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Abstract

Modern deep learning techniques have enabled advances
in image-based dietary assessment such as food recognition and
food portion size estimation. Valuable information on the types
of foods and the amount consumed are crucial for prevention of
many chronic diseases. However, existing methods for automated
image-based food analysis are neither end-to-end nor are capa-
ble of processing multiple tasks (e.g., recognition and portion es-
timation) together, making it difficult to apply to real life appli-
cations. In this paper, we propose an image-based food analy-
sis framework that integrates food localization, classification and
portion size estimation. Our proposed framework is end-to-end,
i.e., the input can be an arbitrary food image containing multi-
ple food items and our system can localize each single food item
with its corresponding predicted food type and portion size. We
also improve the single food portion estimation by consolidating
localization results with a food energy distribution map obtained
by conditional GAN to generate a four-channel RGB-Distribution
image. Our end-to-end framework is evaluated on a real life food
image dataset collected from a nutrition feeding study.

Introduction

Dietary assessment refers to the process of determining what
someone eats and how much energy is consumed during the
course of a day, which is essential for understanding the link be-
tween diet and health. Modern deep learning techniques have
achieved great success in image-based dietary assessment for food
localization and classification [1, 2, 3, 4, 5, 6, 7, 8], as well as
food portion size estimation [9, 10, 11, 12, 13, 14, 6]. However,
none of these methods can achieve food localization, classifica-
tion and portion size estimation in an end-to-end fashion, which
makes it challenging to integrate into a complete system for fast
and streamlined process.

Image based food localization and classification problems
can be viewed as specialized tasks in computer vision. The goal
of food localization is to locate each individual food region for
a given image with a bounding box. Pixels within the bounding
box are assumed to represent a single food, which is the input
to the food classification task. Food localization serves as a pre-
processing step since it is common for food images in real life to
contain multiple food items.

However, accurate estimation of an object’s portion size is
a challenging task, particularly from a single-view food image
as most 3D information has been lost when the eating scene is
projected from 3D world coordinates onto 2D image coordinates.
An object’s portion size is defined as the numeric value that is
directly related to the spatial quantity of the object in world co-

IS&T Infernational Symposium on Electronic Imagin

2021
Imaging and Multimedia Analytics in o VWeb and g/\obile World 2021

ordinates. The goal of food portion size estimation is to derive
the food energy from an input image since energy intake is an
important indicator for diet assessment. There are existing meth-
ods [13, 14] that can estimate food portion size for the entire in-
put image by generating a food energy distribution map, however,
they cannot estimate the portion size of each food item separately.
This is important as an individual food item can vary greatly in
the energy contribution leading to significant estimation error. In
this work, we address this problem by using a four-channel RGB-
Distribution image, where the individual energy distribution map
is obtained by applying food localization results on the entire food
energy distribution map generated using conditional GAN as de-
scribed in Section .

The success of modern deep learning based methods also
rely on the availability of training data. Currently, there is no
available food image dataset that includes groundtruth bounding
box information, food category and corresponding portion size
value for each food item in the image. Groundtruth portion size
information is difficult to obtain from crowd-based annotation on
RGB images, unless these numeric values are recorded during im-
age collection. To address this issue, we introduce an eating oc-
casion dataset containing all the groundtruth information listed
above and the food portion size is provided by registered dieti-
tians. We will describe the collection of this dataset in Section .

The main contributions of this paper can be summarized as
follows.

e We propose an end-to-end framework for image-based diet
assessment that integrates food localization, classification
and portion size estimation

e We introduce a novel method for single food item portion
size estimation by using a four-channel RGB-Distribution
image, where the individual energy distribution map is ob-
tained by applying food localization results on the entire
food energy distribution map generated by conditional GAN

e We introduce a new food eating occasion image dataset con-
taining bounding box information, food category and por-
tion size for evaluating the proposed end-to-end framework

Eating Occasion Image to Food Energy
Dataset

Annotated image datasets have been instrumental for driv-
ing progress in many deep learning based applications such as
food detection and classification. Existing food images datasets
may contain groundtruth bounding box and food label informa-
tion [16, 17] or just the food label [18, 19] which is not suitable
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Bounding box coordinates:
[1362, 918, 1530, 1076]

Category: Diet Coke

Portion Size: 0 Kcal

Fiducial Marker
Figure 1: Example of an eating occasion image in our dataset: each
food item is manually cropped containing the groundtruth bounding box
coordinates and food category. All food and beverages were pre-weighed.

