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Abstract
In this article, we propose a comprehensive objective metric

for estimating digital camera system performance. Using the
DXOMARK RAW protocol, image quality degradation indicators
are objectively quantified, and the information capacity is
computed. The model proposed in this article is a significant
improvement over previous digital camera systems evaluation
protocols, wherein only noise, spectral response, sharpness, and
pixel count were considered. In the proposed model we do not
consider image processing techniques, to only focus on the device
intrinsic performances. Results agree with theoretical predictions.
This work has profound implications in RAW image testing for
computer vision and may pave the way for advancements in other
domains such as automotive or surveillance camera.

Introduction
Due to the ever-evolving nature of image processing

techniques and applications, it becomes essential to have a reliable
methodology to evaluate digital camera RAW performances.
Indeed, despite improving image processing techniques applied
to photography, the better a RAW image is, the better the final
processed image will be. Consequently, there is a need from
camera manufacturers to compare intrinsic performances of camera
modules with different resolutions, different sensor sensitivities,
and different optics.

To this end, manufacturers perform imaging system
evaluation on processed and compressed images by considering a
variety of metrics each related to a single type of image degradation.
The challenge is to provide a single scalar metric by aggregating all
these metrics, which would allow the manufacturer to rank devices
with very different performances.

The goal of this article is to present a novel comprehensive
metric designed to reliably assess the quality of a digital camera
hardware. This metric provides the user with data on the lens and
sensor performance of a given device. More precisely, performance
is quantified with the amount of information available for each
pixel of the image and for the entire image. This metric is
named Information Capacity (IC). Knowing the pixel count and
the bit depth of a sensor, one can easily compute the maximum
achievable information. This maximum amount of information
is impacted by some degradation indicators. The challenge is to
measure these degradation indicators and see their impact on the
information capacity. Thus, measurement protocols for each type
of degradation are rigorously defined and executed.

Our method is based on theoretical analysis of the impact of
degradation indicators on the information capacity. Techniques are
known to assess sensor image quality by observing the impact of
the blur, the spectral response, the noise, and the pixel count on the
module’s information capacity. In this work, we extent our model
by considering the following degradation indicators: geometrical

distortion, loss of sharpness in the field, vignetting and color
lens shading. The impact of these degradation indicators on the
information capacity is in general not trivial. We therefore chose
the approach of assuming that every other degradation is corrected
using an ideal enhancement algorithm and then evaluating how the
correction impacts noise, color response, MTF, and pixel count as
a side effect.

The idea of using Shannon’s Information Capacity [1] as a
measure of potential image quality of a digital camera is not per
se new. In our previous work [2, 3] however, we have estimated
information capacity under the assumption that it depended only
on the noise characteristics, the color response, the blur, the
and pixel count. In the model we propose here, we extend this
model with many new degradation indicators. Furthermore, most
degradation indicators do not stay the same within the image
field. Thus, we have relaxed the assumption that degradation
indicators are constant in the field and effectively integrate them
in the information capacity estimation.

In his recent work, Koren [4] also proposed to use Shannon’s
information capacity as a figure of merit for predicting camera
performance. However, while our work focuses on unprocessed
RAW images, Koren’s work addresses the case of processed
JPEG and minimally processed TIFF images. This requires a
different approach, as the noise needs to be measured jointly to
the image signal, rather than in a separate location, since image
processing may be different. To achieve this, the author estimates
the signal level –which is proportional to the MTF– and the noise
on a single shot of the sinusoidal Siemens Star chart. This work
shows interesting results, but due to the limitation imposed by the
processing applied to the images, only takes into account few and
ad-hoc degradation indicators. Working with unprocessed images
freed us from the need to measure every indicator on a single shot,
thus allowing us to include more indicators, all measured in a
well-known way and independently interpretable.

