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Abstract 

Subjective video quality assessment generally comes across 
with semantically labeled evaluation scales (e.g. Excellent, Good, 
Fair, Poor and Bad on a single stimulus, 5 level grading scale). 
While suspicions about an eventual bias these labels induce in the 
quality evaluation always occur, to the best of our knowledge, very 
few state-of-the-art studies target an objective assessment of such 
an impact. Our study presents a neural network solution in this 
respect. We designed a 5-class classifier, with 2 hidden layers, and 
a softmax output layer. An ADAM optimizer coupled to a Sparse 
Categorical Cross Entropy function is subsequently considered. The 
experimental results are obtained out of processing a database 
composed of 440 observers scoring about 7 hours of video content 
of 4 types (high-quality stereoscopic video content, low-quality 
stereoscopic video content, high-quality 2D video, and low-quality 
2D video). The experimental results are discussed and confrontment 
to the reference given by a probability-based estimation method. 
They show an overall good convergence between the two types of 
methods while pointing out to some inner applicative differences 
that are discussed and explained. 

1. Problem statement  
 The subjective visual quality assessment methods are 
essentially used to gauge the performance of multimedia systems 
with the help of responses obtained from observers who investigate 
the content displayed by the system under test. Thus, well-
configured, consensual evaluation conditions are particularly 
required and the ITU Recommendations serve as a ground in this 
respect. Such recommendations are intensively used in a large 
variety of research studies, no matter their applicative field (device 
evaluation/calibration, compression, 3D image reconstruction, 
watermarking, etc.) or the type of content under evaluation (still 
2D/3D images, video, 3D graphics, …).  
 Despite their consensual usage, some questions remain still 
open, mainly about the type of grading scale (continuous vs. 
discrete), the number of the levels on the grading scale (3, 5, 7, 11, 
…), and the semantic labels associated to those levels (e.g. 
Excellent, Good, Fair, Poor and Bad). Such questions are broad and 
may range from the very conceptual differences among and between 
the underlying psyche-cognitive mechanisms to the practical impact 
in the evaluation result. For instance, the impact of semantic labels 
is discussed and detailed in various research studies. On the one 
hand, some studies state that adjacent ITU labels are characterized 
by non-uniform semantic distances [1], [2]; yet, such a behavior is 
not quantified. On the other hand, some studies claim the contrary 
[3], i.e. that the semantic of adjacent ITU labels does not impact the 
results.  
 In order to elucidate this aspect, some previous studies 
published by the author team investigated the case of 5-levels 
grading scales (Excellent, Good, Fair, Poor and Bad labels) and 

brought to light a non-linear filtering formula that was coupled to a 
new statistical investigation method, thus obtaining the reference 
values for the semantic impact of these labels [4-6]. Just for 
illustration, it was thus spotted out that the Excellent label induce a 
reluctance effect of about 35% (that is, observers rather assign the 
Good label instead of the Excellent label, although they consider the 
content to be in top 20%). Conversely, the observers avoid the label 
Bad and tend to replace it by Poor. The inverse problem was also 
analyzed through statistical tools (that is, assuming an observer 
scores Good while he thinks the content is in top 20%, how can we 
statistically correct that score towards Excellent?) but the results are 
inherently bounded in precision [7]. 
 The present paper has as objective to reconsider our previous 
study and to solve this issue through a neuronal network approach. 
This way, three types of results are targeted: (1) an a posteriori 
investigation of our previous results, (2) building an easier, more 
versatile tool for integrating such results into quality evaluation 
procedures and (3) eventually paving the way towards more 
accurate semantic impact cancelation. 
 The paper is structured as follows. Section 2 presents a 
panorama of the state-of-the-art results. Section 3 recalls the 
principles of the statistical-based investigation method and Section 
4 presents the neural network architecture considered in the present 
study. Section 5 is devoted to the experimental results while Section 
6 concludes the paper. 