A fiducial marker is used to calibrate the color and size of the input im-
age [15].

for portion size estimation due to the lack of groundtruth informa-
tion. In this paper, we introduce an eating occasion image to food
energy dataset containing bounding box information, food cate-
gory and portion size value. Food images were collected from
a nutrition study as part of an image-assisted 24-hour dietary re-
call (24HR) study [20] conducted by registered dietitians. The
study participants were healthy volunteers aged between 18 and
70 years old. A mobile app was used to capture images of the
eating scenes for 3 meals (breakfast, lunch and dinner) over a 24-
hour period. Foods are provided in buffet style where pre-weighed
foods and beverages are served to the participants. Based on the
known foods and their weight, food energy is calculated and used
as groundtruth. The dataset contains 154 annotated eating occa-
sion images, with a total of 915 individual food images which
belong to 31 categories. The corresponding groundtruth informa-
tion includes bounding box to locate individual food, food cate-
gory and portion size (in Kcal). The bounding box is given by the
coordinates of input image as [x1,y1,X2,y2] as shown in Figure 1.

Data Augmentation

We split the dataset with 15% for validation 15% for testing
and the remaining for training. The problem with a small dataset
is that the models trained on them cannot generalize well for data
from the validation and test set. Hence, these models suffer from
the problem of overfitting. Data augmentation is an efficient way
to address this problem, where we increase the amount of training
data by rotation (90 degrees, 270 degrees) and flip (x-axis, y-axis,
both). We randomly implemented the operations based on the
number of training images for that category, i.e. we implemented
less operations for the category which contains more images. We
augment the training data while keeping the groundtruth informa-
tion unchanged before and after the augmentation operations.

Method
Food Localization and Classification

The goal of food localization is to locate individual food
region for a given input image by providing a bounding box,
where each bounding box should contain only one food item.
Deep learning based methods for localization such as Faster R-
CNN [21] have shown success in many computer vision appli-
cations. It proposes potential regions that may contain the ob-
ject with bounding boxes. Advanced CNN architectures such as
VGG [22] and ResNet [23] can be used as the backbone structure
for these methods.
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The localization network locates all individual food items
within the input food image and then sends them to the classifica-
tion network. We apply Convolutional Neural Networks (CNN’s)
to classify the food item within each bounding box, which has
been widely used in image classification applications. We use
cross-entropy loss % for classification task as shown below:

2= —5910g[f (x)] 1)

-

i=1

where x is the cropped food image and ¥ is its corresponding one
hot label for the food category, f. denotes the output of classifi-
cation with dimension n. The food localization and classification
pipeline are described in Figure 2.

Food Portion Size Estimation

Portion size is a property that strongly relates to the presence
of an object in 3D space, so it is very difficult to accurately es-
timate an object’s portion size by given an arbitrary 2D image.
In [14], a synthetic intermediate result of ‘energy distribution’
image was proposed, where the ‘energy distribution” image has
pixel-to-pixel correspondence and weights at different pixel lo-
cations to represent how food energy is distributed in the eating
occasion. For example, pixels corresponding to steak have much
higher weights than pixels of apple. [24] then uses the gener-
ated distribution image to estimate food portion size by applying
a regression network. On the other hand, [6] uses RGB food im-
age only and apply feature adaptation to estimate food portion
size. Our method combines the two methods and use a RGB-
Distribution image to improve the estimate of the food portion
size.

Generate energy distribution map: We first train an energy
distribution map generator by using a Generative Adversarial Net-
works [25] under conditional settings [26]. We define:

G =arg mGin max Zecan(G,D) + 1411 (G) (2)

where G is the generator, D is the discriminator, .47 (G) is the
L1 reconstruction loss, and .-%,gan (G, D) is the conditional GAN
loss as defined in [26]:

Ze6an(G,D) = Ex yp 1 (x.y) 108 D(X,¥)]+

(3)
IExrvpd,m,,(x).,zwpz(z) [IOg(l - D(X: G(X> Z))]

where x is the source domain (RGB image), y is the target domain
(energy distribution map) and z is random noise. The energy dis-
tribution map is a single-channel image where higher pixel value
indicates higher energy distribution.

