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Abstract 

Can a mobile camera see better through display? Under 

Display Camera (UDC) is the most awaited feature in mobile 

market in 2020 enabling more preferable user experience, however, 

there are technological obstacles to obtain acceptable UDC image 

quality. Mobile OLED panels are struggling to reach beyond 20% 

of light transmittance, leading to challenging capture conditions. To 

improve light sensitivity, some solutions use binned output losing 

spatial resolution. Optical diffraction of light in a panel induces 

contrast degradation and various visual artifacts including image 

ghosts, yellowish tint etc. Standard approach to address image 

quality issues is to improve blocks in the imaging pipeline including 

Image Signal Processor (ISP) and deblur block. In this work, we 

propose a novel approach to improve UDC image quality - we 

replace all blocks in UDC pipeline with all-in-one network – UDC 

d^Net. Proposed solution can deblur and reconstruct full resolution 

image directly from non-Bayer raw image, e.g. Quad Bayer, without 

requiring remosaic algorithm that rearranges non-Bayer to Bayer. 

Proposed network has a very large receptive field and can easily 

deal with large-scale visual artifacts including color moiré and 

ghosts. Experiments show significant improvement in image quality 

vs conventional pipeline – over 4dB in PSNR on popular benchmark 

- Kodak dataset.  

 

Introduction  
Under Display Camera (UDC) enabling infinity display, with 

larger screen to body ratio, is the most awaited and challenging 

feature in mobile market in 2020.  

What are the challenges we face with UDC imaging? First of 

all, we are struggling to achieve desired image quality. Current 

Organic Light-Emitting Diode (OLED) panels can only provide 

transmittance ratio of up to 20%, so UDC image is captured in 

lowlight conditions. To improve light sensitivity, conventional 

solution uses binned output combining adjacent pixels, i.e., it can 

only support less than a quarter of original image sensor resolution.  

Another issue is optical diffraction from non-transparent panel 

that can induce not only contrast loss, but also various visual 

artifacts including ghosts, flare, color tints etc. (See Fig. 2). The 

question is how can we overcome those challenges? Can we keep 

full resolution and get artifacts-free UDC image? 

 

Camera with notch-type display  UDC (Under Display Camera) 

Fig. 1. Illustration of notch-type and Under Display Cameras. 

 
Fig. 2. Illustration of proposed solution: left – conventional UDC solution 
output; right – proposed method output. One can clearly see that proposed 
method can achieve superior artifacts-free details restoration at full resolution. 

Recently, to enhance sensitivity with high resolution image 

sensor, various types of non-Bayer pattern, such as Quad Bayer, 

shown in Fig.3, are adopted. Such sensors can easily obtain high 

sensitivity images under low-light condition using binning method. 

Under normal light conditions, it requires remosaic function that 

rearranges non-Bayer to Bayer, to achieve full resolution imaging. 

The remosaic block is usually followed by Bayer Image Signal 

Processor (ISP) and deblur block, all operating in different domains. 

However, when applying this sequential hand-crafted pipeline, we 

end up with blur image and more visual artifacts induced by 

remosaic and ISP due to lack of spatial information. Image quality 

can be improved by retuning ISP or deblur algorithm, however it 

gives only marginal improvement in image quality while keeping 

large-scale artifacts including zippering, ghosts, false colors etc. 

In this work, we propose an end-to-end one-shot UDC 

imaging solution, that can deblur and reconstruct raw UDC image 

using one neural network – UDC d^Net. Due to hierarchical 

structure, designed network has a large receptive field allowing to 

extract more features from source image and handle large-scale 

artifacts. Experiments show that proposed method outperforms 

conventional algorithms by a large margin – by 4dB in PSNR on 

Kodak dataset, for Quad Bayer CFA. Visual evaluation confirms 

that it can reconstruct details better and does not produce visual 

artifacts. Using proposed method, we can model any non-UDC ISP 

pipelines with better image quality and less artifacts. 
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Fig. 3. Quad Bayer Color Filter Array decomposition into R, G, B components. 

