous region. So the objective error map prediction
model designed with multiple convolutional layers will likely fail
to predict the homogeneous region of the input image. To avoid
the aforementioned problem, the reliability of the predicted error
map Epred is estimated by measuring the texture strength of the
distorted image. Thus, a reliability map R is defined by:

R =
2

1+ exp(−α(Idn))
−1, (2)

where, α is a constant used to control the saturation property
(whiteness) of the reliability map. Equation 2 represents a mod-
ified sigmoid function: only the positive part of it is considered
to obtain the normalized form of the reliability map. To minimize
the unnecessary influence of the reliability map on objective er-
ror map, it is further divided by its average value as defined in
equation 3.

Rn =
R

1
HRWR

∑i, j Ri, j
, (3)

where, HR and WR are the shape parameters of the reliability map.
The reliability map returns zero values when there is a zero pixel
weight or no spatial information at Idn image. Similarly, since the
reliability map is obtained from the preprocessed distorted image
Idn, it can not represent complete information of the input im-
age. The saliency map prediction method detects the most bright
and significant area of the image with unnoticeable blur and dis-
tortion during human observation. Hence, the obtained saliency
map in normalized form is used to adjust the pixel weight of the
corresponding spatial location in Rn, resulting in a more reliable
reliability map.

Saliency map prediction
The saliency map is used to identify the most influential fea-

tures present in an image. In [14], researchers compared the per-
formances of general IQA methods with Saliency based IQAs
have been compared. The analysis shows that Saliency based
IQAs offer the best match to the human judgement. To predict
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the saliency map of the foreground object, in the first step, indi-
vidual pixel similarity is measured to the background of the image
using a Histogram back-projection [15] technique. Here, as a pre-
proceesing stage, the input image is filtered by using multi-scale
pyramidal [16] mean shift filter to generate a smooth image by
grouping close pixels together. This stage is also considered as a
initial segmentation stage or abstraction. In the next step, back-
projection of hue and saturation histogram of the image, on the
preprocessed image, is performed. Finally, backprojected image
is normalized with mean shift operation; its contrast is enhanced
using histogram equalization and inverted the image to obtain the
initial stage of the saliency map. To refine the salient regions
of the image, bounding boxes are used as initial estimate of the
foreground object and the grabcut is applied [17]. Its output is
represented as Saliency map S.

Learning process of objective error map
The training of the objective error map prediction module

(OEMAP) is the first training of the DIQAS model. To achieve
the effect of the training process, the objective error map image is
represented as the objective quality metric. Regarding the regres-
sion of the model, the required loss function L1 is defined by the
mean squared error between the product of the difference between
predicted and ground truth error map and the integrated image of
reliability map with saliency map. Its general expression is de-
fined in equation 4. θF and θG are the hyper-parameters of the
CNN model for the respective convolutional layers and Egt is a
ground truth error map [5] defined by equation 5.

L1(Idn;θF ,θG) =‖ (G(F(Idn;θF ),θG)−Egt)
⊙

(R+S) ‖2
2 (4)

Egt = |Irn− Idn|p, (5)

Here, p is a constant value set to 0 < p≤ 1. For p = 1, Egt could
result in a very small value of pixel weights, even zero values.
Therefore, it might not represent the exact ground truth error map.
To properly tune the ground truth error map of a distorted image,
the recommended value of p is 0.2 [5].

Nonlinear Regression and learning subjective
score

The nonlinear regression module is a secondary training
module and is used to predict the subjective score of the im-
age quality. Subjective score defines the predicted score obtained
from the nonlinear regression module. MOS or DMOS available
in the dataset is considered as a ground truth score. In non linear
regression module, the output of the trained subnetwork F(.) is
connected to the global average pooling (GAP) layers followed
by the fully connected layers as shown in fig2. As the training
of the CNN is a state-full operation,all the information contained
in F(.) is reflected in input of GAP. The output of GAP function
(V), hyperparameters of fully connected layers θH and ground
truth subjective score Sgt are used to define the loss function re-
quired during training of the nonlinear regression module. The
corresponding loss function used to minimize the error during re-
gression of subjective score is defined as:

L(Id ;θF ,θH) =‖ (H(V );θH)−Sgt) ‖2
2, (6)

In (6), V is an output of GAP and mathematically, it is a function
of output of F(.) and model parameters ΘF as represented in (7).

V = GAP(F(Idn;ΘF )) (7)

Experiments and Analysis
Datasets

To evaluate the performance of the DIQAS model Live IQA
[18], TID2013 [19], and CSIQ [20] datasets are used.

Evaluation Metrics
To evaluate the performance of the proposed model, Spear-

man rank-order correlation coefficient (SROCC) and Pearson lin-
ear correlation coefficient (PLCC) are used. Let Sg be the ground
truth score and Sp the predicted score. The general expression
for SROCC and PLCC as described in [21] are represented in (8),
(9). In equation 8, D represents the difference between the cor-
responding rank variables of the ground truth score and the re-
spective predicted score considered to measure the value of the
required metrics. Similarly n in (8) and (9) represents the num-
ber of array or tensor elements or image numbers considered for
evaluating performance metrics.

SROCC(Sg,Sp) = 1−
6∑i D2

i
n(n2−1)

(8)

PLCC(Sg,Sp) =
∑i(Spi−µS p)(Sgi−µSg)√

∑i(Spi−µS p)2
√

∑i(Sgi−µSg)2
(9)

Ablation Studies
The proposed DIQAS model presents the best result once

the variable parameters of different modules are perfectly tuned.
Multiple testing of the algorithms with different parameters are
carried out to fine-tune the network.

