
Robust Real-Time Heart Rate Measurement from Face Videos
Yang Cheng a, Qian Lin b, Jan Allebach a

aSchool of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, U.S.A.
bHP Labs, Palo Alto, CA 94304, U.S.A.

Abstract
Heart rate, the speed of the heartbeat, has been regarded as

one of the most important measurements to evaluate one’s health.
It can be used to measure one’s anxiety, stress and illness; ab-
normalities of heart rate usually indicate potential disease one
may have. Recent studies have shown that it is possible to directly
measure the heart rate from a sequence of images that contain
a person’s face. Requiring only a webcam, this method largely
simplifies the process of traditional methods, which require the
use of a pulse oximeter attached to the fingertip to measure the
PPG signal, or electrodes placed on the skin to measure the ECG
signal. However, this most recent method, though attracting a
lot of interest, still suffers from sudden movement of the head, or
turning away from the camera. In this paper, we propose a novel
robust method of generating reliable PPG signals and measuring
the heart rate from only face videos in real time, which is invari-
ant to the movement of the head. We have also conducted studies
on how different factors, light conditions, the angle of the head
and the distance of the head away from the camera, could affect
the predictions of the heart rate. After conducting a thorough
analysis, we can conclude that our method succeeds in producing
accurate, robust and promising results.

Introduction
Heart rate measurement is considered as one of the most im-

portant measurements, since it is capable of evaluating one’s anx-
iety, stress and illness. A normal resting heart rate lies within the
range of 60 beats per minute (bpm) to 100 bpm. A resting heart
rate higher than 100 bpm, aka tachycardia, can lead to a possible
heart failure or stroke if left untreated. On the other hand, a rest-
ing heart rate less than 60 bpm, aka bradycardia, could probably
cause a person to experience fatigue or shortness of breath. Un-
til now, a lot of methods can be used to measure the heart rate,
including but not limited to placing fingers on the wrist to count
the number of heart beats in one minute, using a blood pressure
monitor that has the cuff wrapped around the arm, and using an
electrocardiograph. However, these methods are either inaccurate
or inconvenient. Professional devices are helpful for achieving
a more accurate heart rate. But they are undoubtedly cumber-
some; some people do not feel comfortable physically contacting
the device. With the invention of the pulse oximeter, people nowa-
days can simply clip this small device on their fingertip to mea-
sure the heart rate. The main idea behind the pulse oximeter is
photoplethysmography (PPG), which measures the blood volume
changes with the light from an LED, making use of the fact that
the light is more absorbed by the blood than surrounding tissues
[10, 8]. This method is fairly accurate, low-cost, and requires a
simple small device; however, physical contact with the device is
still unavoidable.

Until today, many works have been introduced to avoid the
physical contact [2, 11], and with the explosive growth of deep
learning, many recently proposed methods [5, 13, 7] are now
driven by the large-scale datasets. These methods usually fo-
cus on researching the idea of a remote Photoplethysmogram, or
rPPG. Similarly to PPG, the rPPG signal can be used to detect the
blood volume changes, but is measured by a webcam that captures
the face region instead of a pulse oximeter.

Naturally, several datasets have been collected to facilitate
the development of data-driven methods [1, 6]. These datasets
consist of videos of faces, each of which is accompanied by a
synchronized PPG signal recorded by a professional device, such
as a pulse oximeter.

In this paper, we present our work in measuring the remote
PPG using a deep-learning-based method. We also conduct ex-
periments to analyze the effects of different conditions on the per-
formance of existing methods to show that our method achieves
the best accuracy in predicting the heart rate.

Heart Rate #1 Heart Rate #2
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Figure 1. Illustration of our heart rate estimation system. T denotes the

number of frames that are used to calculate one heart rate reading, f de-

notes the frame rate of the webcam, and k denotes the interval of heart rate

readings in seconds, e.g., k = 1 indicates that one heart rate reading is pro-

duced every second. Because the model needs T frames to produce a heart

rate reading, the subjects need to wait for T frames or T
f seconds to get the

first heart rate reading.