Contributions. To the best of our knowledge, this is first work 

addressing a novel problem of Quad Bayer Raw Image 

reconstruction for Under Display Cameras on mobile devices using 

deep learning. Recently, there is a trend in high-resolution CMOS 

sensors to adopt novel CFAs, for example Quad Bayer CFA. We 

solve this challenging problem using deep learning in raw domain 

by joint deblurring and demosaicing. Proposed solution achieves 

better image quality, outperforming conventional methods by 4dB 

in CPSNR and producing less visual artifacts. 

 

Related works 
In this work we focus mostly on demosaic and deblurring 

algorithms, so we will briefly review related works.  

Demosaicing of Bayer Color Filter Array (CFA) has been 

extensively studied for several decades [1], [2], [6]. Various 

demosaicing approaches are exploited, such as color difference 

based interpolation [24], [25], edge directional interpolation [26], 

frequency domain filtering [3], [4], [5], and reconstruction methods 

[27], [28]. However, when it comes to new patterns, such as Quad 

Bayer depicted in Fig. 3, there are only a few works that can be 

applied to it. Unfortunately, hand-crafted algorithms are mainly 

designed for most commonly used until recently Bayer CFA, so they 

have to be redesigned to support any other CFA pattern. Universal 

demosaicing algorithm, that can be easily extended to new type of 

CFA pattern, was proposed in Zhang [7].  

Deep learning approach to image demosaicing has been applied 

in 2016 - see [8], [9], [10], [11]. Early works were also designed for 

Bayer CFA, however recently there are two articles addressing Quad 

Bayer CFA - Kim [12] and Stojkovic [13] . Compared to hand-

crafted algorithms, deep learning methods do not need to be 

completely redesigned and can be adopted to support various CFA 

patterns. However, for Quad Bayer CFA, learning method and 

network architecture shall be also changed, to avoid artifacts that 

cannot be seen in standard Bayer CFA. 

Deep learning methods to image deblurring have been actively 

studied in the last five years [12], [15]. Shuler used several networks 

to model iterative optimization process in a “coarse-to-fine” manner 
[16]. Nah [17] and Tao [18] introduced a multi-scale cascade of 

networks that sequentially restores downscaled images. Zhang 

adopted a method of dividing images into patches, performing 

sequential restoration of small to large patches, using several 

networks [20]. Most state-of-the-art methods uses a cascade of 

networks to deblur a single image.  

Image restoration for Under Display Camera, was studied in 

[21] for Bayer CFA, for two types of OLED displays: T-OLED and 

P-OLED and proposed to restore image from raw domain, showing 

better performance compared to Wiener Filter and plain residual 

networks. 

  

Problem formulation 
Demosaicing of each color channel can be treated as an 

interpolation problem of each channel, however due to phase shift during 

color subsampling and inter-channel dependency, demosaicing 

normally comes with various visually disturbing artifacts: color 

moiré, false colors or zippering along edges. For irregularly 

subsampled Quad Bayer pattern, aliasing increases and cause severe 

artifacts compared to Bayer – see [12] for more detailed analysis. 

 

Fig. 4. Under Display Camera OLED Panel pixel arrangement (from ZTE Axon 
mobile phone). 

When camera is placed under display, the amount of incident 

light is considerably decreased. Due to specific UDC display 

structure, the light cannot propagate freely —instead it has to pass 

through tiny holes and smaller open area compared to conventional 

cameras, see Fig. 4 for example. In addition, UDC display area is 

not transparent—depending on materials, transparency can vary. 

Insufficient amount of transmitted light creates challenging low-

light capturing conditions, non-transparent display often induces 

specific color artifacts, like yellowish tint [21]. 