Apply food localization bounding box: After we generate
the energy distribution map for the entire eating occasion food
image, we apply the bounding box generated in Section to obtain
the energy distribution map for individual food item.

Generate RGB-Distribution image: We then combine the
cropped RGB single food image with its corresponding energy
distribution map to generate a RGB-Distribution image, which
has four channels: R, G, B, and distribution map. The RGB-
Distribution image is sent to a regression network to estimate food
portion size. L1-norm loss .%, is used for portion size estimation:

Zr=19— fr(x)| “)
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Figure 2: The overview of our proposed end-to-end framework that integrates food localization, classification and portion size estimation. Given an
input eating occasion image, the localization network locates each individual food item by generating a bounding box around the food region. Meanwhile,
an energy distribution map is generated using conditional GAN. Then we directly apply a generated bounding box on an energy distribution map to get a
corresponding energy distribution map for each food item. The cropped RGB food image is sent to a classification network to predict the food category. It
is also used to generate the four-channel RGB-Distribution image by pairing the cropped RGB image with an individual energy distribution map, which

are sent to a regression network to estimate portion size value.

where ¥ is the groundtruth portion size value and f, denotes the
output of regression network with dimension 1. The lower half of
Figure 2 shows the pipeline for estimating portion size for each
individual food item.

Experimental Results

In this section, we evaluate our proposed end-to-end frame-
work using the dataset introduced in Section .

For the localization and classification tasks, mean Average
Precision (mAP) is the most common performance metrics. We
firstly define several related terminologies: The intersection of
union (IoU) refers to the ratio of overlapped region between
predicted bounding box and groundtruth bounding box over the
union of the two bounding boxes. True Positive (TP), False Pos-
itive (FP), True Negative (TN) and False Negative (FN). For ex-
ample, TP means the predicted bounding box is assigned with
correct food label and the corresponding IoU socre is larger than
a threshold. Based on these definitions, we can calculate precision
(Equation 5) and recall (Equation 6).

TP

Precision — —F 5

recision TPLFP (5)
TP

Recall= —— 6

T TPIFN ©

Average Precision (AP) for each category is the average pre-
cision value for recall value over 0 to 1 for each food category,
and mAP is the mean value of all APs of all categories.

Since we use L1-norm loss as shown in Equation 4 to train
the regression network, we use the Mean Absolute Error (MAE)
to evaluate portion size estimation, defined as

1 N
MAE:N;\wi—wi\ 7

where w; is the estimated portion size of the i-th image, w; is the
groundtruth portion size of the i-th image and N is the number of
testing images.

IS&T Infernational Symposium on Electronic Imagin

2021
Imaging and Multimedia Analytics in o VWeb and g/\obile World 2021

Implementation Detail

Our implementation is based on Pytorch [27]. ResNet-50 is
used as the backbone of Faster R-CNN. For regression network, a
standard 18-layer ResNet is applied. The ResNet implementation
follows the setting suggested in [23].

Results for localization and classification

The mAP results for food localization and classification tasks
on our proposed dataset under different thresholds are shown in
Table 1. 0.5 is commonly used and practical IoU threshold and
we achieve satisfactory but 0.75 is a challenging threshold as we
set the threshold of IoU > 0.75. In addition, our dataset is chal-
lenging since the number of training data is insufficient although
some data augmentation methods are implemented. We also cal-
culate the the mAP by changing the IoU threshold from 0.5 to
0.95 with a step size of 0.05 as shown in last column.

mAP@.5 | mMAP@.75 | mAP@].5,.95]

0.6235 0.2428 0.2919
Table 1: mAP results for food localization and classification on our intro-
duced dataset. mAP@.5 and mAP@.75 indicate IoU larger than 0.5 and
0.75 respectively. mAP@].5,.95] calculates AP for IoU from 0.5 to 0.95
with step size of 0.05.

Results for portion size estimation

Compare to state-of-the-art methods: We compare our re-
sult of food portion size estimation with two state-of-the-art food
portion estimation methods: [24] and [6] that directly using food
distribution map or single RGB image for regression respectively
as described in Section . The input for our proposed method to es-
timate food portion size is a generated RGB-Distribution image of
cropped RGB image and cropped energy distribution image using
the localization network. As shown in Table 2, our method out-
performs the other two methods for single food item portion size
estimation with smallest MAE as our proposed method takes into
consideration for both the RGB and energy distribution informa-
tion.