Other interesting results in producing a single scalar metric
to encompass the effects of several degradation types (SNR, MTF,
etc.) has been recently proposed by Jenkin [5]. Unlike our
approach however, Jenkin’s assumes a reference application for
the captured image, namely object recognition in an automotive
context. This allows the author to focus on meaningful predictors
of overall performance, such as Contrast Detection Probability.
A similar approach has been proposed by Kane [6], always in
the context of detection in automotive imaging, considering the
SNR of an Ideal Observer (or SNRI). In our work we have instead
elected to maintain our framework agnostic with respect to the
final application for the images taken by the system under test.

Proposed Framework
We assume that the information capacity of a single pixel

in the center of the image can be expressed as I = CS−‖∆s‖,
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where CS is the color sensitivity in bits and ∆s is the optical loss
of information in bits, defined as

∆s =
∫ fNy

0
max{log2 ◦MTF( f ); −b}d f ,

with fNy the Nyquist frequency and b the number of bits per pixel
(or depth) of the sensor.

Within this model, the information capacity is completely
determined by the noise curve of the sensor, its color response, and
the MTF of the lens [2]. If all considered degradation indicators are
constant within the image field, then the total information capacity
of the sensor will be the information carried by the central pixel
times the total number of pixels on the sensor.

In this work, we relax this assumption and study the effect of
a varying Information Density (ID) in the field.

Information Density in the Field
The first consideration is that the information density I is in

fact a function of the position in the field if we consider in our
model the following well-known degradation indicators:

• Vignetting
• Color Lens Shading
• Loss of Sharpness in the Field
• Geometrical Distortion

For all these degradation indicators, we have decided to make the
approximation of using a radial model, which generally describes
rather well these optical phenomena. While some slight deviation
from a radial model is to be expected, as long as the value for each
radius is taken as the average over the circle of that radius, the total
information capacity for the image does not change. We therefore
posit I = I(r); in the following, we shall see the role that each
degradation plays in the computation of the ID.

As mentioned above, the original model [2] was able to
determine the information capacity of the sensor using only
noise, color response, and MTF. The impact of other degradation
indicators on the information capacity are in general not as well
known or well modeled. We therefore chose the approach of
imagining that every other degradation is corrected using an ideal
enhancement algorithm and then evaluating how the correction
impacts noise, color response, and MTF (and therefore the local
information density) as a side effect.

Impact of Vignetting and Color Lens Shading on CS
Color Sensitivity (CS) is the number of reliably distinguishable

colors up to noise. Roughly speaking, two colors are considered
distinguishable if their difference is larger than the noise level. CS
is therefore dependent on both the noise curve σ(x) of the sensor
and its white balance scales λ 0=(λR;λB).

In the raw image, one of the effects of the lens is that the three
channels R, G, and B are attenuated in the corners with respect
to the center. However, rather than looking at the three channels
separately, it is customary to analyze this phenomenon in terms of
luminance and chrominance. We can therefore define a vignetting

V (r) and a color lens shading S(r) as follows:

V (r) =
G(r)
G(0)

,

S(r) =
(

R(r)
G(r)

;
B(r)
G(r)

)
.

Intuitively, we can interpret vignetting and color lens shading
as a reduction of the amount and a shift in color respectively of
the incoming light. The former translates in a decrease in SNR
(because fewer photons are received), which becomes an increase
in noise when vignetting is corrected. The latter translates in a
change in illuminant that can be corrected using a different white
balance. We can thus define:

σr(x) =σ

(
x

V (r)

)
≈ σ(x)√

V (r)
,

λ r =

(
λR

R(r)
G(r)

;λB
B(r)
G(r)

)
= λ 0�S(r).

Where in the first equation we assumed that the sensor is working
in photonic regime, thus PRNU and dark current can be ignored.
These two quantities allow us to evaluate the color sensitivity
CSr = CS

(
σr,λ r

)
in a generic point of the field.

Impact of Loss of Sharpness in the Field on MTF
Optics tend to be sharper in the center and softer in the corners.