On top of that, since typical distance between pixels in UDC 

panel is very small (100~200um), when light travels through slits 

between pixels, diffraction of light occurs. Interference between 

display pixels and light wave results in the higher order peaks of 

light intensity, as depicted in Fig. 5. It affects captured image quality 

by having excessive blur, loss of details and contrast and ghosts.  

Depending on particular UDC display structure, Point Spread 

Function (PSF) may have various sizes and shapes. In real 

applications, we are limited in the size of support of corresponding 

PSF, so in this work we used small size PSF. 

 

 
Fig. 5. Under Display Camera Image formation: light propagates through tiny 
holes in the UDC panel, undergoing diffraction  [21]. 
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Proposed method 
 

In conventional solution, we first apply remosaicing on raw non-

Bayer image, following by Bayer ISP processing and then apply 

deblurring in RGB domain. The process is shown in the Fig. 6. 

Our hypothesis is that deblurring in raw domain will be more 

efficient and will allow to keep more details and avoid artifacts 

propagation. In addition to this, we propose to perform deblurring 

simultaneously with demosaicing. 

 

Remosaic

Final RGB imageUDC Quad Bayer 
Raw image

ISP Deblur

UDC Bayer Raw 
image  

Fig. 6. Block diagram of conventional solution. 

We propose to replace one or more blocks in ISP and deblur block 

with all-in-one neural network – UDC d^Net. Here d^ stands for de-

blur, de-mosaic, de-noise, etc. Block diagram of the proposed 

method is depicted in Fig. 7. 

 

d^Net

RGB image
UDC Quad Bayer 

Raw image
Fig. 7. Block diagram of the proposed method. 

 

 

In this work, we use standard image formation model (1).  

𝑌 = 𝐾 ∗ 𝑀 ∗ 𝑋 + 𝑛, (1) 

where N – noise, K – blur with kernel K, M – mosaic, X – original 

image, Y – distorted observation. 

Using deep learning, we can solve this ill-posed inverse 

problem efficiently, without domain conversion. By using power of 

big data, we can address this ill-posed inverse problem more 

efficiently. 

We learn end-to-end mapping function F from training samples 

pairs by taking RGB images as ground truth and mosaicked blurred 

images as observed images. We estimate model parameters Ω by 

minimizing following loss function: 

𝐿𝑜𝑠𝑠(Ω) = 𝐿2  (2) 

where 𝐿2 is an Euclidean norm:  

𝐿2 =
1

𝑛
∑ ‖𝐹(𝑋𝑖,Ω) − 𝑌𝑖‖2
𝑛
𝑖=1 . (3) 

 

Network architecture 
We design a neural network for image reconstruction – UDC 

d^Net, inspired by the Duplex Pyramid Network architecture by 

Kim [12], showing superior image quality for Quad Bayer image 

demosaicing compared to other deep learning methods and 

outperforming conventional algorithms. 

Inspired by hierarchical structure of network in [12], we can 

extract image features at various levels, that will allow us to 

reconstruct image details at various levels, as well recover large 

scale artifacts. We assume, that such a hierarchical network 

structure will allow to capture blur at various levels, avoiding using 

a cascade of neural networks as in the state-of-the-art image 

deblurring algorithms [17], [18]. 

We adopt backbone skeleton architecture and FEB (Feature 

Extraction Block) that includes local residual block. D^2 network 

architecture is shown in Fig. 6. Here FRB is Feature Reconstruction 

Block, it includes one convolution and one ReLU. We use 3x3 

convolutions at all levels. 
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Fig. 8. Block diagram of the proposed network - d^Net. 

 

Experimental results 
We conduct experiments by preparing pairs of distorted input 

and ground truth images. The network was trained on MIT dataset 

[8] on patches of size 128x128. We augmented input data with 

random flip and rotation. 

