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Abstract
Among hospitalized patients, getting up from bed can lead

to fall injuries, 20% of which are severe cases such as broken
bones or head injuries. To monitor patients’ bed-side status, we
propose a deep neural network model, Bed Exit Detection Net-
work (BED Net), for bed-exit behavior recognition. The BED Net
consists of two sub-networks: a Posture Detection Network (Pose
Net), and an Action Recognition Network (AR Net). The Pose
Net leverages state-of-the-art neural-network-based keypoint de-
tection algorithms to detect human postures from color camera
images. The output sequences from Pose Net are passed to the
AR Net for bed-exit behavior recognition. By formatting a pre-
trained model as an intermediary, we train the proposed network
using a newly collected small dataset, HP-BED-Dataset. We will
show the results of our proposed BED Net.

Introduction
Among hospitalized patients, getting up from bed can lead

to fall injuries [1], 20% of which are severe cases such as broken
bones or head injuries [2, 3]. Assistance from health care workers
can help reduce the chance of a patient falling. However, nurses
are usually so busy that they have to leave some patients’ care
needs unattended. Setting up a bed-exit detection system [1, 4] in
hospitals can help the nursing staff assist the patients and reduce
the risk of falling during bed-exit.

Contact methods, such as pressure mats, can be used to de-
tect patients’ weight shift [5]. However, false alarms often hap-
pen regardless of the detection algorithms. Each time visiting the
wards has a high time cost. Hence, to quickly verify the alarm,
the nursing staff prefers camera-based detection algorithms rather
than other set-ups so that they can monitor the live stream re-
motely.

This paper proposes a camera-based algorithm, which lever-
ages deep neural network models to detect human bed-exiting ac-
tivities from color camera images. The experimental results show
that our method achieves promising performances.

Related works
Non vision-based methods

Among the non-vision-based methods, one approach is to
leverage a pressure-sensitive system, such as pressure mats [5, 6].
However, pressure mats need to be regularly checked to ensure
correct functionality and positioning, as they are constantly under
physical stress and are movable with the movement of the human
body. In addition, pressure mats are not disposable and frequently
require cleaning and disinfection in environments such as hospi-
tals and care centers, where infections and body fluid leakage are

common.
Another solution has included wearable sensors such as ac-

celerometers [7, 8] and radio-frequency identification sensors [9].
Wearable sensors usually require the patient to be wired, or are too
bulky to apply to older people or patients. For wireless sensors,
people can easily forget to wear such sensors, and those battery-
based sensors require frequent recharging.

Vision-based methods
Depth cameras such as Microsoft’s Kinect have been used

for research to detect the bed position or to monitor a patient’s
condition. Banerjee et al. estimate the bed based on the height
difference from the bed to the floor [10]. When a patient falls,
the patient will be disconnected from the bed surface. Hence,
they proposed a method that detects patient’s fall by observing
the shape of the bed’s surface. Bauer et al. locates the bed by fit-
ting the pointclouds to a predefined two-rectangle-shape model,
and classifies the patient’s state with machine learned shape mod-
els and a decision-tree [11]. Chen et al. detected congestion in the
neural network in the low-resolution depth image to detect the pa-
tient’s bed-exit posture [12]. However, depth cameras emit sound
or light to all people in the scene. The red light emitted from
depth cameras may be regarded as a problem by hospital officials
or may interfere with other sensors in the room. Deep-learning-
based models are a popular solution for recognizing bed-exiting
behavior from depth sensor images [12]. Because of the limitation
of deep learning models, the detection accuracy is highly based on
the training data.

Apart from depth cameras, RGB cameras can be a safer
choice for medical use because most of the depth cameras emit
sound or light to the environment. Inoue et al. proposed a deep-
learning-based model to detect human sitting-up positions from
RGB camera images [13]. However, not all people sit up before
they exit their beds. A counterexample would be patients directly
falling from the bed. We proposed a novel end-to-end method to
address this issue and showed that our method outperforms theirs
on both test accuracy and generalization ability.

Method
Bed exit is a type of activity with body movements. To detect

these movements, one may not need all the details of the human
body. Recently, researchers have developed robust human body
keypoints detection algorithms, such as OpenPose [14], Mask R-
CNN [15], etc. A typical keypoints detection result is shown on
the black-background picture in Fig. 2. We can simplify human
motions with the help of these skeleton-like keypoints and then
recognize the person’s activity.
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Figure 1: The overall flowchart of our proposed bed-exit detection
algorithm based on RGB camera images.

