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ABSTRACT

Deep semi-supervised learning (SSL) have been signifi-
cantly investigated in the past few years due to its broad spec-
trum of theory, algorithms, and applications. The extensive
use of the SSL methods is dominant in the field of com-
puter vision, for example, image classification, human activ-
ity recognition, object detection, scene segmentation, and im-
age generation. In spite of the significant success achieved in
these domains, critically analyzing SSL methods on bench-
mark datasets still presents important challenges. In the liter-
ature, very limited reviews and surveys are available. In this
paper, we present short but focused review about the most
significant SSL methods. We analyze the basic theory of SSL
and the differences among various SSL methods. Then, we
present experimental analysis to compare these SSL methods
using standard datasets. We also provide an insight into the
challenges of the SSL methods.

Index Terms— Semi-supervised learning, unlabeled data,
data augmentation, Mixmatch, Fixmatch.

1. INTRODUCTION

Deep neural networks have shown tremendous success in ar-
eas such as image [1–4] and speech recognition [5–7] by
using a large collection of labeled data. In order to learn
useful abstractions, deep neural networks set up millions of
parameters, thus making them prone to over-fitting. There-
fore, these achievements depend on collecting large datasets
which typically require extensive human effort to manually
label the datasets. The labeling processing may also requires
pain and/or risk considering medical datasets [8, 9] driven by
invasive tests. Moreover, labeling huge amount of data is ex-
pensive to label data requiring expert knowledge. It is worth
noticing that for many practical applications, we do not have
sufficient resources to collect a large labeled dataset [10, 11],
which restricts the wide-spread use of deep learning tech-
niques. An alternative and appealing way to cope with the
lack of data is semi-supervised learning (SSL) approach. SSL
methods are introduced to study the impact of using the la-
beled and unlabeled data together to improve performance. In

comparison with supervised learning methods, which require
labels for all samples, SSL methods can improve their perfor-
mance by also taking into account the unlabeled samples as
shown in Fig. 1. SSL methods also learn about the structure
of the data from huge amount of unlabeled samples, there-
fore, alleviating the need for labeling all the available data
for training. Currently, some state-of-the-art SSL methods
reached the performance of solely supervised learning con-
sidering limited labeled data.

In the literature many SSL methods are proposed. For ex-
ample, temporal ensembling [12] maintained an exponential
moving average of label predictions on each training exam-
ple, and penalized predictions that are inconsistent with this
target. However, because the targets change only once per
epoch, temporal ensembling becomes unwieldy when learn-
ing large datasets. Zhai et al. [13] unified semi-supervised
learning and self-supervised learning to derive two novel
semi-supervised image classification methods. Jeong et al.
[14] proposed a consistency-based semi-supervised learning
method for object Detection, which is a way of using con-
sistency constraints as a tool for improving detection perfor-
mance by making full use of available unlabeled data. Zhu
et al. [15] proposed a semi-supervised deep learning method,
using temporal ensembling of deep long short-term memory,
to recognize human activities with smartphone inertial sen-
sors. With the deep neural network processing, features are
extracted for local dependencies in the recurrent framework.
Chen et al. [16] introduced a novel memory-assisted deep
neural network capable of using the memory of model learn-
ing to enable semi-supervised learning. Specifically, they in-
troduced a memory mechanism into the network training pro-
cess as an assimilation-accommodation interaction between
the network and an external memory module.

We aim to provide the reader with an overview of the cur-
rent state of the research area of semi-supervised learning and
provide explanations of key algorithms and approaches. We
present a perspective on semi-supervised learning that allows
for a more thorough understanding of recent methods and the
connections between them. In fact, we cannot possibly cover
every method in existence, however, we present an overview
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Fig. 1. In an SSL method, huge amount of unlabeled data is
combined with limited amount of labeled data to improve the
performance of the learning process.

of a set of SSL methods. Due to the sheer size of the liter-
ature considering SSL methods, this would not only be be-
yond the scope of this work, but also distract from the key
insights which we wish to provide to the readers. Instead, we
focus on the most recent advances in the area over the past
few years. For this purpose, we identify five SSL methods
gaining popularity in the research community. These meth-
ods are Π-model [17], the mean teacher model [18], the mix-
match model [19], the remixmatch model [20], and the fix-
match model [21].

The rest of the paper is structured as follows. The detail
explanation of five semi-supervised learning methods are cov-
ered in Section 2. We present the experimental analysis and
discussion in Section 3. Finally, in Section 4, we provide con-
clusion of the paper.