We trained our model with ADAM optimizer [22] with the 

following settings: β1 = 0.9, β2 = 0.999, ε = 10−8
, weight decay 

= 10−8. We set initial learning rate as 10−4 and schedule learning 

rate decrease at milestones [5, 10, 20], with decay = 0.1. The model 

was implemented using Pytorch and trained on NVIDIA Volta 

GPUs. 

 We used distortion model with estimated PSF of 11x11 from the 

sample mobile OLED panel and Quad Bayer mosaic operator. We 

tested our algorithm on Kodak dataset [23], in Color PSNR 

(CPSNR), defined as below. 

 𝐶𝑃𝑆𝑁𝑅 =
1

3
∑ 𝑃𝑆𝑁𝑅(𝐶𝑖),𝑤ℎ𝑒𝑟𝑒
3
𝑖=1  (4) 

𝑃𝑆𝑁𝑅(𝐶𝑖) = 10𝑙𝑜𝑔10
22𝑏

∑ ‖𝑋𝑖−𝑌𝑖‖2
𝑛
𝑖=1

 (5) 

where C – color components, b – image bitwidth, n - number of 

pixels, X – ground truth image, Y – reconstructed image.  

Objective image quality evaluation results are provided in the 

Table 1. For reference, we used universal demosaicing algorithm[7] 

applied to Quad Bayer CFA pattern and iterative deblur algorithm 

[19]. We can see that current algorithm outperforms conventional 

approach by a large margin. 

 
  

IS&T International Symposium on Electronic Imaging 2021
Imaging Sensors and Systems 2021 067-3



 

 

Table 1. Image quality evaluation results, CPSNR [dB]. 

Algorithm  Conventional Proposed 

PSF1 [3x3] 36.3 40.0 

PSF2 [11x11] 35.6 39.6 

 

Subjective evaluation of experimental results show that we 

could reconstruct image with more details and less artifacts as 

compared to conventional approach. As illustrated in the Fig. 9, we 

observed significant loss of high frequency details and various 

artifacts: zippering and false colors – when using conventional 

method, while we could achieve almost perfect image 

reconstruction when using proposed method. 

 

 

 

 
a) Conventional               b) Proposed          c) Ground truth  

Fig. 9. Examples of visual quality evaluation from Kodak dataset. One can 
clearly see that proposed approach outperforms reference and can restore 
details and textures close to ground truth. 

Next, we applied our method on real UDC image, captured by 

sample mobile OLED panel. We trained our network using same 

training dataset and performed visual evaluation of the results as 

shown in Fig. 11. Proposed method efficiently removes blur and 

ghosts, so it can be applied to real life scenario. Despite of having 

only one neural network in the proposed solution as opposed to prior 

state-of-the-art, we could achieve desired deblurring performance. 

Proposed network architecture is computationally efficient so can 

be deployed in mobile devices after optimization.  

  

  

 
a) Captured UDC image b) Result of proposed 

method 

Fig. 10. Examples of visual quality evaluation on real UDC images 

Conclusion 
In this work, we proposed a novel imaging solution for UDC 

that can be adopted for mobile phones with infinity displays at full 

resolution. Experiments show that it achieves better image quality, 

reduced blur and other visually disturbing artifacts, outperforming 

conventional solution for Quad Bayer image sensor. Proposed 

solution can be adopted to any non-UDC pipeline and can improve 

quality of any imaging pipeline for any image sensor, Bayer or non-

Bayer.  

067-4
IS&T International Symposium on Electronic Imaging 2021

Imaging Sensors and Systems 2021



 

 

References  
 

[1] X. Li, B. Gunturk and L. Zhang, “Image demosaicing: A 
systematic survey,” in Proc. of SPIE, 6822, 68221J, 2008. 

[2] D. Menon and G. Calvagno, “Color image demosaicking: An 
overview,” Sig. Proc.: Image Comm., vol. 26, pp. 518-533, 

2011. 