In this paper, we proposed a camera-based bed-exit detec-
tion algorithm using deep learning models. The proposed BED
Net consists of two sub-networks: a posture detection network
(Pose Net), and an action recognition network (AR Net). The
Pose Net leverages the state-of-the-art neural-network-based key-
point detection algorithms K(·) to detect human postures from
RGB camera images Ii in a sequence S. The outputs of the Pose
Net K(Ii), and the four bed corners Bi, are formatted to image-like
intermediate representations using encoder E(·). An example of
the intermediate representation is shown in Fig. 2. A sequence of
those representations are fused by the fusion block F(·), and are
then passed to the AR Net A(·) for bed-exit behavior recognition.
Sections Pose Net and AR Net describe the two sub-nets in detail.
Fig. 1 shows the overall flowchart of our proposed network. In
summary, the output Y of our models is defined by:

Y = A

(
F

(
S

∑
i=1

E (K(Ii),Bi)

))

Pose Net(Posture Detection Network)
The input to our proposed method is video data collected

from monocular cameras for 3 seconds with a sampling rate of
5Hz. We sub-sample the video by extracting one image every 0.2
seconds and end up with a sequence of S = 16 images. All 16
images are forwarded into Pose Net one by one, and hence can
generate 16 image-like intermediate representations, as shown in
Fig. 1.

In the Pose Net, input RGB images are first resized to
1024×1024, and are passed through a pre-trained∗ Mask R-CNN
network [15]. We chose Mask R-CNN network as it can detect the
location of 17 body key-points of each person on the input image.
Each key-point comes with a confidence score that reflects how
much the Pose Net trusts its detection. Apart from keypoints,
Pose Net requests the location of the bed in each image to form
the output. Since beds are barely moved in practical use, we sim-
plify beds as a quadrilateral shape on each image and manually
label the four corners of each bed. As is shown in Fig. 1, key-
point detection results and the bed corners were encoded to an
intermediate representation in the encoder E(·).

The output of Pose Net are image-like intermediate repre-
sentations as shown in Fig. 2. Each image-like representation is
a 2-d image with the same height and width of the input camera
image, where the background is colored in black, and the bed area
is colored in white. Key-points detection results are drawn on the
2-d image as color skeletons. Due to the model limitation of Mask

∗The pre-trained model and the skeleton color maps are available at
https://github.com/facebookresearch/detectron2.

R-CNN, the output of Pose Net is not always perfect. For exam-
ple, a blue line is drawn on the right side of the black-background
image in Fig. 2. The Pose Net draws a blue line to represent a part
of the human body, which is caused by noise pixels from the input
camera image.

Figure 2: An example of intermediate representation (image-like).

AR Net(Action Recognition Network)
The image-like intermediate representations from the Pose

Net are first resized to 112x112. A sequence of these 16 resized
images are channel-wise concatenated by the fusion module F(·)
to form a 3D tensor, which makes the input of our AR Net.

The AR Net is an action recognition network that has a
Res3D architecture following [16]. Fig. 3 shows the detailed ar-
chitecture of the AR Net. Res3D is based on ResNets, which in-
troduce shortcut connections that bypass a signal from one layer
to the next. The connections pass through the gradient flows of
networks from later layers to early layers, and ease the training of
deep networks. We can tell from Fig. 3 that each skip connection
skips two convolutional layers. If we consider these two convolu-
tional layers as a single block, which we will call the ResBlock,
then the input to a ResBlock has another path which connects its
output. Such connections add the inputs of each ResBlock to its
output, giving us the final output for that particular ResBlock. For
example, “Tensor 2” is computed by a ResBlock from “Tensor
1”. With the help of these ResBlocks, we acquire “Tensor 1” to
“Tensor 9”.

“Tensor 9” is passed to an average pooling layer to make
“Tensor 10”; and the output of the last fully connected layer is
the final classification result for human activities (“stay in bed” or
“exit bed”).

The AR Net is trained with a classification loss. The clas-
sification loss computes the cross-entropy between the predicted
classification logits and the ground truth classification vectors.

Experiments
baseline methods

Among all similar works, we choose the 2-fully-connected-
layer method as our baseline method [13], short as the 14+2FC
method in this paper. The baseline method also leverages the
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Figure 3: Flowchart of the AR Net.

Key-points detection algorithms to format its intermediate rep-
resentations. For a fair comparison, we use the same pre-trained
model † to detect the keypoints of the person on the input image.

To further interpret different deep-neural-network models’
characteristics, we implemented five models and ran them on the
same dataset HP-BED-dataset. We show the comparison results
in Table 2. The overall structure of all the comparison is smimilar
to Fig. 1, which is constructed from two sub-nets: Pose Net and
AR Net. All models are trained with the same cross-entropy loss
for classification. The inputs, outputs, and the inner architectures
of the two sub-nets are different, and are discussed in detail in the
following subsections.