2. SEMI-SUPERVISED LEARNING METHODS

In this section, we provide technical details of each SSL
method. In fact, each method is presented by taking into ac-
count different augmentation techniques and training strate-
gies they used.

2.1. The Π-model

Rasmus et al. [17] proposed the Π-Model that combined the
strengths of supervised learning with unsupervised learning
in deep neural networks. They train their model to simul-
taneously reduce the sum of supervised and unsupervised
costs by backpropagation, avoiding the need for layer-wise
pre-training. The Π-Model is inspired by the Ladder net-

work [22], where the supplementary objective is to denoise
representations at every level of the model. The architecture
of the model is an autoencoder with skip connections from
the encoder to decoder. In fact, the learning task is similar to
that in denoising autoencoders but applied to every layer, not
just the inputs. The skip connections alleviate the obligation
to represent details in the higher layers of the model because,
through the skip connections, the decoder can retrieve any de-
tails thrown away by the encoder. Previously, the Ladder net-
work was only considered in unsupervised learning. The key
characteristics of the Π-Model are compatibility with super-
vised methods, scalability resulting from local learning, and
computational efficiency.

For the decoder of fully connected networks, they exploited
vertical mappings whose shape is a transpose of the encoder
mapping. The same approach works for the convolution oper-
ations. The decoder part of the network used in the paper has
convolution operations. The parametrization of these opera-
tions mirrors the encoder and effectively just reverses the flow
of information. Convolutional networks use pooling opera-
tions which downsample the spatial feature maps. Therefore,
the decoder entails to compensate for this with an equivalent
upsampling procedure. To achieve this, firstly, on the encoder
side, pooling operations are considered as separate layers with
their own batch normalization and linear activation function.
Secondly, the downsampling of the pooling on the encoder
side is compensated for by upsampling with copying on the
decoder side. They showed that a simultaneous unsupervised
learning task improves both deep and shallow feedforward
networks. The Π-Model is simple and easy to implement con-
sidering different feedforward architectures, as the training is
based on backpropagation from a simple cost function.

2.2. The mean teacher model

Tarvainen and Valpola proposed the Mean Teacher Model
[18] based on the fact that when a percept is changed slightly,
a human typically still considers it to be the same object. Cor-
respondingly, a classification model should support functions
that give consistent output for similar data samples. One way
to do this is to add noise to the input of the model. To consol-
idate the model to learn more abstract invariances, the noise
may be added to intermediate representations, an insight that
has motivated many regularization techniques. Rather than
minimizing the classification cost at the zero-dimensional
data samples of the input space, the regularized model mini-
mizes the cost on a manifold around each data sample, thus
pushing decision boundaries away from the labeled data sam-
ples.

Since the classification cost is not defined for unlabeled
samples, the noise regularization by itself does not help in
semi-supervised learning. To cope with this, the model [17]
assesses each data sample with and without noise, and then
applies a consistency cost between the two predictions. In
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this case, the model assumes a dual role as a teacher and a
student. As a student, it learns as before; as a teacher, it pro-
duces targets, which are then utilized by itself as a student for
learning. Since the model itself produces targets, they may
not be very well correct. If too much weight is given to the
produced targets, the cost of inconsistency outweighs that of
misclassification, hindering the learning of new information.
In effect, the model faces a confirmation bias, a problem that
can be alleviated by improving the quality of targets. There
are at least two options to enhance the target quality. One
option is to identify the perturbation of the representations
carefully instead of barely applying additive or multiplica-
tive noise. Another option is to identify the teacher model
carefully instead of barely replicating the student model. The
Mean Teacher Model followed the second option and showed
that it too provides significant benefits. In fact, they investi-
gated a better teacher model from the student model without
additional training.

2.3. The mixmatch model

Many recent approaches for semi-supervised learning add a
loss term which is computed on unlabeled data and encour-
ages the model to generalize better to unseen data. This loss
term falls into one of three techniques namely entropy mini-
mization (EM), consistency regularization (CR), and generic
regularization (GR). Entropy minimization fosters the model
to output confident predictions on unlabeled data, consistency
regularization fosters the model to produce the same output
distribution when its inputs are perturbed, and generic regu-
larization fosters the model to generalize well and avoid over-
fitting the training data.