[3] D. Alleysson, S. Susstrunk and J. Hérault, “Linear demosaicing 
inspired by the human visual system,” IEEE Transactions on 

Image Processing, vol. 14(4), pp. 439-449, 2005 

[4] E. Dubois, “Frequency-domain methods for demosaicking of 

Bayer-sampled color images,” IEEE Signal Processing 
Letters, Vol. 12(12), pp.847-850, 2005 

[5] P. Hao, Y. Li, Z. Lin and E. Dubois, “A geometric method for 
optimal design of color filter arrays,” IEEE Transactions on 

Image Processing (TIP), Vol. 20(3), 709-722, 2010. 

[6] B. Bruce, “Color imaging array,” US patent 3,971,065, 1976.  

[7] C. Zhang, Y. Li, J. Wang and P. Hao, “Universal Demosaicking 
of Color Filter Arrays,” IEEE Transactions on Image 
Processing, 25, No. 11, pp. 5173-5186, 2016.  

[8] M. Gharbi, et al. “Deep Joint Demosaicking and Denoising.” 
ACM Transactions on Graphics. Vol. 35, pp. 191:1--191:12, 

2016. 

[9] R. Tan, K. Zhang, W. Zuo and L. Zhang, “Color image 
demosaicking via deep residual learning,” in Proceedings of the 
IEEE International Conference on Multimedia and Expo 

(ICME), 2017. 

[10] D. S. Tan, W. Chen and K. Hua, “Deep Demosaicking: 
Adaptive Image Demosaicking via Multiple Deep Fully 

Convolutional Networks,” IEEE Transactions on Image 
Processing, vol. 27, pp. 2408-2419, 5 2018. 

[11] N.-S. Syu, Y.-S. Chen and Y.-Y. Chuang, "Learning Deep 

Convolutional Networks for Demosaicing," CoRR, vol. 

abs/1802.03769, 2018.  

[12] I. Kim et al, “Deep image demosaicing for submicron image 
sensors,” Journal of Imaging Science and Technology (JIST), 
vol. 63, No.6, pp. 060410-1--060410-12, 2019. 

[13] A. Stojkovic et al., “ The Effect of the Color Filter Array Layout 
Choice on State-of-the-Art Demosaicing,” Journal MDPI 
Sensors, vol. 19(14): 3215, 2019. (DOI: 10.3390/s19143215) 

[14]  A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, 

“Understanding and evaluating blind deconvolution 
algorithms,” In IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pp. 1964–1971, 2009. 

[15] R. Wang and D. Tao, “Recent progress in image deblurring.” 
ArXiv, abs/1409.6838, 2014. 

[16] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Sch¨olkopf, 
“Learning to deblur,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 38(7), pp.1439–
1451, 2016. 

[17] S. Nah, T.H. Kim and K.M. Lee,” Deep multi-scale 

convolutional neural network for dynamic scene deblurring,” 
In Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), 2017. 

[18] X. Tao et al., “Scale-recurrent network for deep image 

deblurring,” in Proc. of the IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), 2018. 

[19] W. Zuo et al., “A Generalized Iterated Shrinkage Algorithm for 
Non-convex Sparse Coding,” In Proc. of IEEE International 
Conference on Computer Vision, Sydney, NSW, pp. 217-224, 

2013. doi: 10.1109/ICCV.2013.34. 

[20] H. Zhang, et al, “Deep stacked hierarchical multi-patch network 

for image deblurring,“ in Proc. of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2018. 

[21] Y. Zhou, et al, “Image restoration for under-display camera,” 
arXiv preprint arXiv:2003.04857, 2020. 

[22] D.-P. Kingma and J. Ba, “Adam: A Method for Stochastic 
Optimization,” in Proc. of 3rd International Conference for 
Learning Representations, San Diego, 2015 (arXiv:1412.6980). 

[23] A. Loui et al., “Kodak's Consumer Video Benchmark Data Set: 
Concept Definition and Annotation,” in Proc. of International 
Workshop on Workshop on Multimedia Information Retrieval, 

New York, NY, USA, 2007.  