2. State of the art 
 The study in [8] investigates the reliability of 18 different 
discrete scales, with a variable number of classes ranging from 2 to 
19. The reliability of the scales is discussed with respect to three 
factors that are a priori important in determining the number of 
alternatives to employ: (a) the proportion of the scale which is 
effectively considered by the subjects when scoring, (b) the duration 
required for testing, and (c) whether or not an "uncertain" category 
is provided. 360 students (20 students for each scale) are considered 
in the scoring sessions. The scale reliability was assessed by an 
analysis of the variance of the scores; in this respect, the Fisher’s 
test is used. The conclusion is that, at least from this point of view, 
the scores are largely independent from the number of rating points 
on the scale: 16 out of the 18 scales examined did not differ 
significantly. The two exceptions correspond to the 2 level and 3 
level grading scales. The results also show that the testing time 
increases with the number of levels on the scale while the usage of 
the "uncertain" category decreases as the number of rating steps 
increases. 
 The study reported in [9] investigates the reliability and 
validity of the scores assigned on a continuous scale and on discrete 
scales with 5, 7 and 11 categories. For both continuous and discrete 
scales, both labeled and unlabeled versions are presented to 30 
subjects involved in the experiment. The conclusions are of different 
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types. First, the continuous scale is “most pleasing” to be used. 
Secondly, the results brought no evidence that the continuous scale 
would provide either more discrimination or better accuracy than the 
discrete scales. Concerning the discrete scales, the results brought to 
light that 5 or 6 categories should be considered for evaluation. It is 
also stated that even on a continuous scale, the scores assigned by 
the observers are somewhat clustered into 5 or 6 classes. 
 The problem of the optimal number response alternatives on a 
discrete scale is also raised in [10]. By using information theory 
tools, it is considered that the optimal number is the one that 
maximizes the information provided by respondents in a test, while 
minimizing the response errors or the likelihood of the random 
responses. In is thud concluded that using a large number of scale 
categories (higher than 9) results in no benefit, while a very small 
number of categories (less than 5) could produce a loss in accuracy. 
 The study in [11] compares a five-category discrete semantic 
differential scale with the corresponding unlabeled continuous scale. 
By differential scale it is understood a scale whose extremities are 
labeled. The discrete scale is presented to the user with intermediate 
marks, yet without any labels associated to these marks. The scores 
from 176 participants are investigated according to a paired 
Student’s test. It is thus demonstrated that only 4 out of the 30 pairs 
of scale were significantly different. It is also concluded that similar 
evaluation result can be obtained from the five-category discrete 
rating scale and from a continuous scale.  
 The study in [12] compares a visual analog scale (similar to a 
continuous unlabeled scale), a graphic rating scale (similar to the 
standard ITU labeled continuous scale) and a five-point verbal 
descriptor scale (similar to the 5-point discrete category scale). 174 
students participated in the subjective assessment. As a general 
conclusion, it is stated that assessments on the discrete scale have 
the highest level of stability; particularly, it is shown that both the 
verbal descriptor scale and the graphic scale assessments provided a 
better order consistency compared to the visual analog scale 
assessment. The results also show that an increased number of 
possible responses did not guarantee a higher sensitivity of the 
assessments.  
 The study in [13] provides to 149 participants a questionnaire 
concerning the service elements quality. The questionnaire used 
scales with a number of judgment category from 2 to 11, and a 101-
point scale (from 0 to 100). It is thus shown that the scales that 
produce the least reliable scores are those with the fewest response 
categories. However, it is also found that a decrease in reliability is 
encountered for scales with more than ten response categories. The 
most reliable scores are found to be those from scales featuring 
between 7 and 10 response categories. 
 The issues related to the usage of semantic labels for visual 
multimedia content evaluation is also a topic of particular research 
interest, as testified by a large variety of studies [14]-[20]. In order 
to objectively assess the issue, previous studies carried out by the 
authors team established a common theoretical ground for 
subjective quality evaluation, encompassing both continuous and 
discrete scale evaluations and based on statistical ground, as 
described in the next section. These results will serve as a ground 
for comparison with the results based on neural networks, that will 
be presented in Sections 4-5. 

