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Abstract
In this paper, we propose a novel system for remotely esti-

mating the respiration rate of people. Periodic inhalation and
exhalation during respiration cycles induce subtle upper body
movements, which are reflected by the local image deformation
over time when recorded by a digital camera. This local image
deformation can be recovered by estimating the optical flow be-
tween consecutive frames. We propose the usage of convolutional
neural networks designed for general image registration to es-
timate the induced optical flow, the periodicity of which is then
leveraged to obtain the respiration rate by frequency analysis.
The proposed system is robust to lighting condition, camera type
(RGB, infrared), clothing, and posture (sitting in chair/lying in
bed); and it could be used by individuals with a webcam, or by
healthcare centers to monitor the patients at night.

Introduction
Vision-based estimation and monitoring of vital signs, in-

cluding heart rate (HR), blood pressure (BP), respiration rate
(RR), and body temperature, has gained increasing attention in
the past few years, thanks to the advances in digital cameras and
computing power [1].

In particular, the remote measurement of RR has proven crit-
ical in clinic settings including the prevention of respiratory im-
pairment in the post-anesthesia care unit [2], early detection of
abnormal respiratory rhythm in the neonatal intensive care unit
[3, 4], and rapid and reliable assessment of patient in the emer-
gency triage room for lowering the workload of nurses [5]. More-
over, systems and mobile applications have also been developed
for RR monitoring during stationary bike telerehabilitation ses-
sions in home settings [6], and for outdoor usage in mobile situa-
tions [7].

Traditional RR estimation methods, for example respiration
belts or nasal probes, usually require the subject to stay rela-
tively stationary during measurement, and wear the equipment
with wires, which may cause discomfort and disturb the natural
breathing pattern. And often times, special trainings are necessary
to faithfully perform the measurement and obtain reliable read-
ings. On the contrary, vision-based techniques are unobtrusive,
contact-free, and are able to deliver real-time RR reading simply
by recording via a regular webcam or thermal imager without ex-
tra hardware or operations.

In this paper, we propose a novel vision-based system for re-
mote RR estimation by individuals with a webcam, or by health-
care centers to monitor the patients. Our method has the following
contributions:

1. Our method is based on general image registration, which
could be applied to any type of camera videos (RGB, near
infrared, thermal), as long as there are visually noticeable
changes in consecutive frames.

2. Our method can be used with customer level RGB cameras,
which are more affordable than thermal imagers.

3. Our method does not depend on a remote photoplethysmog-
raphy (rPPG) signal and directly estimates the motion of
body, which is easy to implement and does not require a
lot of tuned parameters.

4. Our method uses convolutional neural networks (CNN) for
estimating the optical flow, which is robust to clothing, pos-
ture, and lighting conditions.

This paper is structured as follows. First, related works us-
ing vision-based techniques for remote RR estimation will be re-
viewed. Next, we give a detailed description of the proposed pro-
cessing pipeline. Error analysis and ablation study will be per-
formed on public datasets. Finally, we demonstrate that our C++
implementation can achieve real-time RR estimation with a de-
cent GPU.

Related works
RR estimation using a thermal imager

Traditional RGB cameras collect photons reflected from ob-
jects for imaging in the visible range, while thermal imagers vi-
sualize emissive radiation from objects, which do not require ad-
ditional lighting sources. The alternating cold and warm air flows
through the nasal passages during inhalation and exhalation cy-
cles have distinct thermal signatures, and this periodic tempera-
ture change can be leveraged for RR estimation.

Algorithms developed for RR estimation using a thermal im-
ager usually start with manual initialization of the region of inter-
est (ROI) [2, 5, 6, 7, 8, 9], or automatic detection of the nostril
region [10]. Next, the subject is either asked to remain still [9], or
the ROI is tracked by image registration [11] based on minimum
eigenvalue features [12], off-the-shelf trackers [13, 14], gradient-
based normalized cross-correlation [7], template matching [5], or
a pan-tilt mechanism [6].

Next, the respiration signal can be recovered from the ther-
mal footprints by either simply looking at a single point of interest
[5], or taking the averaged pixel brightness within the tracked ROI
[2, 6, 8, 10]. More sophisticated methods for respiration signal ex-
traction include thermal voxel integration [7] over the nostril cross
section, or reconstructing the minimum-temperature envelope for
all brightness-varying pixels inside the ROI [9].