Compare to human estimates: We also compare our re-
sults for food portion size estimation of the entire eating occasion
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(a)

Melon 25 (44)
Soft drink 12 (0)

Figure 3: Sample results for our proposed end-to-end image analysis system. The input to our system is a RGB food or eating scene image and the
output contains the bounding box for each single food item along with the predicted category and portion size in unit of Kcal. The value inside () shows

the groundtruth portion size. (Best viewed in color)

Methods Mean Absolute Error (MAE)
Fang et al. [24] 109.94 Kcal
He et al. [6] 107.55 Kcal
Our Method 105.64 Kcal

Table 2: MAE results for food portion size estimation on our introduced
dataset. Best result is marked in bold.

image that containing multiple single food items with 15 partici-
pants’ estimates from the same study. During the data collecting
time, the participants are required to estimate the portion size of
the meal they just consumed in a structured interview while view-
ing the eating occasion images. We sum up all single food portion
size estimated by our proposed method, [24] , [6] and human es-
timates respectively for each eating occasion image. We apply
error percentage as metric in this part which is defined as

N R
gp= T, ®)
N
Zi:() Wi

where w; is the estimated portion size and w; is the groundtruth
portion size.

Methods Error Percentage
Human Estimates 62.14%
Fang et al. [24] 35.06%
He et al. [6] 25.32%
Our Method 11.22%

Table 3: Error percentage for food portion size estimation. Best result is
marked in bold.

As shown in Table 3, the error percentage (EP) of human es-
timates is 62.14%, which also indicates that predicting food por-
tion size using only information from food images is really an
challenging task for majority of people. Our method gives the
best result on EP for 11.22%, which improves more than 50% in
terms of EP compared with human estimates. Figure 4 shows the
results for each eating occasion image in test set. Our predicted
energy (red dots) is most closest to the groundtruth energy (black
line).

Conclusion

In this paper, we propose an end-to-end image-based food
analysis framework that integrates food localization, classifica-
tion and portion size estimation. We introduce a novel method
to estimate individual food portion size using RGB-Distribution
image, where the individual energy distribution map is obtained
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Figure 4: Food portion size estimation result for each eating occasion im-
age in test set, where the dash line indicates the groundtruth and estimated
energy are the same. The dots in different color shows the results for using
different methods. (Best viewed in color)

by applying localization results on the entire energy distribution
map generated by conditional GAN. Our framework is evaluated
on a real life eating occasion food image dataset with groundtruth
information of bounding box, food category and portion size. For
localization and classification, we calculate the mAP under dif-
ferent thresholds and we show a satisfactory result. Our pro-
posed method for food portion size estimation outperforms ex-
isting methods in terms of MAE as we consider both the RGB
information and energy distribution information when estimating
the portion size using a regression network. Our method also
achieves the best improvement of error percentage from 62.14%
to 11.22% when compared with human estimates for the entire
eating occasion image, showing great potential for advancing the
field of image-based dietary assessment.

References

[1] H. Wu, M. Merler, R. Uceda-Sosa, and J. R. Smith, “Learn-
ing to make better mistakes: Semantics-aware visual food
recognition,” Proceedings of the 24th ACM international
conference on Multimedia, pp. 172-176, 2016.

[2] K. Yanai and Y. Kawano, “Food image recognition us-
ing deep convolutional network with pre-training and fine-
tuning,” Proceedings of the IEEE International Conference
on Multimedia & Expo Workshops, pp. 1-6, July 2015.

[3] C.Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, and Y. Ma,

IS&T Infernational Symposium on Electronic Imaging 2021
Imaging and Multimedia Analyfics in a Web and Mobile \/\?orlg

2021



[4

—

(5

—

[6

—

[7

—

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

“Deepfood: Deep learning-based food image recognition
for computer-aided dietary assessment,” International Con-
ference on Smart Homes and Health Telematics, pp. 37-48,
2016.

P. Pandey, A. Deepthi, B. Mandal, and N. B. Puhan, “Food-
net: Recognizing foods using ensemble of deep networks,”
IEEE Signal Processing Letters, vol. 24, no. 12, pp. 1758—
1762, 2017.