3. Statistical-based investigation 
 The statistical-based methodological framework for assessing 
the semantic impact of the labels was presented in [4-6].  
 First, in order to bring to light whether such a semantic impact 
exist, a comparison (based in the Student’s paired test) between the 

average values (representing the MOS) corresponding to the 
continuous (unlabeled) and discrete, semantically labeled scales is 
carried out. As the experiments demonstrate that the semantic 
impact exists, a procedure for its quantification it is also defined. 
Hence, the second step is to define an auxiliary discrete random 
variable, which is characterized by uneven partition but by equal a 
posteriori probabilities. By comparing the differences in the 
partition classes length between this auxiliary random variable and 
the random variable corresponding to the semantically labeled scale, 
the semantic impact is quantified (by defining an underlying 
coefficient). This auxiliary random variable is estimated trough 
repeated binomial tests.  
 The method is briefly presented in the sequel. 

Step 1: Continuous scale evaluation  
Step 1.1 Perform the continuous evaluation experiment 
 The human observers are asked to score the content on a 
continuous scale, e.g. between 0 and 𝑀, thus obtaining the data set 
[𝑥!, 𝑥", … , 𝑥#]. 

Step 1.2 Estimate the 𝑝$(𝑥) probability density function (pdf) 
 This step can be performed by any continuous pdf estimation 
method, applied on the data set obtained in the previous step. For 
instance, we can consider a Gaussian mixture model, whose 
parameters are estimated under an EM (expectation-maximisation) 
criterion. The result of this step is the 𝑝$(𝑥) pdf. 

Step 1.3 Compute the Y random variable, 
 The Y r.v. is the discretization of X according to a partition 
*0 = 𝑦!, 𝑦", … , 𝑦% = 𝑀. of the [0,𝑀	] interval 
 This step is performed by applying a non-linear random 
variable filtering operation 𝑌 = 𝑓(𝑋), according to the 𝑓(. ) 
function, where: 

𝑦 = 𝑓(𝑥) = 4
0,																																													𝑥 ≤ 0			

𝑖,				(𝑖 − 1)𝑀/𝑞 < 𝑥 < 𝑖𝑀/𝑞, 𝑖Є{1,2,… , 𝑞}
0,																																														𝑥 > 𝑀

 

 No particular constraint is imposed on the partition *0 =
𝑦!, 𝑦", … , 𝑦% = 𝑀.	: it can be uniform (i.e. corresponding to even 
sub-intervals) or not. The result of this step is the 𝑝&(𝑦) pdf that will 
serve as basis for the comparison when identifying the semantic 
bias. 

Step 2: Discrete, semantic-labelled scale evaluation  
Step 2.1 Perform the discrete evaluation experiment 
 The human observers are asked to score the content on a 𝑞 
levels semantic-labelled discrete scale, e.g. on a scale with the 
following labels: “Bad”, ”Poor”, ”Fair”, ”Good”, and ”Excellent”; 
the result of this step is the data set [𝑧!, 𝑧", … , 𝑧#]. Such an 
evaluation implicitly supposes that the evaluation grades are evenly 
distributed, i.e. that the user evenly divide the evaluation scale 
covering from the “worst” to the “best” content into 𝑞 intervals, each 
of them corresponding to a semantic label. 

Step 2.2 Estimate the 𝑝'(𝑧) probability density function 
 This step can be performed by any discrete pdf estimation 
method, applied to the data set obtained in the previous step. For 
instance, we can consider a frequency based estimation. The result 
of this step is the 𝑝'(𝑧) pdf, where: 

𝑝'(𝑧) =B𝑝'(𝑖)
%

()!