Related Work
To solve the problem of remotely measuring the heart rate,

numerous different methods were proposed, while the majority of
them follows these two steps: (1) extract an 1D signal that con-
tains a strong pulsatile component, and (2) calculate the heart rate
in beats per minute by either counting the peaks existing in the sig-

IS&T International Symposium on Electronic Imaging 2021
Imaging and Multimedia Analytics in a Web and Mobile World 2021 268-1

https://doi.org/10.2352/ISSN.2470-1173.2021.8.IMAWM-268
© 2021, Society for Imaging Science and Technology



Heart
Rate

detect face predict PPG predict hear rate

A video clip with a
length of T frames

A sequence of face
images with a length of T Predicted PPG with a size of 2T Heart rate in bpm

Figure 2. Overview of the system for predicting the heart rate from a video clip.

nal or locating the dominant frequency by conducting frequency
analysis on the signal. Traditional methods include chrominance-
based rPPG [2] and plane-orthogonal-to-skin (POS) [11]. Re-
cently, many deep-learning-based methods have emerged. Niu et
al. [5] proposed a spatial-temporal map to measure the heart rate.
Yu et al. [13] proposed a 3D-CNN network to predict the heart
rate and used the negative Pearson correlation as the loss function
to train the network.

Methodology
Suppose that there is a webcam that is capable of capturing

still images of the face at f frames per second (FPS), our method
then estimates one measurement of heart rate from the video clip
of T frames. If we denote k as the interval of heart rate readings in
seconds, then one heart rate reading is produced every k seconds.
The overall system is illustrated in Figure 1.

Our method of estimating the heart rate from a video clip of
T frames can be summarized into a three-step process: (1) detect-
ing the face that appears in every frame of the video and assigning
a bounding box that encloses the face region, (2) using our trained
model to predict the plethysmograph (PPG) from the sequence of
face images, and (3) conducting frequency analysis on the sig-
nal to calculate the heart rate. Figure 2 illustrates the system for
predicting the heart rate from a video clip of T frames.

Face Detection
The very first step of detecting the heart rate is to locate the

face region where the color variation of the skin can be extracted.
We adopted MTCNN [14] with pre-trained weights to detect the
face that appears in the video. An illustration of the face region
detection is shown in Figure 3. To further improve the efficiency
of our method and reduce detected face bounding box’s jittering,
we chose not to detect the face in every frame; instead, we applied
MTCNN on the nth frame once and use the detected bounding box
to crop the following n+ 1th, n+ 2th, . . . , n+X th frames, where
X depends on the frame rate of the camera. If we assume that a
person’s head should stay relatively still within 0.1 seconds, then

X = b0.1×FPSe (1)

where b·e denotes rounding to nearest integer. After the face re-
gions of all frames in the video are determined, they should be
cropped out from the frames to be used by the PPG prediction
model.

PPG Prediction
After T consecutive face images have been collected, their

color space is firstly linearized, and then converted from RGB to
L∗a∗b∗ (reference white: D65). A previous study by Yang et al.

MTCNN Face Detection

Figure 3. Face detection was applied to remove any irrelevant background.

[12] showed that it is the image intensity that is primarily affected
by the head movement instead of the image chromaticity. There-
fore, by considering only the chromaticity channels a∗ and b∗,
we should be able to minimize the loss in accuracy caused by the
head movement. The L∗, a∗ and b∗ channels of a face image are
shown in Figure 4.

Figure 4. The L∗, a∗ and b∗ channels of a face image. A previous study

showed that it is the image intensity that is primarily affected by the head

movement instead of the image chromaticity.

As illustrated in Figure 5, our PPG prediction model is ca-
pable of predicting a PPG signal of 2T samples from a video clip
of T frames, i.e., if the frame rate of the video clip is f , then the
sampling frequency of the output signal is 2 f . The details of our
model will be discussed in PPG Prediction Model section. To de-
termine the exact value of T , we should consider how it would
affect the predicted heart rate. It should not be set too large, oth-
erwise the sudden change of the heart rate might not be captured,
aka poor time resolution. But it also should not be set too small, or
the predicted heart rate might not be accurate, aka poor frequency
resolution. Our setting of T differs in the training stage and the
inference stage, which will be discussed in the Experiments sec-
tion.

Heart Rate Calculation
To extract the heart rate from the PPG, we apply the Fourier

Transform to the signal to represent it in the frequency domain.
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Figure 5. Our model is capable of predicting a PPG signal of 2T samples

from the video clip of T frames in the a∗ and b∗ channels.

A band-pass filter is then applied to filter out any frequency that
is below 0.9 Hz or above 3 Hz, since a normal person’s heart rate
is usually within the range from 54 bpm (beats per minute) to
180 bpm. Lastly, the dominant frequency, the frequency which
corresponds to the highest peak, is chosen as the heart rate. The
process is illustrated in Figure 6.

A stack of PPG signals spectrogram

Fourier
Transform

Figure 6. The spectrogram is formed by taking Fourier Transform of each

of the PPG signals. The dominant frequency is chosen as the heart rate.