Finally, from the constructed respiration signal, the RR is
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calculated by peak-counting in the temporal domain [5, 8, 9], or
by peak-detection in the Fourier spectrum after a band-pass filter-
ing [6]. Alternatively, methods including short-time autocorrela-
tion function estimation [7, 15] and sliding short-window analysis
[2, 10] can deliver time-dependent RR over time after proper win-
dowing.

Although RR estimation using a thermal imager has the ad-
vantage of direct temperature measurement, and can be deployed
in total darkness without any additional illumination source, it
also suffers from several drawbacks. One critical aspect for the
faithful construction of respiration signal is the proper detection,
tracking, and alignment of the nostril region. Most of the current
methods still rely on manual selection of the ROI and tracking
based on hand-picked features, and they can only deal with the
subject looking directly into the thermal imager in laboratory set-
tings. However, in real world scenarios, motions like head turn-
ing, sleeping on stomach or side, switching between nasal breath-
ing and mouth breathing may cause misalignment or loss of the
ROI. Moreover, while typical costs for a spirometer for breath
monitoring at home are below $100 and respiration belts for clin-
ical usage are below $500, even an entry-level thermal imager
with limited pixel resolution costs more than $500, preventing its
wider usage for RR estimation.

RR estimation using an RGB or NIR camera
RGB and near-infrared (NIR) cameras of customer level

quality have both been used by previous researchers to estimate
RR, as a cheaper alternative to the thermal imagers.

Methods based on brightness changes
One way to extract the respiration signal from RGB videos

is to directly look at the values in the 3 color channels. During
respiration cycles, reflected light from the moving chest wall is
collected by the RGB camera, and the brightness in each color
channel varies periodically with the chest movement. Massaroni
et al. [16, 17] proposed an algorithm to extract the image bright-
ness variation around the neck region, and constructed a respira-
tion signal as the total brightness sum of the pixels with top 5%
brightness variations over time. The RR was then calculated from
a simple zero-crossing counting of the signal, and compared with
sound waves captured by a headphone. Similarly, Jorge et al. [3]
looked at the color variation on the back skin of newborn babies
in clinical settings. Frame-wise brightness differences were ac-
cumulated within segmented skin regions over every 10-second
window as the respiration signal. The RR was then estimated
by a 5-th order auto-regressive model [18], and compared with
impedance pneumography. Although methods based on bright-
ness changes of RGB cameras are usually straight-forward, they
rely heavily on accurately determining the skin region, and may
suffer when the ambient lighting is not optimal.

Methods based on remote photoplethysmography (rPPG)
Another popular approach to construct the respiration signal

is to leverage algorithms already developed for rPPG. Although
rPPG was principally developed for measuring the heart rate [1],
RR can be calculated from the rPPG signal by relatively sophis-
ticated methods. van Gastel et al. [4] argued that as respiration
causes blood pressure variations, the volume in the veins is also
affected such that the rPPG signal is modulated in frequency,

amplitude, and overall shape. By applying color transforming
weights for RGB or NIR images [19, 20], the rPPG signal is con-
structed, and the RR can be detected in the lower range (10-40
breaths/min) of the Fourier power spectrum after proper scaling.
More recently, Wei et al. [21] proposed the usage of blind source
separation [22] to detect both RR and HR from the decomposi-
tion of a 6-channel input signal. The concatenated input signal
consists of the spatially averaged RGB values from the mouth
and neck regions over time. Finally, the RR was estimated from
the frequency domain by a peak detector. Systems with NIR or
night-vision cameras are of particular interest for RR estimation
in dark settings, where lighting is usually limited or undesired. A
Eulerian video magnification (EVM) framework [23] was utilized
by He et al. [24] to magnify the illumination changes caused by
blood flow and breathing in a small area around the neck region
in NIR videos. The resulting RR from frequency analysis was
compared with a respiration belt. Algorithms in this category typ-
ically deliver HR and RR in one shot, and can be used with NIR
cameras at night. However, they usually involve extensive hand
tailoring of parameters and carefully-tuned thresholds along the
processing pipeline.