For this reason, the MTF is typically computed at several points in
the field at once. While in general a measurement of the MTF is not
available for every point of the field, we assume that the variation
is sufficiently well-behaved that we can safely interpolate its values
for any point where a measurement is not available. Notice that
while in real life this variation is not perfectly radial, in most cases
we can safely assign a function MTFr( f ) to a distance r from the
center by averaging the MTF of all points at that distance.

Impact of Geometric Distortion on MTF
Geometric distortion can be modeled as a variable focal length

in the the field. As usual, we assume that the tangential variation
is negligible and we denote the radial focal length as F (r). Let us
consider the local magnification introduced by the non-uniformity
of the focal length, mr =

F (r)
F (0) . We suppose that the distortion

is smooth enough that at the scale of the PSF it can be assumed
constant. In practice, this means that we assume that the PSF of the
corrected image will be magnified but will retain its shape (while
in reality it will be very slightly elongated in the sagittal direction).
Under these assumptions, using the scaling property of the Fourier
transform, the loss of information in the field can be written as:

∆s(r) =
∫ fNy

0
max{log2 (mrMTF(mr f )) ; −b} d f ,

with MTF(mr f )=0 ∀ f > fNy.

Combined Impact of All Degradation Indicators
Considering all degradation indicators, the information

density becomes:

I(r)=CS
σr ,λ r
−
∥∥∥∥∫ fNy

0
max{log2 (mrMTFr (mr · f )) ; −b} d f

∥∥∥∥ .
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Total Information Capacity
In absence of geometric distortion, each pixel on the sensor

contributes its density to the total information capacity. While
this may be true under hypothesis of a perfect lens, it no longer
holds in presence of a geometric distortion and its corresponding
correction. This is because the correction of a distorted image is
no longer rectangular and needs to be cropped in order to be stored.
Thus, some of its pixels will not end up in the final image and
will not contribute to the total information capacity. Rather than a
mere crop, the distortion correction might include some form of
interpolation to fit the original number of pixels of the distorted
image. However, the interpolated pixels are a combinations of
those already in the image and thus they cannot increase the total
information. Given the information density I(r), we write the total
information capacity as:

C =
∫ +∞

0
r
∫ 2π

0
1(r,θ) · I(r)dr dθ , (1)

where 1(r,θ) is 1 if the pixel p of polar coordinates (r;θ) will be
included in the final corrected image and zero otherwise. Notice
that by radial symmetry we always have that

∫ 2π

0
1(r,θ)dθ = 4

∫ π

2

0
1(r,θ)dθ ,

and can therefore rewrite Eq. 1 as:

C = 4
∫ +∞

0
r ·A(r) · I(r)dr,

where

A(r) =
∫ π

2

0
1(r,θ)dθ

is a function that for every distance r from the center of the image
tells us the number of pixels at that distance that will be included
in the final image. For reasons that will be clear in the following,
we call A(r) the Arc Function of distance r.

Arc Function of an Undistorted Image
For an image without distortion, the value of 1(r,θ) is

determined exclusively by whether the point p is included in the
rectangle

[
0; W

2
]
×
[
0; H

2
]
, where W and H denote the image width

and height respectively. In the following we shall assume without
loss of generality that W > H, i.e., we consider the image in
landscape orientation. Let us also be D =

√
W 2 +H2 the length

of the image diagonal. All points that satisfy this condition lay on
the arc of radius r that fits in a quadrant of the image (see Fig. 1).
Since these arcs are connected, for each r, 1(r,θ) must be 1 in a
compact interval [θmin(r);θmax(r)], thus

A(r) =
∫

θmax(r)

θmin(r)
dr = θmax(r)−θmin(r),

By definition of radian, A(r) is therefore the length of the above
mentioned arc divided by its radius. To determine values of θmin(r)
and θmax(r), we identify the following cases: 1) 0 ≤ r ≤ H

2 ; 2)
H
2 < r ≤ W

2 ; 3) W
2 < r ≤ D

2 ; r > D
2 . Each arc will intersect the

perimeter of the first quadrant of the image. We denote L the first

Figure 1. For each radius r, A(r) is the length in radians of the
corresponding solid arc.

and U the second intersection point in positive Cartesian order (see
Fig. 1).