Figure 4: The intermediate representation (array-like, 14 points)
for the 14+FC method.

(1) 14+2FC method. 14+2FC method is also our baseline
method. Unlike our method, the input to the 14+2FC method is
one image instead of a sequence of images. The 14+2FC Pose Net
formats an array-like intermediate representation consisting of 14
numbers. The array-like intermediate representation is shown in
Fig. 4. The first 6 numbers are the “x position” and the “y posi-
tion” of the neck, left pelvis, and right pelvis of the person who
has the highest confidence score on the input image. The last 8
numbers are the “x position” and “y position” of the four bed-
corners in the input image.

The AR Net of the 14+2FC method consists of two fully
connected layers as shown in Fig. 5. Both layer sizes are set to
20, following [13].

Figure 5: AR Net structure of the 14+2FC method.

(2) 59+2FC method. The 59+2FC method is very similar to
the 14+2FC method. The Pose Net of 59+2FC method formats
an array-like intermediate representation consists of 59 numbers.
An example is shown in Fig. 6. The AR Net structure of the
59+2FC method also consists of two fully connected layers as

†The pre-trained model is available at https://github.com/
facebookresearch/detectron2 with a configure file of COCO-
InstanceSegmentation mask rcnn R 50 FPN 3x

shown in Fig. 5. Both layer sizes are set to 59 because the array-
like intermediate representation contains more information than
the 14+2FC method.

Figure 6: The intermediate representation (array-like, 59 points)
for the 16x59+LSTM method.

(3) 16x59+LSTM method. We build this model to test the
impact of sequential data. Similar to our proposed method, the in-
put of the 16x59+LSTM Pose Net is a sequence of 16 images us-
ing the same sampling rate of 5Hz. Each image is passed through
the Key-points detection algorithm and formatted to an array-like
intermediate representation consists of 59 numbers. Similar to
the 59+2FC method, the array-like intermediate representation is
shown in Fig. 6. A fusion function concatenates the array-like
intermediate representations to a 2D tensor of size 16x59, which
makes the input to its AR Net.

The AR Net structure of the 16x59+LSTM method is shown
in Fig. 7. The sub-net model is a LSTM[17] Recurrent Neural
Network following by a fully connected layer. The input size and
the hidden size of the LSTM are 59, and the number of recurrent
layers is 2.

Figure 7: AR Net structure of the 16x59+LSTM method.
(4) C3D method. The input of this model is the same video

data as our proposed model, shown in Fig. 1. We collect 16 im-
ages with the same sub-sampling rate and hence the Pose Net gen-
erates the same image-like intermediate representations as shown
in Fig. 2.

Fig. 8 shows the AR Net architecture of the C3D model. It
is a 3D convolutional network following [18]. We test this model
to compare the performance of different 3D convolutional net-
works. The 16 image-like intermediate representations are resized
to 112x112 and concatenated in temporal order to form a 3d ten-
sor and are passed into the AR Net. The convolutional layer sizes
are shown in Fig. 8, and the layer sizes for the last two fully con-
nected layers are 8192 and 4096.

Figure 8: AR Net structure of the C3D method.

HP-BED-Dataset
We collected a dataset called HP-BED-Dataset for the abla-

tion study. The dataset is collected in two bedrooms with a color
camera mounted at a height range from 1.5 to 1.8 meters facing
the bed.
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The training set and the validation set contain 120 videos
with each video length between 10 to 30 seconds, 30 frames per
second. The resolution of all images is 640x480. Each video
sequence is choreographed to include periods when the subject is
motionless in the bed, and periods when the subject is moving. In
some sequences the subject enters the field of view and lies down
on the bed. All videos in the training set and the validation set are
taken in a bedroom with the same bed and the same person with
varied clothing. The camera position may vary among all videos,
but are all placed closer to the end of the bed and facing the head
of the bed. Example images are shown in Figs 9a and 9b. The
test set contains 38 videos with similar video length and image
resolution, but are collected from a different bedroom of another
participant with a different bed set-up. The participant in the test
set is different from the participant in the training set. Example
images are shown in Figs 9c and 9d.

