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Abstract

In this work, we propose a method that detects and segments
manufacturing defects in objects using only RGB images. The
method can be divided into three different integrated modules:
object detection, pose estimation and defect segmentation. The
first two modules are deep learning-based approaches and were
trained exclusively with synthetic data generated with a 3D ren-
dering engine. The first module, object detector; is based on the
Mask R-CNN method and provides the classification and segmen-
tation of the object of interest as the output. The second module,
pose estimator, uses the category of the object and the coordi-
nates of the detection as input to estimate the pose with 6 degrees-
of-freedom with an autoencoder-based approach. Thereafter it is
possible to render the reference 3D CAD model with the estimated
pose over the detected object and compare the real object with its
virtual model. The third and last step uses only image processing
techniques, such as morphology operations and dense alignment,
to compare the segmentation of the detected object from the first
step, and the mask of the rendered object of the second step. The
output is an image with the shape defects highlighted. We evaluate
our method on a custom test set with the intersection over union
metric, and our results indicate the method is robust to small im-
precision from each module.

Introduction

Vision-based automatic manufacturing defect inspection is
a task that remains a challenge nowadays due to the complex-
ity of detecting many defect types on a variety of materials and
shapes. We can frame the defect detection in different categories
of problems: classification, detection, and segmentation. For the
first one, we input an image (RGB, greyscale, depth map) and
then a classification model can be employed to assign a label (one
for each defect) for the image. There is also the possibility of
creating a pure imaging processing approach that computes fea-
tures from the image and then checks if some of these features are
correlated with manufacturing-defect. However, the defect loca-
tion is important information that may be used as a clue to find
problems during the manufacturing process, that is why the ma-
jority of approaches focus on detection and/or segmentation of the
defect [1, 2, 3, 4]. Defect detection is an improvement over the
classification-only approach because it provides both: defect label
and defect bounding-box location. In addition, it can detect mul-
tiple defects in the same image since a label is assigned for each
bounding box. The target of a segmentation approach is to assign
a label for each defect pixel. Hence we can delimiter more pre-
cisely the defect and extract more detailed information regarding
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defects, such as shape, size and other.

There are some public datasets available for defect detection.
The majority of them [5, 6] only contain 2D images (greyscale,
RGB, depth) with a limited number of views for each type of ma-
terial. We are assuming that this type of restriction is undesirable
for an automated defect detection system because it must perform
the detection robustly, regardless of the orientation of the object or
camera. Also, create or expand a dataset is time-consuming and
might be impractical in some scenarios. Our method proposes
a solution that uses only synthetic data which is generated from
3D meshes avoiding human effort. To achieve that, we divide the
defect inspection problem into three different steps: object de-
tection, pose estimation and defect segmentation. The first two
are deep learning-based approaches while the last one uses im-
age processing techniques. To train the deep learning models we
used synthetic data generated from 3D CAD models. Thus, our
method can be fully extended to detect manufacturing defects in
any manufacturing part. The results indicate that our method can
perform manufacturing defect segmentation in near real-time with
promising results.

Related work

Classical systems for defect inspection require a complex
setup to work properly. This setup may be composed, for ex-
ample, of depth sensors, lighting systems, X-ray, high-resolution
RGB cameras, among others. To reach satisfactory results in these
systems it is required a contrasting background or a careful cal-
ibration process that demands a significant amount of time and
effort. For example, [7] created a stand-alone system which en-
closure the object of interest in ”’black box™ with controlled light-
ing condition. In the black box, there is a mechanism used to
detect the object inside the box and then an RGB image is taken
by a high-resolution camera. Next, features are extracted from
this image and a reference image (for the same object of inter-
est) and after that, these features are matched to align the images.
Since the images are aligned, the RGB images are binarized and
then morphological operations are applied to segment the contour
defect. However, the proposed method is not robust to the object
6-DoF (Degrees of Freedom) pose, since depends on a reference
image to compute a linear transformation to align the input image
to the reference one.

Other approaches employ a deep learning model to detect
or segment defects from RGB images [1] or x-ray images [2].
However, those approaches require the creation of a training set
that demands time, especially if it is desired to detect defects in
many types of manufacturing parts. Our method is fully trained
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with synthetic data that is generated from 3D meshes files for each
object of interest.

In [8], the authors trained an autoencoder that given an RGB
image of the object of interest, with or without defects, the model
reconstructs the input with no defects. The authors were able to
highlight defects in the input image (if they exist) analyzing the
differences between the original one and its reconstruction. How-
ever, the proposed solution depends on the quality of reconstruc-
tion and a poor autoencoder reconstruction can result in many
false positives. Thus, the solution may not generalize well in a
scenario where many types of materials or when the input data
mismatch a bit from the distribution of the training data. Our
method can be extended for many scenarios since we use robust
object detection to detect the object of interest and then we com-
pute its 6-DoF.