𝛿(𝑧 − 𝑖) 
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Step 3: Discrete vs. semantic-labelled scale 
evaluation  
Step 3.1 Find the identity condition 
 This step searches for the *0 = 𝑦!, 𝑦", … , 𝑦% = 𝑀. partition 
ensuring identity between the 𝑌 and 𝑍 random variables. In this 
respect, the 𝑝&(𝑦) can be considered as reference (theoretical value) 
and 𝑝'(𝑧) as an experiment vale to be validated through a goodness-
on-fit test (e.g. the binomial test).  
Step 3.2 Compute the relative variation of the partition intervals 
with respect to the uniform partition  
 This step computes the set of coefficients 𝜌%*( , 𝑖 = 0,1,…𝑞 −
1, where: 

𝜌%*( =
+!"#*+!"#"$

,/%
. 

 
 A unitary value for such a coefficient demonstrates that the 
related semantic label does not modify the evaluation - that is, an 
even partition *0 = 𝑦!, 𝑦", … , 𝑦% = 𝑀. ensures the identity between 
Y and Z. A value larger than 1 indicates that the related semantic 
label makes the observer more likely to score that way while, 
conversely, a value lower than 1 shows that the related label makes 
the observers more reluctant in assigning that label when scoring. 
 
 A retrospective view on this method brings to light that we do 
not a priori expect all the labels to jointly suffer from a semantic 
impact for a same investigated content. Actually, we rather expect 
that for some good quality content the higher labels (Excellent, 
Good) to be impacted while for some low quality content the 
semantic impact is more likely to affect the lower labels on the 
evaluation scale (Poor and Bad). 

4. Neural network architecture 
 The neural network used for this task is a 4-perceptron 
network, with a size 1 input layer for the continuous grade, 2 hidden 
layers and a size 5 output layer (for each possible label), Figure 1. 

 
Figure 1: Network structure considered in the experiments 

 This architecture was chosen experimentally and incrementally 
to limit overshooting the complexity of the problem. Actually, note 
that while the dataset we shall process (details in Section 5.1) is very 
large (with respect to the state-of-the-art studies) for the quality 
evaluation investigation through conventional methods, it is quite 
small when compared to datasets usually processed in neural 
network applications. 
 The default and classical RELU activation function for the 
hidden nodes performed well enough to be kept and as for the 
problem itself, a SoftMax final activation seemed the most logical. 
The learning rate was experimentally set at 0.04 (value for which 

stability on validation was granted for all data) and it was used 
alongside an ADAM optimizer with default β values. 
 The model was trained for 100 to 400 epochs (according to the 
type of content – cf. details in section 5) with a batch size of 8 all of 
which granting satisfactory validation results for us to exploit (in the 
sense discussed in Section 5).  
 The network weights were not randomly initialized to keep 
track of the validity and scalability of the architecture.  
 Section 5 will present the numerical results and will also 
discuss the impact of some of the above-mentioned parameters. 

5. Experimental results 
5.1 Experimental testbed 
For comparison’s sake, we kept the same database we processed in 
our previous studies [4] – [7]. 
All the experiments reported in the present study are carried out on 
four types of content. The high-quality stereoscopic video content is 
sampled from the HD 3DTV corpus, and sums to a total of 2 hours 
11 minutes and 24 seconds of stereoscopic video sequences 
(197’000 stereoscopic pairs), full HD encoded (1920 × 1080 
pixels), shot in professional conditions. The low-quality 
stereoscopic video content is obtained by downgrading this content 
through general image processing operation that can be modelled by 
additive noise. The 2D content (both high quality and low quality) 
is obtained by considering only one view from the corresponding 
stereoscopic video content. 
 The general viewing conditions were set so as to meet the 
requirements expressed in ITU-R BT 500-11. A 47” LG LCD, full 
HD 3D monitor (1920 × 1080 pixels) with a 400cd/m² maximum 
brightness was used. The experiments involved 2		observers per 
session. The observers were seated in line with the center of the 
monitor, at a distance D equal to the height of the screen multiplied 
by factor F = 3 and defined as the Preferred Viewing Distance.  
 The test was conducted on a total of 110 naïve viewers (45 
females and 65 males), with marginal knowledge of image quality 
assessment. The age distribution ranged from 20 to 37 years old with 
an average of 22. All observers are screened for visual acuity by 
using Snellen chart and the Ishihara test.  
 All the results reported in this study correspond to a single 
stimulus, 5 level grading scale a scale (Excellent, Good, Fair, Poor 
and Bad). At the beginning of the first session, from 2 to 5 training 
presentations are introduced to stabilize the observers’ opinion. The 
data issued from these presentations are not taken into account in the 
results of the test. If several sessions are required, only two training 
presentations are done at the beginning of the next session. 