Berthelot et al. [19] introduced the mixmatch method, an
SSL algorithm which introduces a single loss that effectively
combines the three techniques to semi-supervised learning.
Therefore, the mixmatch method introduces a unified loss
term for unlabeled data that seamlessly reduces entropy while
maintaining consistency and remaining compatible with tra-
ditional regularization techniques. In the mixmatch method,
consistency regularization applies data augmentation (DA) to
semi-supervised learning by leveraging the idea that a classi-
fier should output the same class distribution for an unlabeled
sample even after it has been augmented. The DA technique
applies input transformations without affecting the semantics
of the input data. For instance, in image analysis, the DA
technique is applied by deforming or adding noise to an input
image. This process changes the pixel content of an image
without changing its label [23] [24] [25]. Therefore, the pro-
cess extends the size of the training data by producing mod-
ified data. Entropy minimization encourages the fact that the
classifier’s decision boundary should not pass through high-
density regions of the marginal data distribution. To achieve
this the classifier should output low-entropy predictions on
unlabeled data. The MixMatch method achieves entropy min-

imization through the use of a “sharpening” function on the
target distribution for unlabeled data. Traditional regular-
ization imposes a constraint on a model to make it harder
to memorize the training data and therefore hopefully make
it generalize better to unseen data [26]. In the mixmatch
method, weight decay is used which penalizes the L2 norm
of the model parameters [27]. The MixUp [28] technique is
also used to encourage convex behavior “between” samples.
MixUp is used both as a regularizer (applied to labeled sam-
ples) and a semi-supervised learning method (applied to un-
labeled samples).

2.4. The remixmatch model

Berthelot et al. [20] improved the recently introduced the mix-
match method, a semi-supervised learning method by propos-
ing two new techniques namely distribution alignment and
augmentation anchoring. Distribution alignment nurtures the
marginal distribution of predictions on unlabeled data to be
close to the marginal distribution of ground truth labels. Aug-
mentation anchoring feeds multiple strongly augmented ver-
sions of an input into the model and nurtures each output
to be close to the prediction for a weakly-augmented ver-
sion of the same input. To generate strong augmentations,
the authors [20] introduced a variant of AutoAugment [24]
which learns the augmentation policy while the model is be-
ing trained.

The distribution alignment technique encourages the distri-
bution of a model’s aggregated class predictions to match the
marginal distribution of ground-truth class labels. Bridle et
al. [29] introduced the distribution alignment technique a fair
objective, where a related loss term was shown to arise from
the maximization of mutual information between model in-
puts and outputs. Berthelot et al. [20] show how distribution
alignment can be straightforwardly added to the mixmatch
method by modifying the “guessed labels” using a running
average of model predictions. In fact, the main objective of
an SSL algorithm is to incorporate unlabeled data in a way
which improves a model’s performance. The authors of the
remixmatch method formalize this intuition by maximizing
the mutual information between the model’s input and out-
put for unlabeled data. A good classifier’s prediction should
depend as much as possible on the input. Taking into ac-
count this, the mixmatch method already considers a form of
entropy minimization via the “sharpening” functions which
makes the guessed labels (synthetic targets) for unlabeled data
have lower entropy. Therefore, the remixmatch method also
incorporates a form of “fairness” in the remixmatch method.
For this purpose, over the course of training, the remixmatch
method maintains a running average of the model’s predic-
tions on unlabeled data. Given the model’s prediction on an
unlabeled example, the remixmatch method scales the predic-
tion by a ratio term and then renormalizes the result to form a
valid probability distribution.
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In the remixmatch method, augmentation anchoring re-
places the consistency regularization component of the mix-
match method. For each given unlabeled input, augmenta-
tion anchoring first produces a weakly augmented version
(e.g. using only a flip and a crop) and then produces multi-
ple strongly augmented versions. The model’s prediction for
the weakly-augmented input is considered as the basis of the
guessed label for all of the strongly augmented versions. To
produce strong augmentations, the remixmatch method intro-
duces a variant of AutoAugment [24] based on control theory
which is called CTAugment. Unlike AutoAugment, CTAug-
ment learns an augmentation policy alongside model training,
making it particularly convenient in SSL settings.

2.5. The fixmatch model

Sohn et al. [21] followed the trend of recent state-of-the-art
methods that unify different techniques for generating artifi-
cial labels [19] [30] [20] [31]. They proposed the fixmatch
method, which generates artificial labels using both consis-
tency regularization and pseudo-labeling. The artificial la-
bel is generated based on a weakly-augmented unlabeled im-
age (e.g., using only flip-and-shift data augmentation). The
weakly-augmented image is used as a target when the model
is fed a strongly-augmented version of the same image. In-
spired by UDA [30] and the remixmatch method [20], the fix-
match method leverages CutOut [32], CTAugment [20], and
RandAugment [33] for strong augmentation, which all pro-
duce heavily distorted versions of a given image.