It can be shown, by considering each case, that that
the complete form of A(r) in the case of undistorted images,
parametric with respect to W and H, is:

A0(r,W, H) =

{
θmax(r)−θmin(r) ∀r < D

2
0 otherwise

with

θmin(r) =

{
0 ∀r ≤ W

2
arccos W

2r otherwise

θmax(r) =

{
π

2 ∀r ≤ H
2

arcsin H
2r otherwise

Arc Function for a Distorted Image
First of all, let us model our distortion (and distortion

correction). As always, we assume that the distortion is perfectly
radial. This mean that in polar coordinates the phase θ of each
point is unchanged, while its radius r is scaled by the magnification
factor mr: pscene = (r;θ)−→ p = (mrr;θ).

In order to correct this distortion we therefore need to
introduce a quantity ωr =

1
mr

, that we call correction warp, to
apply the inverse scaling: p = (r′;θ)−→ pcorrected, with:

pcorrected =
(
ωrr′;θ

)
= (ωrmrr;θ) = (r;θ) = pscene (2)

However, in Eq. 2 we neglected the fact that, as a result of a
radial distortion on a rectangular sensor, p forms a pseudo-image
that is not rectangular and needs to be cropped. In order to study
the impact of this crop on the arc function, we need to distinguish
the different types of distortion, starting from the well-behaved
cases of barrel distortion and pincushion distortion (see Fig. 2).
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Figure 2. Distorted image (left), corrected pseudo-image (right,
solid) and final crop (right, dashed) for barrel (top) and pincushion
(bottom) distortion.

(a) Barrel Correction (b) Pincushion Correction

Figure 3. Correction of barrel (a) and pincushion (b) distortion and
relative crop.

Barrel Distortion In case of barrel distortion, magnification
decreases with r, therefore warping will increase with r and the
image will be mapped into a concave pseudo-image (see Fig. 3a)
that needs to be cropped into a rectangle. Here we assume that the
crop taken will be the largest rectangle with the same aspect ratio
as the original image that fits within the pseudo-image. Notice that
in practice most distortion correction software will actually take a
smaller crop, since the pixels close to the border will often have
very low quality. However, they will always have a non-negative
(albeit low) information capacity and we therefore include them in
our calculation.

Since ∂ωr
∂ r (r) > 0∀r > ε and W > H, the scale between

uncorrected and cropped image will be given by ω H
2

, thus the size
of the cropped image will be ω H

2
·W ×ω H

2
·H. The arc function

for a barrel distorted image will therefore be:

A+(r,W, H) = A0

(
ωrr, ω H

2
W, ω H

2
H
)
= A0

(
ωr

ω H
2

r,W, H

)
.

Pincushion Distortion In case of pincushion distortion,
magnification increases with r, therefore warping decreases with
r. Since the warped pseudo-image is convex, the scale between
uncorrected and cropped image will be given by the warp of its
diagonal and will be ω D

2
(see Fig. 3b). The arc function for a

Figure 4. Correction of mustache distortion and relative crop.

pincushion distorted image will therefore be:

A−(r,W, H) = A0

(
ωrr, ω D

2
W, ω D

2
H
)
= A0

(
ωr

ω D
2

r,W, H

)
.

Generic Distortion We have seen how for both barrel and
pincushion distortion, the arc function was simply derived from the
arc function of an undistorted image, scaled by a factor depending
on the ratio between the original image size and the crop size. We
have seen that this ratio corresponds to the warp factor measured
at a specific point in the image, namely point D in barrel distortion
and point C in pincushion distortion (following the labeling in
Fig. 1). This is the only point of the border of the corrected pseudo-
image to also lie on the cropped border.