Based on the participant’s position with respect to the bed, all
images are labeled with a class, either “stay” or “exit,” describing
the participant’s status. To balance the number of the two classes,
we collected videos of 9 scenarios. As it is defined in the previous
sections, some of the baseline models read one image at a time,
while others read a sequence of images as their data input. When
a model reads sequential images, the video data is clipped to a 3-
second length and sub-sampled at a sampling rate of 5Hz, hence
ending up with a sequence of S = 16 images. The label for each
sequence is decided by the label of the last image in that sequence.
For example, if a participant sits on the bed edge for the first few
seconds, and in the last image frame, he/she leaves the bed or lifts
his/her pelvis up from the bed surface, then the whole sequence of
16 images will be labeled as “exit”. The details of the training and
testing sequences are shown in Table 1. As is shown in the table,
there are 38 videos in the test set. If a model input is sequential
data, the model cannot generate results for the first 3 seconds of
that video, because the model has to collect all 16 images before
it starts the inference. For a fair comparison against all models,
the results of the first 3 seconds of the 38 videos are not valid in
the evaluation. Therefore, the frame numbers in Table 1 counts
only the number of valid frames.

(a) (b)

(c) (d)
Figure 9: Example images from the dataset.

Evaluation Metrics
We evaluated the performance of all models using the Accu-

racy metric defined as below:

ACC =
t p+ tn

t p+ f p+ tn+ f n

Our task is a binary classification problem, the images with the
ground-truth label “exit” are called the positive samples, and the
others with the ground-truth label “stay” are called the negative
samples. Accuracy of the test result can be calculated from the
true positive (t p), true negative (tn), false positive ( f p), and the
false negative ( f n) numbers. As described in the HP-BED-dataset
section, some of the models leverage temporal information, so
we ignore the first 3 seconds of each video when evaluating the
accuracy of each model. Table 2 shows the comparison results
between all models. For each scenario, we calculated the test
accuracy of each model, and their t p, tn, f p, f n numbers. For
example, under the scenario of “Stay in bed” with blanket, the
“14+2FC” model gains a test accuracy of 97.0%. Table 1 shows
that all 1109 test cases under the same scenario are negative sam-
ples. Thus, the 33 wrong detection are marked as false positives
( f p) in Table 2.

Results Comparison
As we’ve illustrated in the baseline methods section, model

“14+2FC” and model “59+2FC” inference one image at a time,
while other models, including our proposed method, leverage
temporal information when making predictions.

The last row of Table 2 shows the overall detection accuracy
of our proposed method against other ablation models, and we
observe that our proposed method outperforms the others.

The “Stay in bed” row of Table 2 shows that all models gen-
erate robust detection when the participant stays in bed, especially
when the participant is not covered with any blanket. The main
reason is that when most of the body parts are exposed directly to
the camera, all body keypoints can be easily detected by the Mask
R-CNN network [15]. Another reason is that “Stay in bed” sce-
nario requires less knowledge of the motions. Therefore, models
like “14+2FC” and “59+2FC” that are not leveraging temporal
information can also achieve test accuracies of 97% and 100%,
respectively.

The “Sit on bed edge” row of Table 2 reveals the advan-
tages of temporal-involved models. The “14+2FC” model and
the “59+2FC” model show an accuracy less than 70%. An intu-
itive explanation is that when a person is sitting on the bed edge,
without further information, one can hardly tell if he/she is leav-
ing the bed or staying in the bed. On the contrary, if we have
beforehand information that a participant sits on the bed edge in
the last 3 seconds, most likely he/she will keep sitting on the edge
because he/she is not showing any body movements that indicates
a bed-exit. We observed from the last column that our proposed
model outperforms the “14+2FC” model by approximately 50%
accuracy, and outperforms the “59+2FC” model by 27% accuracy.
Similar tendencies are found with the “16x59+LSTM” model and
the “C3D” model. This result confirms our conjecture that “sitting
on bed edge” cannot be accurately deduced from a single image.

The “Stay←transit→ Exit” scenario contains videos of the
participant switching his/her status, namely leave the bed or enter-
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Table 1: Details of each scenario in HP-BED-dataset.
Dataset No. of

video
sequences

Scenario With
blanket

No.
of se-
quences

No. of
frames

No. of
“Stay”
sequences

No. of
“Exit”
sequences

training &
validation 120

Stay in bed
Yes 15 9811 9811 0
No 18 10944 10944 0

Sit on bed edge
Yes 7 5512 5512 0
No 6 4604 4604 0

Stay <—transit—>Exit
Yes 8 4801 3489 1312
No 23 7302 3693 3609

Fall when exiting bed
Yes 6 4270 1652 2618
No 15 6324 2278 4046

Always not in bed N/A 19 10683 0 10683

test 38

Stay in bed
Yes 2 1109 1109 0
No 2 1228 1228 0

Sit on bed edge
Yes 2 933 944 0
No 3 1309 1309 0

Stay <—transit—>Exit
Yes 5 2426 1388 1038
No 8 2937 1378 1559

Fall when exiting bed
Yes 3 649 260 389
No 4 981 514 467

Out of bed N/A 9 3870 0 3870
Table 2: Test accuracy for all ablation models.

