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Abstract 

Measuring vehicle locations relative to a driver’s vehicle is a 
critical component in the analysis of driving data from both post-
analysis (such as in naturalistic driving studies) or in autonomous 
vehicle navigation.  In this work we describe a method to estimate 
vehicle positions from a forward-looking video camera using 
intrinsic camera calibration, estimates of extrinsic parameters, and 
a convolutional neural network trained to detect and locate vehicles 

in video data.  We compare the measurements we achieve with this 
method with ground truth and with radar data available from a 
naturalistic driving study.  We identify regions where video is 
preferred, where radar is preferred, and explore trade-offs between 
the two methods in regions where the preference is more ambiguous.  
We describe applications of these measurements for transportation 
analysis. 

Keywords:  camera calibration, data fusion, autonomous 

driving, scene understanding 
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Introduction 
The Second Strategic Highway Research Project (SHRP2) [1], 
included an extensive naturalistic driving study (NDS) where 

approximately 3000 drivers were recorded with dedicated data 
acquisition systems (DAS) in their personal vehicles [2,3] as shown 
in Figure 1. The study was completed in 6 data collection sites in 
US between 2010 and 2013. The vehicles in the SHRP2 study used 
a collection of low-cost, integrated instrumentation including face, 
dash, front and rear cameras, radar, and other sensors. The DAS was 
developed by Virginia Tech Transportation Institute (VTTI) that 
installed the systems in the cars and now warehouses the data [2]. 

The focus of SHRP2 was to identify conditions that led to unsafe 
driving, and as such is a valuable resource for researchers to use in 
their analyses.  
 
Radar units were used in this study as a tool to represent the actual 
driving scenarios for researchers. Radar provides information about 
the position and velocity of the target vehicle relative to the 
participant vehicle and up to 8 target vehicles in a frame [4-6], with 

a goal of increasing the knowledge of the situation surrounding the 
crash and near crash cases to gain insight into driving behavior. The 
central concept of radar is that a pulse is sent from the transmitter in 
the radar unit and the reflected signal from objects (vehicles) are 
detected by an antenna. The SHRP2 radar data goes through a series 
of steps to make the raw data easier to interpret such as timestamp 
adjustments, removing targets that were placed in the wrong tracks. 
There are various issues with radar correctly detecting the target 
location. For example, based on the shape of the target the radar 

signature might not be clean leading to error in localizing the targets. 
Another phenomenon happens when the irregularities on the road 

causing the radar’s aim to change, possibly leading to an erroneous 
decrease in range of the target in travel direction.  
SHRP2 radar units were built with wider horizontal angle, compared 
to standard and more narrow horizontal view, to be able to track the 

adjacent lanes better. This adjustment has a trade-off by causing the 
signals to get weaker and thus transforming the raw data into correct 
tracks becomes more difficult. Another problem with radar is that 
signal reflected from non-uniform surfaces may be noisy. The 
process of translating raw radar data through multiple post 
processing steps into correct tracks is not easy. Because of the 
complexity of tracking targets, we investigate how accurate these 
low-cost radar data is and how it compares with modern video 
processing methods. In addition, we make comparisons between 

radar and video data in terms of consistency and reliability. 
  

 
Figure 1 SHRP2 – Data acquisition system; Left top and bottom show the 

placement of sensors and DAS in the vehicle from two different views, Right top 
shows the views from four cameras in the vehicle, Right bottom shows the 
placement of front-face-dash-view camera unit. 

Localizing the target using computer vision 

Motivation 
Measuring vehicle locations relative to a participant’s vehicle is a 
critical component in the analysis of driving data in naturalistic 
driving studies (NDS). Relative vehicle locations provide valuable 
information about driving behaviors and interaction with the other 

vehicles [7], especially the vehicles traveling on the adjacent lanes 
and near the participant vehicle are of particular interest since they 
are most likely to get into accident with the participant vehicle.  We 
seek to understand how the low-cost SHRP2 radars compare with 
modern video processing methods. Our experiments focus on 
localizing the targets using visual methods and comparing the 
results with radar readings. 
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Procedure 
The goal of the visual method described here is to detect and localize 
vehicle locations relative to the participant’s vehicle using only the 
image data. The flow of the entire visual method is given in Figure 