5.2 Numerical results 
 For each of the four types of the investigated content, we shall 
first present the accuracy and the loss curves; then, Tables 1-4 will 
provide the values related to the 𝜌 coefficient defined in Section 3. 
 The accuracy curves, for the four investigated types of content, 
are presented in Figures 2-5: the abscissa correspond to the epoch, 
the plots in red to the training accuracy while the plots in blue to the 
validation accuracy. The corresponding loss curves are presented in 
Figures 6-9. 
 It can be noticed that the accuracy curves related to 2D quality 
content have a particular behavior. Actually, an in-depth analysis of 
this case shown that the neural network behaves as a kind of binary 
classifier. The scores being quite evenly distributed among the 
central classes, the network does not manage to feature a global 
stability and some oscillations occur. 
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Figure 2: Accuracy plot for high quality stereoscopic video content 

 
Figure 3: Accuracy plot for low quality stereoscopic video content 

 
Figure 4: Accuracy plot for high quality 2D video content 

 
Figure 5: Accuracy plot for low quality 2D video content 

 
Figure 6: Loss plot for high quality stereoscopic video content 

 
Figure 7: Loss plot for low quality stereoscopic video content 
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Figure 8: Loss plot for high quality 2D video content 

 
Figure 9: Loss plot for low quality 2D video content 

 The overall results related to the quantitative evaluation of the 
semantic impact are presented in the four tables below (Table 1 – 4), 
according to the type of content and, for each type of the content, to 
the label assigned by the evaluators. The grey-shadowed cells 
correspond to the results obtained by the state-of-the-art method [4-
6] while the blue-shadowed cells to the neural-network based 
results. 
 The column labeled “limits” provides information about the 
numerical intervals imposed by the semantic labels on a would-be 
continuous scale graded between 0 and 100 - in absence of any 
semantic impact, these limits would be [0..20), [20..39), [40..59) and 
[60..79) and [80..100).  
 The column labelled ρ provides the values of the corresponding 
ρ coefficient, as defined in Section 3, Step 3.2. 
 Tables 1-4 show that some of the labels are not always 
outputted by the network even though they were present in the 
dataset. The potentiality of an overfitting was considered for a while 
but the network behaved the same and gave the exact same results 
when asked to provide 2 labels or 5 labels for the 3D Low Quality 
for example. The explanation might be that the network 
purposefully chooses to ignore those labels to give importance to 
those most present in the dataset; thus, the data limit is the greatest 
threat to our approach. 
 When the two approaches are successful, their results are 
positively correlated : assuming a data pre-filtering is applied, the 
relative differences are lower than 10%.  

As a final experimental result, note that the network structure we 
chose in our study is quite sensitive with the learning rate, as 
illustrate din Figure 10. 
 