We call this point the fixed point of the distortion correction,
because it will have the same relative position in the distorted and
corrected images. Let us denote ρ the radial coordinate of the fixed
point, we can rewrite both A+ and A− in a more general form as:

Aω (r,W, H) = A0

(
ωr

ωρ

r,W, H
)
.

It stands to reason that, for a generic distortion profile ωr, the
problem of determining the arc function can therefore be reduced to
the problem of determining the radial coordinate ρ of its fixed point.
Let us imagine for instance the case of a mustache distortion, which
starts as barrel distortion close to the image center and gradually
turns into pincushion distortion towards the image border.

Since by hypothesis the crop is as large as possible, ρ will
be the radius of the point with the lowest y-coordinate among the
points on the border of the pseudo-image, i.e., warped image of the
border of the original image (see Fig. 4). As seen above, the points
on the original upper border of the image have radii comprised
between H

2 and D
2 their y-coordinate is

y(r) = r sinθmax(r) = r sin
(

arcsin
H
2r

)
=

H
2
.

These points get warped into points of y-coordinate

y′(r) = (ωrr)sinθmax(r) = ωr
H
2
.
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Since H
2 is constant, we get:

ρ = arg min
r∈[ H

2 ; D
2 ]

y′(r) = arg min
r∈[ H

2 ; D
2 ]

ωr.

Information Capacity and Lighting Conditions
So far, we have developed our reasoning under assumption

that the noise curve σ(x) of the sensor, where x is a gray level,
is uniquely determined for each device. However, we know that
the sensor has in fact a family of noise curves, parametric with
respect to the ISO speed. It follows that we can therefore associate
an Information Capacity to each ISO speed setting of the device.
This raises the question on how to compare different devices –with
potentially different ranges of ISO speed setting– in a fair manner.
Our approach in this respect is twofold.

First, for each ISO speed setting assigned by the manufacturer
to a sensor gain, we measure the actual ISO speed value as per the
definition given in the ISO recommendation [7], as we know these
could differ significantly.

Second, we express the Information Capacity as a function
of the total exposure rather than as a function of the ISO speed
value. In order to do this, we consider a reference scene where a
uniform target of R = 0.5 reflectance is presented to the device:
for each total exposure value H, expressed in lx · s, there will be
one and only one ISO speed value for which the target is correctly
exposed, i.e., for which it is represented with the gray level at half
of the sensor’s saturation value, x = 0.5xsat. Using the ISO speed
definition and under assumption of a Lambertian source and of
lens transmission T = 0.95, we get:

ISO≈ 377 ·Ap2

H ·T ·R
· x

xsat
=

377
0.95

· Ap2

H

Of course this value could not correspond exactly to any of the ISO
speed settings available on the device, in which case we perform a
simple linear interpolation of the settings that envelop it.

Applying this process on a wide range of total exposures,
we observe that the Information Capacity is linear with the total
exposure, within the interval of total exposures for which the device
can be properly exposed, meaning that an appropriate ISO speed
exists to represent that amount of light without saturation (see
Fig. 5). This result validates our choice of linearly interpolating
the IC for intermediate values of ISO speed. For higher values, for
which no ISO setting exists that would not saturate the picture, we
assume the Information Capacity as constant –this corresponds to
the fact of keeping the device at its base ISO speed– since the user
experience would simply be to keep the ISO setting at its lowest
and shorten the exposure time.