2. We start with detecting the vehicles using YOLOV3 pre-trained 
model [8].  For ground truth vehicle locations two tires were 
manually selected for each vehicle. The YOLOV3 predicted 

boundaries often require post-processing as it may find multiple 
boundaries for the same vehicle as shown in Figure 3. After 
matching two tires with each YOLO predicted boundary, we select 
the boundary which covers the tires more and thus maximizes the 
intersection over union (IOU) with the tires. Once designation of 
each vehicle boundary with two tires is complete the YOLO 
representative vehicle position (image point) was chosen to be the 
middle of the lower edge of the YOLO boundary (marked in red on 

left in Figure 4). The manual representative vehicle position is 
chosen as the middle of the line connecting two tires (marked in 
green on left in Figure 4). After these positions were found the next 
step was to estimate the extrinsic parameters (tilt and pan) for the 
cameras in vehicles used in the experiment. Then the frames were 
corrected with estimated tilt and pan parameters [9], which are 
assumed to be constant for a particular vehicle in the experimental 
data. YOLO and manual vehicle locations (image points) were then 
projected onto real world coordinates (planar points) using 

homography. During the process planar images (birds-eye-view 
images) were also generated as shown on the right side of Figure 4. 
The distances from participant to target vehicle were estimated on 
the plane of the road. The assumption is that middle of the dashboard 
to both YOLO and manual representative vehicle positions are 
considered relative participant to target distance. Converting image 
points into planar points and estimating the difference in 
homography plane resulted in this relative distance measurement. 

And hance, the target location relative to participant’s vehicle was 
estimated in real world coordinates by using the visual method. 
 
SHRP2 data sets have radar information for each trip depicting 
target location and velocity relative to participant’s vehicle for each 
frame. Radar also tracks the targets through the frames. The targets 
are put into tracks based on the reflected signals coming from the  

 
vehicles in the direction of travel or the oncoming traffic. The 
relative distances are in meters and the location of the radar is right 
above the license plate. Based on this information about radar we 
were able to match the estimated target location from visual method 

to radar readings. There were cases in which radar failed to register 
target in a track. and there were other cases in which radar and visual 
method matched. All the analyses were performed on the “matched” 
radar and visual method’s target locations. In the following section 
more specific cases, where radar fails and where visual method fails, 
will be presented in addition to inconsistencies in radar detection 
and in-depth target location analysis based on the target’s travel 
lane. 
 

 

Figure 3 Top; left: Example of multiple YOLO predicted boundaries for the 
same vehicle before processing, right: Single YOLO predicted boundary after 

post processing and matching with radar entry. Bottom; zoomed boundaries 
for the same vehicle before and after post processing 

Figure 2 Flow of visual method 
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Figure 4 Left: Selection of target locations for YOLO boundary box and 
manual tires. Right: Representative target locations on the planar image. Red 
is for YOLO vehicle location and green is manual vehicle location. 

Results 
We used a total of 158 frames from 3 trips for 3 different vehicles 
from the SHRP2 training data set [5] in the analysis of target 
location. The frames were chosen to represent a homogenous 
distribution of vehicles traveling in same, left, and right lane with 

respect to the participant. We note that good weather and daylight 
conditions were chosen to minimize any other parameter affecting 
the performance of the visual method.  
 
The frames were processed using YOLOv3 pre-trained model to 
detect vehicles. The predicted YOLO boundaries were then post-
processed to eliminate multiple detections since it seems to be the 
biggest issue with YOLO vehicle detection. Manual tires were 

matched with these post-processed YOLO vehicle boundary boxes 
for each vehicle detection making sure that each vehicle was 
matched with a pair of tires. Then the estimated distance from 
participant to target location using visual method was matched with 
radar entry. Some anecdotal cases are worthy of mention to illustrate 
issues with the sensors and their processing.  In Figure 5 the radar 
was not able to detect the target on the left adjacent lane for 11 
frames whereas the visual method was able to detect as close as 4.5 
meters away from the participant vehicle. Inconsistency in radar 

detection is again apparent in Figure 6, in which the vehicle closer 
to the participant vehicle are detected but not the vehicle farther 
away.  
 