Methods based on optical flow
Alternatively, respiration signal can also be extracted from

body motions induced by respiration cycles. Lin et al. [25] es-
timated the vertical chest motion over respiration cycles, and the
median of the optical flow at each time step was extracted as the
respiration signal. The number of completed respiration cycles
was identified by counting zero-crossings. The proposed method
was demonstrated for both sitting-up and lying-in-bed settings,
and was compared with a respiration belt. Similarly, Chatterjee
et al. [26] proposed an iterative algorithm to estimate the prin-
ciple flow field around the thoraco-abdominal region in online
mode. The respiration signal was constructed from the phase-
synchronized principle flow field for every 12-second window.
The dominant frequency in the Fourier spectrum of the signal was
taken as the RR and compared with impedance pneumography.
However, both algorithms were based on the vanilla optical flow
method [27], which could only estimate the motion along the lo-
cal brightness gradient. If the subject wears clothes of less visible
texture, or if the video is contaminated with noise due to poor
ambient lighting, the estimated optical flow might not describe
the body motion faithfully.

Method
Benchmark datasets

For proof-of-concept demonstration and error analysis, we
chose two public datasets. Please note that, in those two datasets
RR and HR are both provided as the ground truth, but the latter
was not used in the current study. Sample frames from the datasets
are shown in Figure 1.

COHFACE dataset
In the COHFACE dataset [28], subjects were asked to look

into a RGB webcam connected to a laptop for approximately 60
seconds. The dataset consists of 40 individual subjects, and each
subject recorded 4 videos under different conditions (lighting, res-
piration pattern, etc.). There are 160 video clips in total with si-
multaneous thoracic stretch measured with a respiration belt (Fig-
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ure 1-b). The ground truth RR for each video is obtained from the
PSD of those belt measurement over the entire 60 s, assuming a
constant RR. The videos in this dataset suffer from severe com-
pression artifacts, and show structured noise in the background.

Sleep dataset
As a complementary imaging modality, the Sleep dataset

[29] consists of 28 60-second video clips where subjects were
lying in a bed in laboratory setting. A dual-camera imaging sys-
tem was used to simultaneously capture thermal and NIR videos.
The ground truth of RR was obtained by a qualified human ob-
server. The thermal videos in this dataset were not in the raw
single-channel format (temperature) from the thermal imager, but
rendered in false RGB color (Figure 1-d). Therefore, only the
NIR videos are used for current study.

Working principle
Periodic inhalation and exhalation during respiration cycles

are associated with volume changes of lungs, as well as the ex-
pansion and contraction of the anteroposterior diameters of the
rib cage and abdomen [30]. Among traditional respiration mea-
surement techniques, impedance pneumography directly captures
the volume changes, while other respiration belts with accelerom-
eters, force sensors, or pressure sensors are designed to sense the
motions of the chest wall.

When imaged by a digital camera over time, the periodic mo-
tions of the chest wall and upper body are reflected by the local
image deformation between consecutive frames. In principle, any
image registration techniques designed to restore local deforma-
tions should capture periodic changes in the deformation matrix
when applied to such videos. The overall processing steps of the
proposed algorithm are shown in Figures 2 (a)-(f), which will be
introduced in the following sections.

FlowNet for optical flow estimation
Optical flow

When first introduced in the 1980s, optical flow was used to
describe brightness variation in an image by analogy with a flow

Figure 1. Sample frames from the public datasets used in the current study.

field [27]. Let E(x,y, t) be the brightness at the point (x,y) in the
image at time t. By analogy to the Navier-Stokes equations, the
conservation equation of image brightness during motion of the
pattern is

DE
Dt

= ∇ · (E~u)+ ∂E
∂ t

=
∂E
∂x

u+
∂E
∂y

v+
∂E
∂ t

= Exu+Eyv+Et = 0
(1)

under the assumption of local coherent and rigid motion. Here D·
D·

denotes the total (material) derivative, and ~u = (u,v) is the local
velocity (displacement) vector. At each pixel, the local brightness
gradient (Ex,Ey) and temporal derivative Et can be determined
from the image sequence, which further gives the projected ve-
locity along the local brightness gradient (Ex,Ey) as

Upro jected =
−Et

|(Ex,Ey)|
=

−Et√
E2

x +E2
y

(2)

Sample results are shown in Figures 3 (a)-(d). Please note how
vectors are only visible where local gradient is large, and the vec-
tors are always along the local brightness gradient regardless of
actual motion directions.