M. Bolafios and P. Radeva, “Simultaneous food localiza-
tion and recognition,” 2016 23rd International Conference
on Pattern Recognition, pp. 3140-3145, 2016.

J. He, Z. Shao, J. Wright, D. Kerr, C. Boushey, and
F. Zhu, “Multi-task image-based dietary assessment for food
recognition and portion size estimation,” arXiv preprint
arXiv:2004.13188, 2020.

J. He, R. Mao, Z. Shao, and F. Zhu, “Incremental learning
in online scenario,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 13 926—
13935, 2020.

R. Mao, J. He, Z. Shao, S. K. Yarlagadda, and F. Zhu, “Vi-
sual aware hierarchy based food recognition,” arXiv preprint
arXiv:2012.03368, 2020.

K. Aizawa, Y. Maruyama, H. Li, and C. Morikawa, “Food
balance estimation by using personal dietary tendencies in a
multimedia Food Log,” IEEE Transactions on Multimedia,
vol. 15, no. 8, pp. 2176 — 2185, December 2013.

S. Fang, C. Liu, F. Zhu, E. Delp, and C. Boushey, “Single-
view food portion estimation based on geometric models,”
Proceedings of the IEEE International Symposium on Mul-
timedia, pp. 385-390, December 2015, Miami, FL.

A. Myers, N. Johnston, V. Rathod, A. Korattikara,
A. Gorban, N. Silberman, S. Guadarrama, G. Papandreou,
J. Huang, and K. Murphy, “Im2Calories: towards an auto-
mated mobile vision food diary,” Proceedings of the IEEE
International Conference on Computer Vision, December
2015, Santiago, Chile.

J. Dehais, A. Greenburg, S. Shevchick, A. Soni, M. An-
thimpoulos, and S. Mougiakakou, “Estimation of food vol-
ume and carbs,” Google Patents, Feb. 13 2018, uS Patent
9,892,501.

S. Fang, Z. Shao, D. A. Kerr, C. J. Boushey, and F. Zhu,
“An end-to-end image-based automatic food energy estima-
tion technique based on learned energy distribution images:
Protocol and methodology,” Nutrients, vol. 11, no. 4, p. 877,
2019.

S. Fang, Z. Shao, R. Mao, C. Fu, E. J. Delp, F. Zhu, D. A.
Kerr, and C. J. Boushey, “Single-view food portion esti-
mation: learning image-to-energy mappings using genera-
tive adversarial networks,” Proceedings of the IEEE Interna-
tional Conference on Image Processing, pp. 251-255, Octo-
ber 2018, athens, Greece.

C. Xu, F. Zhu, N. Khanna, C. J. Boushey, and E. J. Delp,
“Image enhancement and quality measures for dietary as-
sessment using mobile devices,” Computational Imaging X,
vol. 8296. International Society for Optics and Photonics,
2012, p. 82960Q.

Y. Kawano and K. Yanai, “Automatic expansion of a food
image dataset leveraging existing categories with domain
adaptation,” Proceedings of European Conference on Com-

IS&T Infernational Symposium on Electronic Imagin

2021
Imaging and Multimedia Analytics in o VWeb and g/\obile World 2021

puter Vision Workshops, pp. 3—17, September 2014, Zurich,
Switzerland.

[17] Y. Matsuda, H. Hoashi, and K. Yanai, “Recognition of
multiple-food images by detecting candidate regions,” Pro-
ceedings of IEEE International Conference on Multimedia
and Expo, pp. 25-30, July 2012, Melbourne, Australia.

[18] L. Bossard, M. Guillaumin, and L. V. Gool, “Food-101
— mining discriminative components with random forests,”
Proceedings of European Conference on Computer Vision,
vol. 8694, pp. 446461, September 2014, Zurich, Switzer-
land.

[19] Xin Wang, D. Kumar, N. Thome, M. Cord, and F. Precioso,
“Recipe recognition with large multimodal food dataset,”
2015 IEEE International Conference on Multimedia Expo
Workshops (ICMEW), pp. 1-6, June 2015.