Our method

As mentioned before, our method is separated into three
modules: the first one is an object detector, the second one is a
6-DoF object pose estimator, and the last one is an image process-
ing technique to detect discrepancies between two binary images.
The dataset used to validate our method was the T-LESS [9]. We
decided to select this dataset because of the following aspects:

* [t contains textureless manufacturing parts
* High similarity among the manufacturing parts
* High degree of symmetry

Most of these aspects make this dataset particularly tough
to train a deep learning model, that is why this dataset has not
become so popular [10]. The following subsections explain our
method. Firstly, we discuss about the synthetic data generation
and how we trained the object detection/segmentation model us-
ing generated data; after that, we detail how we estimated the 6-
DoF object pose from the detection output; then we discuss how
using image processing to detect manufacturing defect in the in-
put image; finally, we describe how to combine the three modules
to perform the defect detection.

Synthetic data generation and object detector

In order to mitigate the domain shift [11] between the syn-
thetic data and the real one, we must generate synthetic samples
as realistic as possible. This means the synthetic data generation
must take into account key aspects for satisfactory realism:

* high-quality textured objects

e variety of 3D environments (to generate a variety of back-
grounds)

* photorealism

* physics (collision, gravity, etc)

We tested both OpenGL and VTK [12] rendering library;
however, using Unreal Engine 4 (UE4) [13] we were able to
achieve the necessary level of realism. Also, UnrealCV [14] was
employed to automate the process of moving the camera and the
objects of interest through the 3D environment. Two 3D environ-
ments were created, an office environment and a room, and for
each one of them, sets of textures were created for all 3D objects
in the environment. The transition between 3D environments was

made manually while the entire process of acquisition of the RGB
and label (mask) images was fully automated.

Once a 3D environment is selected, the training data is
generated as follows:

1. Read list of objects of interest on 3D environment
(0D jSinterest)

2. Read the list of surfaces (may be a table, chair, desktop,
etc) where the objects from 0bjsiyseress Will be spawn on it
(Surfacesspuwn)

. Define a pose set (poseger)

4. Move all objects in 0b jiyeress Outside of sigh from camera’s

point of view

5. For each 0bj in 0b jsipteress do

w

(a) Move obj to the 3D environment
(b) For each 0bjpose in posese;

i. Select a random surface from surfacesspawn
ii. Spawn the object with the pose 0b jectose 0n the
selected surface
iii. Generated a random displacement (dx,dy,dz)
between the camera and the object (dis-
placement) and update the camera position
(camerap,s) from object position (0b ject pos).
camerapos = ob jectpos + displacement
iv. Compute the camera rotation components to
guarantee the camera points out to the ob ject pog
v. Apply the camera translation and rotation com-
ponents computed in (iii) and (iv) respectively
vi. Save the RGB image and mask (labeled image)
from current camera visualization

(c) Move obj far away” from 3D environment

In our approach we generated only one object per image,
but we can change the algorithm to spawn multiple objects on
the same surface. This way, we can train a model that is more
robust to clutter and occlusion. In our training dataset we gener-
ated almost 31k pairs of images and masks. The Figure 1 shows
some images from our synthetic dataset used to train a detec-
tion/segmentation model. We selected the Mask R-CNN model
as the detector model. To train this DNN (Deep Neural Network)
model, we used an open-source framework from Facebook Re-
search [15].

Object 6-dof pose estimation

We used a method called “Augmented Autoencoder” (AAE)
[16] to estimate the pose. This method consists of training an au-
toencoder to reconstruct only the object of interest from the input
image. This autoencoder shall be robust to translation, rotation,
occlusion, noise and other augmentations that can be applied on
data.

After training the autoencoder model, we generate a set of
predefined views for the object. To generate these predefined
views we used the same approach described in the original pa-
per which consists of centering the object and moving the camera
across a spherical surface (Figure 2). We then compute the cam-
era rotation to guarantee the camera is pointing to the object and
take the screenshot.

Finally, it is required to generate the codebook which embeds
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Figure 1.  Training images generated from 3D rendering. Best viewed in

color. All 3D scenes was rendered using Unreal Engine 4 [13]

Figure 2.  Generating the predefined views for a given object. Each dot
represents a possible camera location. source

a triplet for each view: a latent code (encoder output), a rotation
matrix and the original object bounding box (bounding box before
the crop and resize). To estimate the pose for a new entry, we first
compute the cosine distance between it and the other entries in
the codebook. The pose from the closest entry in the codebook is
assigned to the new entry.

To estimate the translation components, we used the same
procedure described in [16]. It consists of first estimating depth
from the scale ratio between the detected bounding box and the
codebook scale and then using the bounding box center to esti-
mate the translation in X and Y.