To fully solve the under-determined system and obtain the
two unknowns ~u = (u,v), Lucas et al. [11, 31] proposed to form
an over-determined system by assuming all pixels in a 3× 3
neighborhood S share the same local displacement. The over-
determined system can be solved by a simple least-square fitting

~u =

[
u
v

]
=

[
∑i(E2

x )i ∑i(ExEy)i

∑i(EyEx)i ∑i(E2
y )i

]−1 [−∑i(ExEt)i
−∑i(EyEt)i

]
(3)

Figure 2. Processing steps of the proposed RR estimation algorithm.

IS&T International Symposium on Electronic Imaging 2021
Imaging and Multimedia Analytics in a Web and Mobile World 2021 267-3



Figure 3. Example outputs of different optical flow methods (first row: vanilla optical flow, second row: Shi-Lucas-Kanade, third row: FlowNet), all during

representative inhalation and exhalation cycles. Please note that for vanilla optical flow and FlowNet the per-pixel results were interpolated onto 16×16 grids for

better visual presentations.

where i ∈ S denotes all pixels in S centered at the pixel of interest.
However, both the vanilla optical flow method and the improved
Lucas-Kanade method heavily depend on the local brightness gra-
dients to be prominent for reliable estimation. As a common prac-
tice, those methods are only applied to regions identified by some
pre-processing methods[12], e.g. a Harris corner detector. Figure
3 (e-h) show example outputs from the Shi-Lucas-Kanade method
in OpenCV [32]. The threshold for feature detection was set ex-
tremely low to track more feature points. Please note that only
very few vectors are visible over the black T-shirt where less tex-
ture is available.

FlowNet
An alternative approach for reliably estimating the local im-

age deformation is to utilize a CNN. In recent years, CNNs have
proven successful in several aspects of computer vision, includ-
ing image classification [33, 34], object detection [35, 36], pose
estimation, and action recognition [37, 38], as well as dense pre-
diction tasks like semantic and instance segmentation [39, 40],
and optical flow estimation [41, 42].

Here, we propose the usage of pre-trained FlowNet2SD
(small displacement) network [43] implemented in PyTorch [44]
from NVIDIA for extracting respiration signals from the periodic
upper body movement. FlowNet [41] takes one pair of input im-
ages, and predicts the local displacements at each pixel. It has an
encoder-decoder architecture that consists of two distinct parts:

1. A contraction part that first extracts feature representations
from two input images and reduces the spatial resolution
through consecutive convolution, activation, and pooling

layers. Then, the two feature maps are passed to a cross-
correlation layer that recovers the spatial correspondence
between two input images. The joint feature maps then go
through deeper ConvLayers for higher levels of feature en-
coding.

2. An expansion part that takes the joint feature maps from the
contraction part as input, and gradually predicts the local
deformation vectors and recovers the spatial resolution by
consecutive upconvolution and unpooling layers. Skip con-
nections to the corresponding feature maps from the con-
traction part at each resolution level are also used for better
preservation of fine local details.

Although the original FlowNet was trained on artificially
generated unrealistic datasets (for example, flying chairs rendered
on an arbitrary background), we shall see later it can recover op-
tical flow from real-world videos, thanks to the strong feature ex-
traction and representation power of CNNs. The dense prediction
of optical flow from FlowNet is shown in Figures 3 (i)-(l) for vi-
sual comparison with the two other methods.

Detectron2 for segmentation mask
Optionally, we have integrated a person detec-

tion and segmentation module. We opted to use the
mask_rcnn_R_50_FPN_1x pretrained model from the De-
tectron2 [45] model zoo. The PyTorch implementation of
Mask R-CNN [39] has a multi-scale feature pyramid network
[36] based on a 50-layer ResNet [46] backbone. When the
segmentation mask is used, the optical flow is only gathered
within the person region in each video frame (Figure 2-c).
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The segmentation mask was introduced mainly to suppress
the background noise (Figure 2-d) for error analysis on the CO-
HFACE dataset due to its video compression issue. For direct RR
estimation in the live mode, the segmentation mask is not nec-
essary thanks to the compression-free and high-quality streaming
video directly from a webcam.