PPG Prediction Model
We designed a 3D-CNN [4] network structure that is suit-

able for predicting an 1D output (PPG signal) from a 3D input
(video clip) and it performs better than existing methods in prac-
tice. Also, the network is lightweight enough for being used in
real time. It takes only 0.2 seconds to predict one measurement of
the heart rate from a video clip, thus making it satisfy the require-
ment of one heart rate reading per second. Figure 7 shows our
network structure. Although not fully detailed, it illustrates the
main ideas used in our network design. To simplify the plot, the
number of feature channels is ignored. In the figure, T represents
the size in the time dimension; N represents the size of the fea-
ture maps. For example, in the input video clip, T is the number
of frames and N is the size of the frames; in the output, T is the
number of samples in the PPG signal and N = 1.

The 3D-CNN network shown in Figure 7 resembles the U-
Net network structure [9], but it is the size in the time dimension
that is downsampled and upsampled, not the feature map size as
in U-Net. The paths, represented by the green right arrows, follow
the typical structure of a convolutional neural network (CNN) to
extract the high-level features while keeping the size in the time
dimension unchanged. Another path, represented by the blue ar-
rows, is the contracting path where the size in the time dimension
of the feature maps and the size of the feature maps are downsam-
pled at the same time. The purpose of downsampling in the time
dimension is to reduce any temporal noise and redundancy [13].
The last path, represented by the red up arrows, is the expansive
path where the features are upsampled in the time dimension to

reconstruct the PPG signal. The high-level features are combined
with the upsampled output by the add operator in the expansive
path, so that high-level features obtained from features at differ-
ent temporal scales are all included. To downsample the size of
the feature maps or the size in the time dimension, we apply the
Max Pooling operator; to upsample the feature maps in the time
dimension, we use Transposed Convolution [3].

input

output

Figure 7. The 3D-CNN network structure for predicting PPG from the video

clip.

Experiments
Dataset

To train, validate and test our PPG prediction model, we used
the public dataset named UBFC-RPPG Dataset [1]. To further
study how the head movement and the lighting condition affect the
prediction accuracy, we collected our own dataset. An overview
of these two datasets is shown in Table 1.

UBFC-RPPG Dataset [1] is one of the public datasets that
is specifically for rPPG analysis. The videos were recorded using
a Logitech C920H HD Pro webcam at 30 FPS with a resolution
of 640×480 in uncompressed 8-bit RGB format. Corresponding
PPG signals were recorded using a CMS50E pulse oximeter with
a sampling frequency of 60 Hz. It consists of two sub-datasets
that differ from how subjects were asked to behave during record-
ing. The first sub-dataset contains 8 videos and each video has
a length of approximately 80 seconds. Subjects were asked to
sit still and be relaxed. The second sub-dataset includes 42 1-
minute-videos, and subjects were asked to play a time sensitive
mathematical game.
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Table 1: An overview of two datasets used.

UBFC-RPPG Dataset Our Own Dataset

PPG Recording Device CMS50E Pulse Oximeter / 60 Hz CMS50D+ Pulse Oximeter / 60 Hz

Video Recording Device
Logitech C920H HD Pro /

30 FPS / 640×480 / Uncompressed
Logitech C930E /

30 FPS / 640×360 / JPEG
Lighting Conditions Natural Light Ranging from 2700 K to 5000 K

Contains Head Movement? No Yes
Subjects Relaxed / Playing Math Games Relaxed

Our Own Dataset: To evaluate our model and compare it
further with existing methods in more complex settings, we col-
lect our own dataset which contains some different settings: vary-
ing lighting conditions, with/without head movement. The videos
were recorded using a Logitech C930E at 30 FPS with a resolution
of 640×360 in JPEG format, and the length of each video is about
1 minute. The PPG signals were recorded using a CMS50D+
pulse oximeter with a sampling frequency of 60 Hz.

Training the Model
To train the model, the dataset was pre-processed so that each

video clip consists of 96 face images, i.e., T = 96. Then the color
temperature of the video clip was randomly changed to simulate
different lighting conditions. After that, the color space of the
video clip was converted from RGB to L∗a∗b∗ and only the a∗

and b∗ channels were kept. Finally, each frame of video clips was
resized to 128× 128, i.e., the input dimension is 96× 2× 128×
128. The output dimension is then 192×1. In the training stage,
the Adam optimizer was used, the learning rate was set to 0.001
and the number of epochs was set to 40.