[20] C. Schipp, J. Wright, C. Boushy, E. Delp, S. Dhaliwal, and
D. Kerr, “Can images improve portion size estimation of
the asa24 image-assisted food recall: A controlled feeding
study,” Nutrition & Dietetics; 75 (Suppl. 1): 107, 2018.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: To-
wards real-time object detection with region proposal net-
works,” Proceedings of Advances in Neural Information
Processing Systems, pp. 91-99, December 2015.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[23] K. He, X.Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” Proceedisng of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 770-778,
June 2016, Las Vegas, NV.

[24] S. Fang, Z. Shao, D. A. Kerr, C. J. Boushey, and F. Zhu,
“An end-to-end image-based automatic food energy estima-
tion technique based on learned energy distribution images:
Protocol and methodology,” Nutrients, vol. 11, 2019.

[25] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” Advances in Neural Infor-
mation Processing Systems 27, pp. 2672-2680, December
2014, Montreal, Canada.

[26] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-
image translation with conditional adversarial networks,”
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5967-5976, July 2017, Hon-
olulu, HI.

[27] A.Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Au-
tomatic differentiation in PyTorch,” Proceedings of the Ad-
vances Neural Information Processing Systems Workshop,
2017.

Author Biography

Jiangpeng He received his B.S. degree in Electrical and
Electronic Engineering from University of Electronic Science and
Technology of China in July 2017. He is currently a Ph.D. student
at the School of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN, USA. His research interests
include image processing, computer vision and deep learning.

Runyu Mao received the B.S. degree in Electrical Engineer-

2855



ing from The Pennsylvania State University, State College, PA,
USA, in 2017. He is currently working toward the Ph.D. degree
at the School of Electrical and Computer Engineering at Purdue
University, West Lafayette, IN, USA. His research interests
include image processing, computer vision and deep learning.

Zeman Shao received his B.S. degree in Software Engi-
neering from Tongji University, Shanghai, China in 2016. He
is currently working toward the Ph.D degree in Electrical and
Computer Engineering at Purdue University, West Lafayette, IN,
USA. His research interests include image processing, computer
vision and deep learning.

Janine Wright is a Teaching Academic and research officer
in the School of Population Health, Curtin University. Ms Wright
is a dietitian with qualifications in nutrition, dietary assessment
methodology and public health and is a long term university
educator of nutrition undergraduates. Her research focus is the
improvement of dietary assessment methodology.

Professor Deborah Kerr is a Research Academic in the
School of Population Health, Curtin University. Dr Kerr is an
Accredited Practising Dietitian (APD) with qualifications in
nutrition, dietary assessment methodology and a PhD from the
University of Western Australia. Dr Kerr has conducted numer-
ous interdisciplinary randomised controlled trials of nutrition
and exercise. Dr Kerr’s research is focused on using cutting edge
technologies such as image-based dietary assessment methods to
improve dietary behaviours in adults.

Carol Boushey is an Associate Research Professor in the
Epidemiology Program at the University of Hawaii Cancer
Center and an adjunct professor in Nutrition Science at Purdue
University. Her research focuses on dietary assessment and
examining the relationship of dietary intakes and health or risk
for disease. She has made multiple contributions to advance
image-based dietary assessment methods. Her Ph.D. degree is
from the University of Washington through the interdisciplinary
nutrition and the epidemiology programs.

Fengqing Zhu is an Assistant Professor of Electrical and
Computer Engineering at Purdue University, West Lafayette, In-
diana. Dr. Zhu received the B.S.E.E. (with highest distinction),
M.S. and Ph.D. degrees in Electrical and Computer Engineer-
ing from Purdue University in 2004, 2006 and 2011, respectively.
Her research interests include image processing and analysis,
video compression and computer vision. Prior to joining Purdue
in 2015, she was a Staff Researcher at Futurewei Technologies
(USA).

2856

IS&T Infernational Symposium on Electronic lm\?\?ir]g
orl

Imaging and Multimedia Analytics in a VWeb and Mobile

2021
2021



JOIN US AT THE NEXT El!

Electronic Imaging

IS&T International Symposium on
SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

e SHORT COURSES * EXHIBITS « DEMONSTRATION SESSION ¢ PLENARY TALKS
e INTERACTIVE PAPER SESSION ¢ SPECIAL EVENTS ¢ TECHNICAL SESSIONS -

www.electronicimaging.org

imaging.org