Extract RR from the optical flow
The averaged value of the optical flow was calculated from

each frame as the respiration signal (Figure 2-e). Depending on
the posture of the subject and orientation of the camera, either the
horizontal or vertical motion gives a stronger respiration signal
with higher signal-to-noise ratio (SNR). For error analysis, we
simply take the vertical component, as it is the primary movement
for subjects in both benchmarking datasets.

In previous works, RR was estimated from the constructed
respiration signal by simply counting peaks and zero-crossings
in the temporal domain, or by frequency analysis via the power
spectral density (PSD). In the current work, we follow the second
route and obtain the PSD by fast Fourier transform after padding,
Han-windowing, and mean-subtraction of the respiration signal.
The dominant frequency in the PSD within the range of 2-40 bpm
is identified as the RR (Figure 2-f).

Experiments
To quantitatively evaluate the accuracy of the proposed

method, we perform an error analysis and ablation study on the
two benchmark datasets. More specifically, we look for opti-
mal design parameters including frame rate, video resolution, and
video duration. We also test the effectiveness of optical flow
method, ROI filtering, and RR estimation method. Performance
metrics with representative parameters are shown in Figure 4.

Performance metrics

Figure 4. Representative performance on benchmark datasets. (a) Esti-

mated RR vs. ground truth (GT) values. (b) Bland-Altman plot, where the

numbers from top to bottom are mean + 1.96 std., mean, and mean - 1.96

std., respectively.

We report the following performance metrics as convention-
ally used by previous researchers in this field [2, 4, 5, 7, 10, 16,
17, 21, 25, 26, 28, 29]:

1. Pearson’s correlation coefficient (ρ). We plot the estimated
RR (REST ) against the ground truth RR (RGT ) in Figure 4(a),
and obtain their Pearson’s ρ via

ρ =
cov(REST ,RGT )

σEST σGT
(4)

where cov(REST ,RGT ) is the covariance, and σEST ,σGT are
the standard deviations.

2. Root mean square error (ε). We plot the differences be-
tween REST and RGT against the mean of the two as a Bland-
Altman plot [47, 48] in Figure 4(b), and calculate the RMSE
as

ε =

√
∑

N
i=1(REST,i−RGT,i)2

N
(5)

where N is the total number of video clips in each dataset.

Experiments on optimal parameters
In this section we experiment on several technical details of

the proposed algorithm. Today’s digital cameras of customer level
typically have a video resolution from 480p to 1080p, and can
usually achieve a frame rate of 30 Hz. However, it is not neces-
sary to feed all the frames at full resolution to the CNN, as the
computational cost might be unaffordable. Moreover, for online
processing of live video, it is desirable to use shorter temporal
window for RR estimation to achieve a faster response and lighter
computational overhead.

Effect of frame rate
As the RR for a healthy adult is typically around 0.1-0.5 Hz

(10-30 bpm), it is possible to skip camera frames for RR esti-
mation to save computational cost. To determine the optimal time
interval between consecutive frames to feed to CNN, we manually
skip 0, 1, 4, 9, 19, and 29 frames to achieve equivalent sampling
rate of the optical flow at 20, 10, 5, 2, and 1 Hz, respectively.

The results for the performance metrics are shown in Fig-
ures 5 (a) and (d). Both the correlation coefficient and RMSE
have the best performance when the optical flow is sampled at
around 4 Hz. When the sampling rate is too low, the respira-
tion signal could not be constructed faithfully according to the
Nyquist theorem. On the other end, optical flow requires the lo-
cal displacement between consecutive frames to be adequate for
reliable image registration. However, at a high sampling rate the
displacement information and noise will be on the same order of
magnitude, which explains the compromised performance.

When adequate computational resources are available, it is
possible to construct the respiration signal at the live video frames
per second (FPS, e.g. 30 Hz) while maintaining the optimal time
interval (e.g. 0.25 s) by extracting optical flow between every
frame (at 30 Hz) and its (0.25-s) delayed counterpart.

Effect of video resolution
As FlowNet delivers per-pixel local optical flow estimation,

a pair of 480p frames results in more than 300k vectors at each
time step, which are more than adequate to estimate the averaged
flow velocity for the entire frame. Therefore, we resized the 480p
videos from both datasets by bilinear interpolation, such that the
shorter frame length is 480, 384, 288, 192, and 96. To make a
fair comparison and maintain roughly the same total number of
vectors for each frame, we resample the optical flow at 8×8, 6×
6, 5×5, 3×3, 2×2 grid points for each resolution, respectively.