Scenario

Model name
With Accuracy

blanket tp/fp/tn/fn
14+2FC 59+2FC 16x59+LSTM C3D Res3D (Ours)

Stay
Yes

97.0 97.4 100.0 100.0 100.0
in 0/33/1076/0 0/28/1081/0 0/0/1109/0 0/0/1109/0 0/0/1109/0

bed
No

100.0 100.0 100.0 100.0 100.0
0/0/1228/0 0/0/1228/0 0/0/1228/0 0/0/1228/0 0/0/1228/0

Sit
Yes

46.3 68.9 82.5 95.2 96.1
on 0/505/436/0 0/293/651/0 0/165/779/0 0/44/882/0 0/36/908/0
bed

No
30.2 26.2 79.9 73.3 80.9

edge 0/910/394/0 0/966/343/0 0/262/1047/0 0/347/956/0 0/250/1059/0
Stay

Yes
79.7 80.4 86.7 76.0 88.8

<-transit-> 688/142/1245/350 696/132/1256/342 838/122/1266/200 967/512/876/70 833/65/1323/205
Exit

No
81.8 78.4 83.3 67.9 84.9

1131/105/1272/427 1060/133/1245/499 1278/207/1171/281 1559/940/437/0 1331/213/1165/228
Fall

Yes
62.5 69.9 80.1 66 68.2

when 151/5/254/237 206/12/248/183 260/0/260/129 389/220/39/0 255/72/188/134
exit

No
77.1 69.7 77.3 76.7 77.3

bed 285/43/471/181 225/55/459/242 302/57/457/165 467/227/283/0 253/8/506/214
Out of

N/A
53.3 55 80.5 100 87.9

bed 2060/0/0/1803 2130/0/0/1740 3116/0/0/754 3870/0/0/0 3402/0/0/468

Overall Rate
69.2 70 84.8 84.6 87.7

27.9/11.2/41.3/19.4 27.9/10.4/42.1/19.4 37.4/5.2/47.3/9.8 47.0/14.8/37.6/0.4 39.3/4.1/48.4/8.0

ing the bed. We can see from Table 2 that our model outperforms
others under this unpredictable scenario.

The “Fall when exit bed” row of Table 2 shows that the
“16x59+LSTM” model outperforms our proposed method. We
replayed the corresponding videos and found that the Mask R-
CNN detects noisy skeletal keypoints under this scenario. In some
cases, Mask R-CNN can not locate the correct position of the par-
ticipant, especially when the participant is laying horizontally in
the images. Before further processing, the “14+2FC” model, the
“59+2FC” model and the “16x59+LSTM” model filter the noisy

keypoints from Mask R-CNN by selecting the keypoints with the
highest confidence score on the input image. Hence, the “C3D”
model and our proposed behave unstable when most images in
the sequence contain noise. Future works should be focusing on
providing higher quality keypoint inputs.

Though it occurs less frequently, similar noises can be found
in the “Out of bed” scenario. The second last row of Table 2
shows that the “C3D” model and our proposed model are robust
to such noises.

Beyond the previous models, a variant of the 3D convolu-
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tional network[19] is developed to decompose the spatiotempo-
ral convolution process into a (2+1)D convolution. Following the
idea of [19], we reproduce our Res3D model with a R(2+1)D im-
plementation, which uses a single type of spatiotemporal residual
block without bottlenecks. The test result is very similar to our
proposed method; and it runs even slower in Pytorch. Therefore,
we did not list it as an ablation model in Table 2.

Implementation details
We test the inference time of our method using the Pytorch

framework. The input image has a resolution of 640x480, and an
Nvidia GeForce GTX 1070 graphic card is used to speed up the
inference time. Our method takes 0.2 second/image on average
to compute the detection result. It is also the reason that we sub-
sample the video input every 0.2 second.

Conclusion
When one analyzes human activities with Convolutional

Neural Networks, a straightforward solution would be to collect
a huge amount of data that contains a large variance of people
with different bed settings. However, it is unrealistic to collect
extensive data with all types of bedroom set-ups. In this paper,
we proposed BED Net, a novel end-to-end method that lever-
ages state-of-the-art neural-network-based keypoint detection al-
gorithms and uses its output as an intermediary. It helps to trans-
fer the large variance of the RGB images to a narrower domain
so that our method achieves high detection accuracy with a rel-
atively small dataset. By evaluating the ablation methods on the
same dataset, we showed that our method achieves accurate per-
formances and outperforms other methods on both test accuracy
and generalization ability.
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