 
Table 1: Impact of the semantic labels for high quality stereoscopic video 
content 

 limits ρ 

High Quality 
Stereoscopic 
Video Content 

Bad [0..20) 1 
NA NA 

Poor [20..40) 1 
[0..39) 1.95 

Fair [40..60) 1 
[39..59) 1 

Good [60..87) 1.35 
[59..85) 1.3 

Excellent [87..100] 0.65 
[85..100] 0.75 

 
Table 2: Impact of the semantic labels for low quality stereoscopic video content 

 limits ρ 

Low Quality 
Stereoscopic 
Video Content 

Bad [0..20) 1 
NA NA 

Poor [20..30) 0.5 
[0..29) 1.45 

Fair [30..60) 1.5 
[29..100) 3.55 

Good [60..80) 1 
NA NA 

Excellent [80..100] 1 
NA NA 

 
Table 3: Impact of the semantic labels for high quality 2D video content 

 limits ρ 

High Quality 
2D Video 
Content 

Bad [0..20) 1 
NA NA 

Poor [20..38) 0.9 
NA NA 

Fair [38..60) 1.1 
[0..88) 4.4 

Good [60..87) 1.35 
[88..100] 0.6 

Excellent [87..100] 0.65 
NA NA 

 

Table 4: Impact of the semantic labels for low quality 2D video content 

 limits ρ 

Low Quality 
2D Video 
Content 

Bad [0..20) 1 
NA NA 

Poor [20..31) 0.55 
[0..65) 3.25 

Fair [31..60) 1.45 
[65..89) 1.2 

Good [60..83) 1.15 
[89..100] 0.55 

Excellent [83..100] 0.85 
NA NA 
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Figure 10: The impact of the training rate in the accuracy, for the case of high 
quality stereoscopic video content  

6. Conclusion 
 The present paper is a study devoted to the use of basic neural 
network solutions for quantifying the bias induced in subjective 
video content evaluation by the semantic labels generally attached 
to discrete scales. 
 Under this framework, it is demonstrated that, despite the 
reduced size of the data set for a neural network application, when 
successful, the method produces results approximating by 10% the 
statistical -based state-of-the-art method. Yet, the main advantage of 
the neural network-based approach is its simplicity, thus becoming 
a good candidate for experimenters who would like to use such a 
tool in actual quality evaluation sessions. 
 Future work will be carried out in refining our experiments, e.g. 
by considering data augmentation techniques. Note that besides the 
direct expected results, data augmentation can also serve as guide 
when designing a new data-set allowing the increase of the results 
accuracy. 
 Future work will be also devoted to solving the converse 
problem, i.e. canceling the semantic label impact during an 
evaluation procedure. 

References 
[1] B.L. Jones, P.R. McManus, “Graphic scaling of qualitative terms”. 

SMPTE Journal, 1166–1171, 1986. 

[2] N. Narita, “Graphic scaling and validity of Japanese descriptive terms 
used in subjective evaluation tests”, SMPTE J., vol. 102, no. 7, pp. 
616–622, 1993. 

[3] S. Zielinski, P. Brooks, and F. Rumsey F., “On the use of graphic scales 
in modern listening tests”, Proc. 123rd AES Convention, NY, 2007 

[4] R. Bensaied, M. Mitrea, A. Chammem, T. Ebrahimi, “Continuous vs. 
discrete scale stereoscopic video subjective evaluation: case study on 
robust watermarking”, QoMEX, 2014 Sixth International Workshop 
on, pp. 238-244, Sept. 2014, Singapore 

[5] R. Bensaied, M. Mitrea, “Assessing the impact of the semantic labels 
in subjective video quality evaluation”, in 11th IMA International 
Conference on Mathematics in Signal Processing, December 2016, 
Birmingham, UK 

[6] R. Bensaied, “Subjective quality assessment: a study on the grading 
scales. Illustrations for stereoscopic and 2D video content", PhD 
Thesis, Pierre et Marie Curie University, Paris-France, July 2018 

[7] M. Mitrea, R. Bensaied, P. Le Callet, “Semantic label bias in subjective 
video quality evaluation: A standardization perspective", IS&T 
Electronic Imaging 2019: Image Quality and System Performance 
XVI, Burlingame, California USA, Jan. 2019 

[8] M.S. Matell, J. Jacoby, “Is there an optimal number of alternatives for 
Likert scale items? Study 1: reliability and validity”, Educational and 
Psychological Measurement, vol. 31, pp. 657–674, 1971. 