The results for the correlation coefficient and RMSE are
shown in Figures 5 (b) and (e). Both metrics are at their best
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Figure 5. Correlation coefficient (first row) and RMSE (second row) as functions of (first column) sampling rate, (second column) video resolution, and (third

column) temporal window. The red stars correspond to the parameters used for Figure 4.

when the videos are processed at the original resolution, as ex-
pected. As the video resolution shrinks, the metrics first remain
relatively stable, and then degradate quickly only after the reso-
lution is smaller than about 1/4 of the original resolution. It is
therefore possible to obtain reasonable RR estimation at reduced
resolution (e.g. 320p) for lighter computational cost.

One could use all 300k vectors to construct the respiration
signal. However, we found that it only marginally improves the
performance over the 8×8 resampled flow field, while adding 64
times undesired memory cost.

Effect of temporal window duration

The video clips in both datasets have a length of 60 seconds.
However, it is not necessary to use the full video for a reliable
RR measurement. We demonstrate this idea by windowing and
clipping the complete respiration signal to 5 s, 10 s, 20 s, 30 s,
40 s, 50 s, and 60 s shorter durations aligned at the centers with
the original signal. The windowed signal is then padded to the
original length for comparable resolution in PSD.

The RR is then obtained from those shorter waveforms and
compared with the ground truth, as shown in Figures 5 (c) and
(f). When the entire respiration signal is used for RR estima-
tion, the correlation coefficients are at the highest and RMSEs are
at the lowest, since more information is used to obtain the PSD.
Comparable performances can be achieved using as short as a 30-
second-windowed respiration signal. Even with a 10-s signal, the
correlation coefficients are still higher than 0.8, with the RMSEs
staying below 2.5 bpm.

For constant RR, it is always more accurate to use a longer
respiration signal for estimation, while in real-world applications,
it is desirable to use a short temporal window for faster response
in live estimation mode, especially when the RR varies with time.

Ablation study
In this section we experiment with alternative components

along the processing pipeline. To be more specific, we evaluate
the performance of traditional optical flow methods, we demon-
strate the effect of ROI filtering, and finally we compare frequency
analysis with temporal analysis for RR extraction. The results are
shown in Figure 6.

Performance of traditional optical flow methods
We obtain the optical flow with the optimal sampling rate,

video resolution, and temporal window using the vanilla optical
flow method, and the Shi-Lucas-Kanade method implemented in
OpenCV. We then mask the optical flows with a segmentation
mask and extract the RR from the PSD, as in the proposed work
flow. The comparison with FlowNet is shown in Figures 6 (a) and
(d).

The vanilla optical flow method has poor performance due
to its incapability of capturing the actual flow directions, while
the FlowNet method out-performs the Shi-Lucas-Kanade method
by a small margin. With careful parameter tuning for the corner
detector and feature tracker, the Shi-Lucas-Kanade method still
proves to be a powerful alternative, considering its lighter compu-
tational cost. But here, the Shi-Lucas-Kanade method also bene-
fits from the segmentation masks predicted by the CNN. In a sep-
arate experiment, the correlation coefficient and RMSE drop to
0.85 and 2.80 bpm, respectively, on the Sleep dataset when there
are no pre-defined ROIs.

Effect of ROI detection
The construction of the respiration signal can benefit from

pre-defined ROIs identified by CNN. More specifically, one can
mask out the regions where motions are not introduced by respira-
tion to suppress noise. We evaluate its effectiveness by exploring
two variants: 1) using only the regressed bounding box and tak-
ing all vectors within the box for respiration signal construction;
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Figure 6. The effects of (first column) optical flow method, (second column) filtering mask, and (third column) RR extraction method on the correlation coefficient

(first row) and RMSE (second row).

2) using the densely predicted segmentation mask at each pixel
to determine if a vector is kept for signal construction. In gen-
eral, person detection and bounding box regression require less
computational cost than the segmentation task. As a baseline, we
also report the performance when no ROI is defined, and the op-
tical flow over the entire frame is harvested for respiration signal
construction. The results are shown in Figures 6 (b) and (e).