The target vehicles were grouped into three different sections: those 
traveling in same, left, and right lane with respect to the participant 
vehicle. We computed the root-mean-square differences between 
the radar estimate and visual estimate for these three lanes to see if 

any of the lanes represent any significant error when compared. The 
results of this calculation is given in Table 1 for each vehicle as well 
as averaged over all trips/frames for all the vehicles. Note that the 
x-direction is the direction across lanes and y-direction is the travel 
direction. The difference between radar and visual method both for 
the travel direction and across lanes in the same lane is the lowest 
among the three lanes, with the same lane difference in x-direction 
was 0.72m and y-direction was 2.84m. The difference for left and 

right lane in both directions were comparable to each other and 
highest error was 4.44m in y-direction in right lane as shown in 
Table 1. The estimated target location based on the manual tires and 

both radar and visual method averaged over all lanes in both x and 
y directions are shown in Table 2. 
 

 
Figure 5 Top: Radar doesn’t detect the vehicle on the adjacent left lane @ 
FR-24609. Bottom: The same target vehicle at a later frame (@ FR-24622) is 
still not detected by radar as indicated by red boundary box. 

 

Table 1 Comparison of target locations in three lanes between radar 

and the visual method 
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Table 2 Comparison of target location in both directions between 

methods 

 

 

Figure 6 Inconsistency in radar detection: Top frame shows radar detected a 

vehicle 5.2m away but bottom frame shows radar was unable to detect a 
vehicle further away 

The distribution of difference in both directions between radar and 
visual method were investigated in more detail and presented in 
histogram plots in  Figure 7. The plots show that radar and visual 

method agreed more in x-direction than y-direction which is 
expected because of the limitation in homography in y direction. 
The most important thing is to see how much of that limitation is a 

concern. To analyze it further the differences in y-direction were 
grouped into three categories, 0-15m, 16-30m and 31-45m as seen 
in  Figure 8. These groups represent the distances to targets. The 
difference is within less than 5m for majority of cases in all groups. 
And maximum difference in distance to target appears to be the case 

when the target is farther away from the participant vehicle 
especially greater than 30 meters. 
 

 

Figure 7 Distribution of differences between radar and visual method in both x 
and y-directions  

The effects of YOLO boundary on localizing the target was apparent 
in cases as shown in Figure 9. Radar and visual method agreed on 
detecting the target vehicles but the difference in localizing is more 
pronounced in Target 1. There are two reasons for this error: the first 
is that the YOLO boundary doesn’t cover the tires giving the false 
impression that the target is farther away than it is, whereas in Target 
3 case the YOLO boundary is big enough to cover the tires but also 
tight enough to not cover more of the road features resulting in the 
agreement of radar and visual method. Another reason for Target 1 

difference is that resolution of homography limits the localization if 
the target is farther away from the participant. In Figure 10 we 
focused on YOLO boundary more closely and found out that 
variation in YOLO boundary boxes made the measurements 
inconsistent.   
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Figure 8 Distribution of difference in target location in y-direction grouped 
based on how far target away from the participant. 

 

 

Figure 9 Problem with YOLO boundary box; difference between radar and 
visual method for Target 1 is related to the YOLO boundary box and how far 
the target is 

Conclusions 
In this work we investigated the differences in computer vision-
based target localization and radar,  in particular trying to determine 
if the visual methods can be used in place of radar for cases where 

radar fails because of limitations of radar or in conjunction with 
radar for cases where radar output is noisy. In 158 frames used in 
our experiments, 189 target vehicles out of total of 423 were not 
detected by radar. Hence, driving behavior and interactions could be 
more accurately modeled by including the visual data. We again 
seek to emphasize that our studies were limited to daytime driving, 
as we know the visual methods are not trained on nighttime imagery. 
 
To improve accuracy YOLOv3 pre-trained model parameters can be 

retrained or tuned to better predict the vehicle boundary so that it is 
large enough to maximize the IOU with two tires. Instead of using 
same vehicle calibration parameters for all the trips, individual trip 
calibration can be applied to the frames as the extrinsic parameters 
may vary from one trip to another as the camera’s position might 
shift across trips. Overall, the visual method seems to be more likely 
to detect vehicles in close proximity to participant vehicle than radar 
and these vehicles are more likely to potentially impact driver 

behavior. 
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Figure 10 Problem with YOLO boundary; top: @FR-37498 and bottom @FR-
37505 with varying boundary boxes shown in the zoomed images. 