Loss Function
We adopted the Negative Pearson Correlation used in [13] as

the loss function to train the network. If x is the ground-truth PPG
signal, x̂ is the predicted PPG signal, and N is the length of the
signal, then the loss function is given by

L = 1− ∑
N
t=1
(
x̂t − ¯̂x

)
(xt − x̄)√

∑
N
t=1
(
x̂t − ¯̂x

)2
√

∑
N
t=1 (xt − x̄)2

(2)

Testing the Model
To test the model, we pre-processed the input video so that

each video clip consists of 320 face images, i.e., T = 320. Under
this setting, the subjects only need to wait for 320

30 ≈ 10.67 sec-
onds to get their first heart rate reading on a webcam running at
30 FPS. Then the color space of video clips was converted from
RGB to L∗a∗b∗ and only the a∗ and b∗ channels are used. Lastly,
each frame of video clips was resized to 128×128. Therefore, the
dimension of the input, or the video clip, is 320×2×128×128,
and the dimension of the output, or the PPG signal, is 640×1. Fi-
nally, to retrieve the heart rate from the PPG signal, we compute
the Fourier Transform to locate the dominant frequency. How-
ever, to ensure that the frequency resolution is 1 bpm or 1

60 Hz,
we zero padded the predicted PPG signal so that it has 3600 sam-
ples, then the frequency resolution is given by ∆ f = 60

3600 = 1
60

Hz, assuming that the frame rate of webcam is 30 Hz, so the sam-

pling rate of the predicted PPG signal is 60 Hz, since our model
is capable of predicting a PPG signal of 2T samples from a video
clip of T frames.

Metrics
To make the performance results more intuitive, we applied

frequency analysis on both the ground truth and the predicted PPG
to extract the heart rate measurements.

Let y ∈ RN be the vector of ground truth heart rate measure-
ments in bpm from a video, ŷ ∈ RN be the vector of predicted
heart rate measurements in bpm, and N be the number of heart
rate measurements from a video. The following two metrics were
used to evaluate the methods:

• Root mean square error (RMSE):

RMSE =

√
∑

N
t=1 (ŷt − yt)

2

N
(3)

• Mean absolute error (MAE):

MAE =
∑

N
t=1 ‖ŷt − yt‖

N
(4)

Table 2: Performance comparison of existing methods and our
method on the second sub-dataset in the UBFC-rPPG dataset.

RMSE MAE

POS [11] 6.92 3.77
Ours 5.03 3.00

Table 3: Performance comparison for the effect of head move-
ment.

w/o head movement w. head movement

RMSE MAE RMSE MAE
POS 0.62 0.37 3.91 2.15
Ours 0.76 0.56 1.64 0.82

Results
To compare the performance of an existing method and our

method, we used them to predict the heart rate in videos from
the second sub-dataset of UBFC-rPPG dataset, and compared it
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Table 4: Performance comparison for the effect of lighting conditions

2700 K 3300 K 3900 K 4500 K 5000 K

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
POS [11] 1.03 0.58 2.01 1.04 2.45 1.03 2.49 1.41 0.62 0.37

Ours 1.03 0.57 1.32 0.88 1.38 0.81 1.89 1.02 0.76 0.56

with the ground truth to calculate the root mean squared error
(RMSE) and the mean absolute error (MAE). Table 2 shows that
our method achieves better results for predicting the heart rate
than POS [11] does.

To further analyze whether or not our method still achieves
the best results under more complex situation, we designed exper-
iments using our own dataset to show if the following conditions
affect the performance of methods or not:

• with/without head movement
• varying lighting conditions

To study the effect of head movement, the subjects were
asked to measure the heart rate with their head still, then mea-
sure again with their head moving. The color temperature was
fixed at 5000 K; the subjects were close to the webcam and they
were relaxed. Table 3 shows that our method is much less affected
by the head movement.

To study the effect of varying lighting conditions, the sub-
jects were asked to measure the heart rate 5 times at 2700 K, 3300
K, 3900 K, 4500 K and 5000 K. They were asked to keep their
heads still, sit close to the webcam, and be relaxed. Table 4 shows
that our method is less affected by the varying lighting conditions.

Conclusion
In this paper, we presented a method to predict the heart rate

of a person robustly by simply using a webcam without physically
contacting the person. We created our own dataset and conducted
experiments to investigate the effects of head movement, varying
lighting conditions and distance from the webcam on the perfor-
mance of our method. The results show that our method achieves
a better accuracy of measuring the heart rate, and is less affected
by complex conditions.
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