[9] S.J. Mc Kelvie “Graphic rating scales—How many categories?”, 
British J. Psych., vol. 69, no. 2, pp. 185–202, 1978. 

[10] E.P. Cox, “The optimal number of response alternatives for a scale: A 
review”, J. Marketing Res., vol. 17, no. 4, pp. 407–422, 1980.  

[11] G. Albaum, R. Best, D. Hawkins, “Continuous vs. discrete semantic 
differential rating scales”, Psych. Reports, vol.49, pp.83–86, 1981. 

[12] E. Svensson, “Comparison of the quality of assessments using 
continuous and discrete ordinal rating scales”, Biometrical J., vol. 42, 
no. 4, pp. 417–434, 2000. 

[13] C.C. Preston, and A.M. Colman, “Optimal number of response 
categories in rating scales: Reliability, validity, discriminating power, 
and respondent preferences”, Acta Psychologica, vol. 104, no. 1, pp. 
1–15, 2000. 

[14] K. Teunissen, “The validity of CCIR quality indicators along a 
graphical scale”, SMPTE J., vol. 105, no. 3, pp. 144–149, 1996 

[15] A. Watson, and A. Sasse, “Measuring perceived quality of speech and 
video in multimedia conferencing applications”, Proc. ACM 
Multimedia Conf., pp. 55–60, 1998 

[16] S. Winkler S., and R. Campos, “Video quality evaluation for Internet 
streaming applications”, Proc. SPIE Human Vision and Electronic 
Imaging, Santa Clara, CA, vol. 5007, pp. 104–115, 2003 

[17] S. Winkler, “On the properties of subjective ratings in video quality 
experiments”, in QoMEX, San Diego, CA, 2009 

[18] S. Pechard S., R. Pepion R., P. Le Callet , “Suitable methodology in 
subjective video quality assessment: a resolution dependent paradigm”, 
Proceedings of the Third International Workshop on Image Media 
Quality and its Applications, IMQA2008, 2008 

[19] Q. Huynh-Thu, M. Brotherton, D. Hands, K. Brunnström, and M. 
Ghanbari, “Examination of the SAMVIQ methodology for the 
subjective assessment of multimedia quality”, in Proc. 3rd Int. 
Workshop Video Process. Consum. Electron., AZ, USA, 2007 

[20] Q. Huynh-Thu, Q., M. Garcia, F. Speranza, P. Corriveau, A. Raake, 
“Study of rating scales for subjective quality assessment of High-
Definition video” Broadcasting, IEEE Trans. on 57(1), 1–14, 2011 

Author Biography 
Celestin Hernandez and Zacharie De La Lande Dolce are engineering 
students (MS) at Telecom SudParis - Institut Polytechnique de Paris. 
Currently, Célestin starts his R&D career in the field of deep learning for 
video processing while Zacharie in the field of 3D reconstruction for VR. 

Rania Besaied holds a PhD degree from Pierre and Marie Curie University 
in Paris (2018). She is currently R&D project manager at the ARTEMIS 
department of Telecom SudParis. 

Mihai Mitrea holds and HDR degree Pierre and Marie Curie University in 
Paris (2010) and is currently Associate Professor at Telecom SudParis. He 
is vice-president of the Cap Digital's Technical Commission on Digital 
Content and serves as advisor for the French delegation at ISO/IEC JTC1 
SC29 (a.k.a. MPEG).

224-6
IS&T International Symposium on Electronic Imaging 2021

Image Quality and System Performance XVIII



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