Pretraining with OEMAP
As a first step of testing of the DIQAS model we evaluated

the effect of pretraining on OEMAP. TABLE 1 illustrates the ef-
fects of number of epochs on the performance of the model. To
compare the result, SROCC and PLCC values of subjective score
obtained from second stage training after training of first stage
with five different number of epochs for all three datasets are
shown. From the results, in LIVE IQA 60 epochs of pretrain-
ing offers the best result. Whereas in TID2013, it offers the best
result in 10 number of epochs and CSIQ dataset offers it in 40
epochs of pretraining in the first stage. We further evaluated the
LIVE IQA dataset up to 80 epochs of training in first stage and
confirmed that the results are more stable after 60 epochs of train-
ing. SROCC and PLCC values for 80 epochs of training in first
stage were 0.974 and 0.985 respectively.

Impacts of saliency map
The impact of saliency map module used in DIQAS model is

measured by evaluating SROCC and PLCC value in all datasets.
Overall result with and without considering saliency map is pre-
sented on TABLE 2. From the results, Saliency map helps to
improve the performance of the model for all datasets.
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Table 1: SROCC and PLCC comparison for different epochs at
first stage on LIVE IQA, CSIQ and TID2013 datasets

Epochs
LIVE IQA CSIQ TID2013

SROCC PLCC SROCC PLCC SROCC PLCC

1 0.965 0.972 0.951 0.952 0.872 0.893

10 0.970 0.979 0.960 0.960 0.874 0.894

20 0.972 0.982 0.961 0.960 0.873 0.891

40 0.974 0.982 0.962 0.961 0.872 0.890

60 0.975 0.985 0.960 0.957 0.871 0.890

Table 2: SROCC and PLCC comparison with and without using
saliency map on LIVE IQA, TID2013 and CSIQ datasets

Saliency map
LIVE IQA TID2013 CSIQ

SRCC PLCC SRCC PLCC SRCC PLCC

Yes 0.975 0.985 0.874 0.894 0.962 0.961

No 0.971 0.979 0.873 0.892 0.956 0.954

Experimental setup and results
The implementation of DIQAS model and its performance

evaluation is carried out in the python environment using tensor-
flow. Numpy, opencv and SciPy are additional library functions
used to implement the algorithm of DIQAS model. To simplify
the implementation of the model, some basic functions required
for image processing are extracted from Image quality assessment
(IQA) 1 library.

To train the model the loss function defined by equation
6 is used and to perform the backpropagation step, automatic
differentiation function2 defined as a gradient in TensorFlow
is used. Similarly, to optimize the weight parameters during
the backpropagation phase, Nadam optimizer [22] is used. The
use of linear activation function in the last layer of the 2D
convolutional layer generates the required error map image
for the input image. Stride having size |2x2| is a max-pooling
filter used in layer 2 and layer 4 of the CNN as mentioned
in 2. The output of F(.) is fed to the GAP and the ob-
tained result is applied to the fully connected network H(.).
Usually, f ullyconnectednetwork f ormedby f ullyconnectedlayersispronetoover f itting.

Performance on same dataset
To train and test the DIQAS model, we randomly divided

the reference images and distorted images into two subsets having
80% for training purpose and 20% for testing purpose from origi-
nal dataset without overlapping one subset to other subset. This is
performed for all three datasets LIVE IQA, TID2013 and CSIQ
. We compared our model performance with 7 different NR IQA
methods (BIECON [23], CNN [24], DeepIQA [25], DIQA [5],
DIQA BASE [5] MGDNN [26] and SESANIA [27]). The perfor-
mance comparision is reported in TABLE 3.

Performance on crossdataset test
To further evaluate the performance of the DIQAS model,

we used one dataset for training and the other two for testing. The
results, evaluated in terms of SROCC and PLCC, are shown in
TABLE 4.

In [28] cross-dataset performance of two NRIQA methods
BRISQUE and BIECON is presented in terms of PLCC. Based
on those results, a comparative results including DIQAS model

1https://github.com/ocampor/image-quality
2https://www.tensorflow.org/guide/autodiff

Table 3: SRCC and PLCC comparison on three datasets

Model LIVE IQA TID2013 CSIQ
SROCC PLCC SROCC PLCC SROCC PLCC

BIECON 0.958 0.962 0.721 0.765 0.825 0.838
CNN 0.956 0.963 – – – –
DeepIQA 0.960 0.972 – – – –
DIQA BASE 0.963 0.964 0.800 0.803 0.812 0.791
DIQA 0.975 0.977 0.825 0.850 0.884 0.915
MGDNN 0.951 0.949 – – – –
SESANIA 0.934 0.948 – – – –
DIQAS 0.975 0.985 0.874 0.894 0.962 0.961

Table 4: SRCC and PLCC on cross datasets
Train Test SROCC PLCC

LIVE IQA
TID2013 0.49 0.515

CSIQ 0.69 0.705

TID2013
LIVE IQA 0.825 0.81

CSIQ 0.675 0.735

CSIQ
LIVE IQA 0.64 0.825

TID2013 0.45 0.529

is presented in5. The two best results given by three different
models are shown in bold. From the results it can be seen that the
DIQAS model was one of the best two models.

Conclusion
The DIQAS model is an efficient model designed using

DNN-based 2-stage training modules. The first stage training
module is an objective error map prediction module based on nor-
malized image obtained by preprocessing a distorted image. Its
performance is measured using an objective metric and is also
used as a proxy regression target. The use of saliency map helps
improve the learning of the first training phase. The secondary
training module, designed using fully connected layers, is used
to predict subjective scores. Performance of the DIQAS model is
measured interms of SROCC and PLCC on LIVE IQA, TID2013
and CSIQ datasets. The achieved result show the effectiveness of
the proposed model.
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