Compared with the baseline method (w/o mask), using a
bounding box for filtering doesn’t always improve the perfor-
mance, while the segmentation mask improves the correlation co-
efficient and reduces the RMSE on both datasets. When there are
multiple persons or background motions in the frame, it is benefi-
cial to include ROI localization for noise suppression, if moderate
computational cost is affordable.

RR estimation from temporal analysis

As direct temporal analysis on the respiration signal for RR
extraction is surprisingly popular in the literature, we also report
its comparison with frequency analysis from PSD as shown in
Figures 6 (c) and (f). For the zero-crossing method, the signal
is first detrended by simply subtracting the mean, and the RR is
counted as half of the total number of zero-crossings. For the
peak-valley method, the peaks and valleys are detected based on
a topographic prominence of 5 to neglect local fluctuations, and
the RR is taken as the mean of the peak and valley counts. A rep-
resentative detection of those points of interest is shown in Figure
2 (e).

It is clear that all three methods have similar correlation coef-
ficient and RMSE. However, the methods in the temporal domain
require more careful detrending and peak prominence selection
as manual inputs, while for PSD one can simply take the RR that
corresponds to the highest coefficient within a natural band (e.g.
10-30 bpm).

Implementation details
We prototyped the proposed algorithm, and carried out all

the numerical experiments in Python 3.7. The official implemen-
tations of FlowNet 2 [43] and Detectron 2 [45] were running in
PyTorch 1.5 [44] with the CUDA toolkit 10.1 [49].

Figure 7. Sample screenshots of the executable running on Windows 10

during (left) inhalation and (right) exhalation.

The proposed working pipeline (without the segmentation
mask) was then implemented in C++ for cross-platform deploy-
ment. The FlowNet with loaded pre-trained weights was traced
and serialized in Python, and then imported into C++ as Torch-
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Script modules.
We tested the live performance of the C++ implementation

built on two customer-level PCs with LibTorch 1.6 for respective
platforms. Sample screenshots of the executable running on Win-
dows are shown in Figure 7. Based on the previous analysis in
Figures 5 (a) and (d), the optical flow sampling rate was limited
to 1 Hz by feeding image pairs to FlowNet once every 1 second.
When grabbing frames from a 640p webcam on a single CPU
thread and inferencing on GPU, the live FPS is shown in Table 1
below.

Table 1: Live FPS of the C++ implementation

OS Ubuntu 18.04.5 Windows 10
CPU i7-4710HQ i7-6700K
GPU GeForce GTX 860M GeForce GTX 1070
FPS 29.4 20.8

Conclusion
In this paper, we proposed a novel system for remotely esti-

mating the respiration rate of people. We leverage convolutional
neural networks to extract optical flow induced by subtle upper
body movements during periodic inhalation and exhalation cy-
cles.

We tested the performance of our implementation on public
datasets on RR estimation, and showed improvements over tradi-
tional optical flow methods in terms of Pearson’s correlation coef-
ficient and root mean square error. We also performed numerical
experiments, and demonstrated the robustness and reliability of
the proposed system. The optical flow can be sampled at reduced
rate from 1 Hz to 10 Hz to lower computational cost. We also
found that videos as low as 320p resolution can deliver reliable
RR measurements; and a video clip as short as 10 s is adequate
for fast measurement response.

We further implemented the proposed working pipeline in
C++ by converting the pre-trained CNN to serialized TorchScripts
using a sample tracing technique provided by PyTorch. We
demonstrated the feasibility of running live RR estimation using
CNN by cross-platform deployment on Ubuntu and Windows ma-
chines with GPU inference.

Future work may include further performance evaluation of
our algorithm on additional datasets where clothing and lighting
conditions are properly controlled. The design of light-weight
CNNs for deployment on mobile devices with limited computa-
tional powers is also a promising direction. Moreover, potential
integration with vision-based remote heart rate and blood pres-
sure estimation algorithms could prove useful for fast vital sign
screening in clinics.

One major drawback of current method is that we still re-
quire the subject to remain relatively stationary for about 10 s.
This is because the FlowNetSD variant we use is ideal for inter-
frame displacements on the order of several pixels. To overcome
this, one could use CNNs designed for long-range image registra-
tion, coupled with a proper person tracking algorithm.

The developed system can be used by individuals with a
customer-level RGB webcam, or by healthcare centers with near-
infrared cameras or thermal imagers to monitor the vital signs of

patients in total dark settings.
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