Detecting shape defect on manufacturing parts

In this work, we focus only on shape defect detection be-
cause, in our judgment, it is more crucial to industrial parts to
have the correct shape when compared to surface defects such as
scratches. The main idea of the method is to compare the silhou-
ettes (masks) of the detection and the rendered object to highlight
the differences that are possible defects (see Figure 3). The masks
are binary images, with black pixels that represent the background
and white pixels to represent all pixels that compound the object

IS&T Infernational Symposium on Electronic Imagin

2021
Imaging and Multimedia Analytics in o VWeb and g/\obile World 2021

of interest.

Mask of the rendered
object from pose
estimation (mask_2)

| |
v

Dense alignment:
ECC - OpenCWV
{Optional)

v

Absolute difference:
abs(mask_1 - mask_2)

v

Morphology Opening:
One or more sizes of
structuring element (square)

Mask from object
detection (mask_1)

Heatmap and
threshaold for
binary decision

Highlight possible
defects

Figure 3. Diagram of the pipeline for defect detection module

One input of this module is the mask of the segmented object
from the detection module. The other input is the mask of the
rendered object from the pose estimation module. Both masks are
binary images of the same size. To highlight the differences, the
main idea is to take the absolute difference between the masks.
The expected result should highlight shape defects (missing parts
or additive material); however, misalignment between the masks
(e.g. imprecision from the pose estimation) and imperfections
from the segmentation (mainly in finer details) also may appear
as possible defects.

It is expected that the estimated pose should be very close to
the correct one. However, to deal with some imprecision and im-
perfections from the previous modules, we applied dense align-
ment to the masks of the objects. We used the ECC-based iter-
ative image alignment algorithm [17] implemented in OpenCV
[18] with a predefined low number of iterations (e.g. 10) to keep
near real-time results. Note that this works as a refinement step,
and it is not necessary if we are able to guarantee a nearly perfect
pose estimate, which is usually not the case.

After computing the alignment, we compute the absolute dif-
ference between masks and apply the mathematical morphology
opening operation over the resulting binary image. It is possible
to specify one or more sizes (in pixels) for the structuring element
(a square) to remove noise and small systematic imperfections
keeping only the most significant differences that are considered
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possible defects. When more than one size of the structuring el-
ement is specified, the result from the morphology opening for
each size is accumulated like a heatmap. The maximum value in
the heatmap is the total number of sizes for the structuring ele-
ments. A threshold is specified to create a binary solution, keep-
ing only the greater differences and discarding the small ones. In
our experiments, we empirically set the threshold as 70% of the
maximum value of the heatmap.

Evaluation of the shape defect detection is not trivial because
the results depend on the outputs of the previous modules. The
following example (Fig. 4) was taken when the estimated pose
was near to the correct pose of the object, and, after that, the de-
fect (additive material) was annotated manually. The evaluation
was based on one of the most used metrics for segmentation, the
Jaccard index also called intersection over union (IoU).

(a) Original image

(b) Annotated defect

Figure 4. Original image and defect annotation. Best viewed in color.

The results in Figure 6 considered the structuring elements
of sizes 3, 5,7, 9, 11, 13 and 15, and a threshold of 70% of the
maximum value from the heatmap to create a binary solution for
defect/no-defect.

Combining the modules
The full pipeline of the method can be summarized in the
following steps:

1. The trained object detector detects all objects of interest
given an input image.

2. Each detected object is cropped and resized to a 128 x 128
RGB image.

3. For each crop, select the suitable codebook (a codebook per
object of interest) to be used on pose estimator.

4. Given the estimated pose, render the 3D mesh at that pose;
and then generate the binary mask from it.

5. Take the segmentation mask from the detector (step 1) and
the mask from the rendered object (step 4) and use them to
compute the manufacturing defect.

The Figure 5 illustrates the combination of all modules.

Evaluation

In our proposed pipeline, the quality of the defect detection
depends on the first two modules, object detection and pose es-
timation. For this reason, we decided to evaluate each module
separately.

Object detection

We trained a Mask R-CNN model using only synthetic data
generated by the Unreal Engine 4 [13] 3D rendering engine.

2814

Mask R-CNN

Cropping and "
resizing
Pose estimator 1

Defect detection

Figure 5. An overview of the proposed method to detect shape defects.
Best viewed in color.

The chosen backbone for the network was a ResNeXt-101
[19] with Feature Pyramid Networks [20]. The generated train-
ing set contains 40380 images (1346 per object), and each image
contains only one object. The batch size was set as 2 and the
maximum number of iterations was 720000. We used Stochastic
Gradient Descent with base learning rate as 1.25¢—3 and weight
decay of le—4. After all iterations, the best model was selected
based on validation set performance.