Module Lens Score
For the definition of a lens score, we reason as follows. Let us

consider a sensor of size W ×H and depth b bits. For this sensor,
the maximum possible IC would be Cmax = bWH. If the sensor had
a perfect lens, but an actual color sensitivity CS0, then its IC would
be C? = CS0WH. The actual module has information capacity
C. Therefore, with respect to a perfect lens, it lost ∆opt =C?−C.
If the same loss were applied to a perfect sensor, its IC would
be Clens = Cmax−∆opt = C+(b−CS0)WH. We therefore take
Clens as the lens score for the module. Notice that the result is the
same no matter the total exposure H –or equivalent the ISO speed

Figure 5. Information Capacity as a function of total exposure. The
solid dots correspond to reference shooting conditions at which
devices are compared. The device under test has a 1" sensor of
21MP, an equivalent focal length of 35mm and has been shot at
aperture f/8.

setting– at which CS0. This is consistent with the fact that only
the sensor performances are affected by the amount of light in the
scene, not the lens.

Experimental Results
So far, our work has led to the development of a new

comprehensive objective metric based on studying the impact of
degradation on the camera module’s information capacity.

In order to validate our approach, we have tested our approach
against 15 real camera modules for mobile phones market that
cover a variety of configurations, from low cost to flagships, in
terms of sensor size, pixel count, focal length, and aperture. A
summary of the specifications of these devices in given in Tab. 6.

Our results show a good correlation with the devices
specifications from entry level to high-end to devices. In particular
we observe that the Information Capacity behaves as one would
expect with respect to the photosensitive surface of the sensor
(expressed as the surface of the sensor divided by the F-Number
of the lens squared) and its pixel count (see Fig. 7).

It is also worth noting that, for some devices, the information
density can vary significantly within the field, accounting in some
cases for a loss of 2 bits per pixel (see Fig. 8). Interestingly,
this variation is not –as one might have expected– always strictly
monotonic. Apart from proving the soundness of our approach,
i.e., the need to consider the degradation non-constant in the field,
this variation also has another non-trivial implication.

Most photo applications, especially in the mobile world,

Parameter Min. in dataset Max. in dataset
Sensor diagonal ["] 1/5.22 1

Pixel count [MP] 4.4 108
Eq. focal length [mm] 15 95

Aperture [mm] f/8 f/1.6

Figure 6. Parameters range of the test dataset.
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Figure 7. Correlation between Information Capacity and device
specifications. Dot size represents the pixel count.

Figure 8. Information Density as a function of the radial position.
The device under test has a 1/2" sensor of 12MP, an equivalent
focal length of 26mm and an aperture f/1.8.

present nowadays a digital zoom feature. Barring specific and
novel technologies such as super-resolution, virtually all these
zoom features are in practice nothing more than a crop followed
by a suitable interpolation. As we have mentioned above,
interpolation does not increase the IC in an image, therefore,
in a constant-density model, the device that has the highest IC
content would maintain its advantage at any zoom factor. In our
model, where the crop can be simply modelled by changing the
parameters W and H of the arc function, this is not necessarily
true. Let us consider a couple of devices A and B with the same
total information capacity. However, A’s IC is distributed more
uniformly in the field while a B’s is more densely packed towards
the center of the image. In this case, the highest the zoom factor,
the more device B would gain in comparison of device A (see
Fig 9). This is an extremely useful observation for a manufacturer,
which would not be possible without the introduction of a varying
information density in the field.

Conclusions and Future Work
In this article we have presented the theoretical framework

behind our novel benchmarking metric, based on Shannon’s
Information Capacity. This metric encompasses a wide variety of
well-know image quality indicators regarding both the sensor and
the lens behavior, which allows to better understand the limitations
of the devices regarding raw image quality. The technical reports,
comprised of both the Information Capacity and all the metrics

Figure 9. Information Capacity as a function of zoom factor for a real
device (solid line) and a theoretical device with constant Information
Density in the field (dashed line). The device under test has a 1/2.8"
sensor of 20MP, an equivalent focal length of 15mm and an aperture
f/2.2.

on which it is based, are used in the context of DXOMARK
RAW project to help device manufacturers in choosing the most
appropriate camera module.

In our future work we will further extend our framework by
consider information density which variation is not necessarily
radial but arbitrary within the field, and we will include even more
degradation indicators for other artifacts such as flare.
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