Acknowledgments 
We would like to acknowledge the support and assistance of 
Virginia Tech Transportation Institute.  
This manuscript has been authored by UT-Battelle, LLC, under 
contract DE-AC05-00OR22725 with the US Department of Energy 
(DOE). The US government retains and the publisher, by accepting 

the article for publication, acknowledges that the US government 
retains a nonexclusive, paid-up, irrevocable, worldwide license to 
publish or reproduce the published form of this manuscript, or allow 
others to do so, for US government purposes. DOE will provide 
public access to these results of federally sponsored research in 
accordance with the DOE Public Access Plan 
(http://energy.gov/downloads/doe-public-access-plan).  
Work was funded by the Federal Highway Administration of the US 

Department of Transportation, Exploratory Advanced Research 
Fund. 

References 
[1] Walton, C. M., and B. L. Mallory. "Strategic Highway Research 

Program (Special Report 260). 2001." Transportation Research 

Board 17 (2006). 

[2] Hankey, Jonathan M., Miguel A. Perez, and Julie A. 

McClafferty. Description of the SHRP 2 naturalistic database and the 

crash, near-crash, and baseline data sets. Virginia Tech 

Transportation Institute, 2016. 

[3] SHRP2 https://intrans.iastate.edu/app/uploads/2018/03/1.-David-

Plazak-SHRP-2-Data-2014-CUTC.pdf 

[4] Gorman, T., et al, "SHRP2 Radar Post-Processing Task Report", 

https://insight.shrp2nds.us/projectBackground/download/1 

[5] Li, Y. et al, “SHRP 2 Safety Data – Naturalistic Driving Study Training 

Dataset”, 

https://insight.shrp2nds.us/projectBackground/zip_download/86 

[6] Blatt Alan, et al, "Naturalistic Driving Study: Field Data Collection", 

SHRP 2 Report S2-S07-RW-1. 

[7] Hammit,Britton, Rachel James, and Mohamed Ahmed. "Radar-vision 

algorithms to process the trajectory-level driving data in the SHRP2 

Naturalistic Driving Study." 2018 21st International Conference on 

Intelligent Transportation Systems (ITSC). IEEE, 2018. 

[8] https://github.com/AlexeyAB/darknet YOLO neural network for 

object detection 

[9] Paone,Jeffrey, Karnowski Tom, Aykac Deniz, Ferrell Regina, Goddard 

James, Albright Austin, “Investigating Camera Calibration Methods 

for Naturalistic Driving Studies” Electronic Imaging, Intelligent 

Robotics and Industrial Applications using Computer Vision 2019, pp. 

461-1-9. 

Author Biography 
Deniz Aykac received a BS in Physics from the Bogazici University, Turkey 

(1994) and an MS in Biomedical Engineering from The University of Iowa 

(2000). She has worked at Oak Ridge National Laboratory since 2002 

extensively on 3D medical image processing, image, and video analysis. 

Regina K. Ferrell received a BS in Electrical Engineering (1984) and a MS 

in Electrical Engineering (1994) from the University of Tennessee, 

Knoxville. She has worked for Oak Ridge National Laboratory since 1992 

on a variety of projects with her primary focus on applications in image 

processing and big data. 

Nisha Srinivas received her PhD and MSc. in Computer Science and 

Engineering from the University of Notre Dame in 2014.  She has previously 

worked at Intel Labs, Oak Ridge National Labs and University of Wilmington 

North Carolina. She has been a Research Associate at ORNL since 2019. 

She has over 10 years of experience in the field of biometrics and machine 

learning. 

Thomas P Karnowski received a BS in Electrical Engineering from the 

University of Tennessee (1988), a MS from North Carolina State University 

(1990), and a PhD from Tennessee (2010).  He has worked at Oak Ridge 

National Laboratory since 1990 on a variety of research projects 

in applications of signal and image processing. 

 

334-6
IS&T International Symposium on Electronic Imaging 2021

Intelligent Robotics and Industrial Applications using Computer Vision 2021

http://energy.gov/downloads/doe-public-access-plan
https://intrans.iastate.edu/app/uploads/2018/03/1.-David-Plazak-SHRP-2-Data-2014-CUTC.pdf
https://intrans.iastate.edu/app/uploads/2018/03/1.-David-Plazak-SHRP-2-Data-2014-CUTC.pdf
https://insight.shrp2nds.us/projectBackground/download/1
https://insight.shrp2nds.us/projectBackground/zip_download/86
https://github.com/AlexeyAB/darknet


• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