The validation and test sets contain images of objects in the
real world (i.e. no synthetic data). The test set contains 67 images
with more than 100 annotated object instances, so there are im-
ages with more than one object per image in this set. The model
achieved a score of 81% mean average precision for bounding box
detection and instance segmentation.

Pose estimation

For the Augmented Autoencoder approach, we trained one
pose estimation model per object. The metric used to evaluate
the models was the ADI (Average Distance for Indistinguishable
views) [21].
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eADI(R,T,I?,f’,M) = avg min H(R)q +7T)-— (Iéxz +T) H 1
X]EMXZEM

where x1,x; are views from a set of indistinguishable views
M. The matrices R and T are the expected rotation matrix and
translation vector respectively, while R and 7" are the predicted
ones. In summary, the equation 1 computes the difference be-
tween the closest 3D points from the expected transformation
(R,T) and predicted one (R, T). Thus low values of e, p; indicate
that the pose prediction is close to the expected one. As meshes
can be quite distinct from each other, the scores were normalized
by mesh diameter (distance between the two farthest points on
mesh). The test set contains 1265 annotated images with a sim-
ilar process used to annotate the training set for T-LESS dataset.
The test set contains 23 out of 30 from T-LESS meshes. The av-
erage score computed for the test set was 0.0737, which means
the misalignment between two points is, in average, 7% of the
object diameter. A score below 10% is usually considered a suc-
cessful alignment [22]. The misalignment score for each object
varies from 3% to 13%, which means the pose estimator did not
perform satisfactorily for some objects.

Shape defect detection

We prepared a small test set with 12 images with ground
truth to evaluate the shape defect detection module. We selected
7 images to show more representative results, but the results were
similar for the entire test set. The images were annotated as in Fig.
4. Two aspects of this module were evaluated: i) the size of the
structuring element, in pixels, of the morphology operations, and
ii) the presence or not of dense alignment. The intersection over
union (IoU) was the selected metric to evaluate the shape defect
detection module.

For the sample in Fig. 4, the results in Fig. 6 considered the
structuring elements of sizes 3, 9, 15, and the cumulative results
for the series 3, 5, 7, 9, 11, 13, 15 with a threshold of 70% of the
maximum value from the heatmap to create a binary solution for
defect/no-defect.

The Fig. 7 shows the best result for each sample. The Table 1
shows the average results for the selected seven images, samples
of Fig. 6 and Fig. 7. The best result is with alignment and the
structuring element of size 9.

Average of intersection over union considering seven exam-
ples from Figures 4 and 7

with alignment no alignment
size 3 0.359 0.189
size 5 0.408 0.245
size 7 0.214 0.244
size 3-15 0.378 0.271

The results show that the dense alignment is crucial to have
good results in most situations. As expected, as the size of the
structuring element increases, finer details of the difference masks
are lost, and this could result in failure to detect small defects.
On the other hand, greater structuring element sizes could ig-
nore all the differences. Therefore, a good trade-off is a medium
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With alignment Without alignment

Size 3 m m
loU = 0.363 loU =0.073
Size 9 m m
loU =0.369 loU = 0.069
Size 15 m
loU=0.0 loU =0.0
Sizes 3-15

Al

loU =0.335

loU =0.075

Figure 6. Intersection over union for different sizes of structuring element of
morphology operations and with and without the dense alignment for object
of Fig. 4. Best viewed in color.

structuring element size, which can suppress some misalignment
noise and keep only possible defects. Furthermore, the proposed
technique involving cumulative results and heatmap thresholding
could smooth the output and provide good results for more diverse
situations.

Conclusion

This work presented a method to automatically detect and
segment shape defects on objects from an industrial context. The
system is composed of three different modules: object detection,
pose estimation and shape defect detection. Deep learning mod-
els were used in the object detection and pose estimation modules,
and all of them were trained using only synthetic data generated
by a 3D graphics engine. Our results indicate that the object de-
tector successfully identifies the objects of interest in RGB im-
ages. The pose estimator, however, did not perform well enough
for some objects, which indicates some improvements are re-
quired to better handle the symmetrical and texture-less objects.
The shape defect detection module compares the binary masks
from the segmented object and the reference 3D mesh to esti-
mate the possible regions with defects. Our results indicate the
method is robust enough to detect shape defects in manufacturing
parts. Possible future work include extending the defect detec-
tion module to handle other types of imperfections such as surface
scratches, tearing, and wrinkling.
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Figure 7. Best results of loU for some examples. a) With alignment, sizes
3-15, IoU=0.378. b) No alignment, size 15, loU=0.553. c) With alignment,
size 9, 1oU=0.590. d) With alignment, sizes 3-15, loU=0.308. e) No align-
ment, size 15, loU=0.825. f) With alignment, size 3, loU=0.203. Best viewed
in color.
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