[24] D.R. Cok, “Signal processing method and apparatus for 

producing interpolated chrominance values in a sampled color 

image signal,” U.S. Patent 4 642 678, 1986.  

[25] J.E. Adams, “Interactions between color plane interpolation and 
other image processing functions in electronic photography,” 
Proc. SPIE, vol. 2416, pp. 144–151, 1995. 

[26] R. Kimmel, “Demosaicing: Image reconstruction from CCD 
samples,” IEEE Trans. Image Process., vol. 8, no. 6, pp. 1221–
1228, 1999. 

[27] J. Mukherjee, R. Parthasarathi, S. Goyal, “ Markov random field 
processing for color demosaicing,” IEEE Pattern Recognition 
Lett., vol. 22(3–4), pp. 339–351, 2001. 

[28] D. Keren, M. Osadchy, “Restoring subsampled color images,”  
in Proc. of Mach.Vision Appl., vol. 11(4), pp. 1197–202, 1999. 

 

Author Biography 
Irina Kim received her B.S. and M.S. degrees with honors in applied 

mathematics, in 2002 and 2004, respectively, and the Ph.D. course in 

mathematics from the National Research University of Electronic 

Technology, Moscow, in 2005. Since 2001, she developed Nano 

microscopic and satellite image analysis and video surveillance 

algorithms, before joining Samsung Electronics in 2005, where she worked 

on Image Signal Processor (ISP) algorithms, face detection and vision 

engines. Her recent research is focused on deep learning for latest CMOS 

sensor for mobile devices. 

Yunseok Choi received his B.S., M.S., and Ph.D. degrees in Electrical 

Engineering and Computer Science from Korea Advanced Institute of 

Science and Technology (KAIST), Daejeon, Korea, in 1996, 1998, and 

2005, respectively. Since 2004, he has been with Samsung Electronics 

where he developed 3D graphics engine, ISP, CIS sensor, and so on. His 

main research interests include imaging processing systems and imaging 

sensors. 

Hayoung Ko received the B.S. and M.S. in Electronic Engineering 

from Korea University, Korea, in 2003 and 2012, respectively. She worked 

on Image and Video signal processing. She is currently working on 2D and 

3D camera calibration and Image Enhancement after joining Samsung 

Electronics in 2013. 

IS&T International Symposium on Electronic Imaging 2021
Imaging Sensors and Systems 2021 067-5

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.3390%2Fs19143215


 

 

Youngil Seo received his B.S in Electrical Engineering from Hanyang 

University and M.S. in Electrical Engineering and Computer Science from 

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 

Korea, in 2001 and 2003, respectively. Since 2009, he has been with 

Samsung Electronics where he developed Video codec, GPU, Sensor IP 

and so on. His main research interests include imaging processing systems 

and deep learning now.  

Seongwook Song received his B.S. and M.S. degrees in electrical 

engineering from Seoul National University, in 1997 and 1999, 

respectively, and the Ph.D. degree in electrical and computer engineering 

from the University of Illinois at Urbana–Champaign, in 2004. He has 

been with Samsung Electronics since 2003, to develop 2G, 3G and 4G 

chipsets. His main research interests include advanced signal processing 

for digital communications, multimedia and deep learning systems for 

digital cameras. 

SukHwan Lim received his B.S. degree (with honors) in electrical 

engineering from Seoul National University, Korea, in 1996, and the M.S. 

and Ph.D. degrees in electrical engineering from Stanford University, US, 

in 1998 and 2003, respectively. He has worked in HP Laboratories, Apple 

and Google before joining Samsung Electronics in 2019. His research 

interests include image sensors, digital cameras and image/video 

processing architectures and algorithms including denoising, deblurring, 

and superresolution. 

 

 

067-6
IS&T International Symposium on Electronic Imaging 2021

Imaging Sensors and Systems 2021



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org