Overall, the fixmatch method is a simple combination of
two common techniques to SSL namely consistency regu-
larization and pseudo-labeling. The main contribution of
the FixMatch method comes from the combination of these
two ingredients as well as the use of a separate weak and
strong augmentation when performing consistency regular-
ization. The loss function for the fixmatch method consists
exclusively of two cross-entropy loss terms. The first term is
a supervised loss applied to labeled data and the second term
is an unsupervised loss which is the standard cross-entropy
loss on weakly augmented labeled samples. For unlabeled
data, the fixmatch method estimates an artificial label for each
sample which is then used in a standard cross-entropy loss. To
obtain an artificial label, the fixmatch method first calculates
the model’s predicted class distribution given a weakly aug-
mented version of a given unlabeled image. Considering it
as a pseudo-label, except the fixmatch method enforces the
cross-entropy loss against the model’s output for a strongly-
augmented version of unlabeled sample.

The fixmatch method leverages weak and strong kinds of
augmentations. Weak augmentation is a standard flip-and-
shift augmentation strategy. Images are randomly flipped
horizontally and randomly translated vertically and horizon-
tally. For strong augmentation, two approaches are consid-
ered based on AutoAugment [24] technique. The AutoAug-

ment technique learns an augmentation strategy based on
transformations using reinforcement learning. This requires
labeled data to learn the augmentation pipeline, making it
problematic to use in SSL settings where limited labeled data
is available. Therefore, two variants of AutoAugment are
considered in the fixmatch method namely RandAugment and
CTAugment. In fact, the authors use Cutout followed by
either of these augmentation strategies. The RandAugment
technique randomly selects transformations for each sample
in a minibatch from a collection of transformations including
but not limited to color inversion, translation, and contrast ad-
justment. For this purpose, the RandAugment technique ex-
ploits a single fixed global magnitude that controls the sever-
ity of all distortions and the magnitude is a hyperparameter
that must be optimized on a validation set.

3. EXPERIMENTAL ANALYSIS AND DISCUSSION

We perform experimental analysis on Π-Model [17] proposed
the l, the mean teacher model [18], the mixmatch model [19],
the remixmatch model [20], and the fixmatch model [21]. For
this purpose, we consider standard SSL datasets namely CI-
FAR10/100 [34] and SVHN [35]. In particular, we carry out
experiments with different amounts of labeled data and aug-
mentation strategies on CIFAR10/100 [34] and SVHN [35].
To this end, we perform experiments with fewer labels than
previously considered to investigate an SSL method showing
promising results in extremely label-scarce settings. We com-
pare the SSL methods using the same network architecture
and training protocol, including the optimizer, learning rate
schedule, and data preprocessing. Considering the work of
Berthelot et al. [19], we use a Wide ResNet-28-2 [36] with
1.5M parameters for CIFAR-10 and SVHN, and WRN-28-8
for CIFAR-100. Higher performance with reduced magnitude
of supervision is the main objective of SSL methods because
it reduces the dependency on the labeled data. We also carry
out experiments taking into account only four labeled samples
for each class on each dataset.

We present the experimental results of the SSL methods
in Table 1. We calculate the mean and variance of accuracy
when training on 5 different “folds” of labeled data. The mix-
match method and the remixmatch method perform reason-
ably well with 40 and 250 labels, but we discover that the
fixmatch model outperforms each of these methods signifi-
cantly. For instance, the fixmatch model achieves an average
error rate of 11.39% on CIFAR-10 with 4 labels per class.
Moreover, the lowest error rate achieved on CIFAR-10 with
400 labels per class was 13.13%. Our experimental analy-
sis also shows that the remixmatch method presents favor-
ably good results. For example, considering the CIFAR-100
dataset, the remixmatch method performs better. The experi-
mental results on a few variants of the fixmatch model are also
presented. For this purpose, these variants copy different el-
ements of the remixmatch method into the fixmatch method.
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Table 1. Performance of the SSL methods [21]. We present error rates of the Π-model [17], the mean teacher model [18],
the mixmatch model [19], the remixmatch model [20], and the fixmatch model [21] considering the CIFAR10/100 and SVHN
datasets. These experimental results are presented using different number of labeled samples per class of each dataset.

Methods
CIFAR-10 CIFAR-100 SVHN

40 250 4000 400 2500 10000 40 250 1000

Π -Model - 54.26±3.97 14.01±0.38 - 57.25±0.48 37.88±0.11 - 18.96±1.92 7.54±0.36

Mean teacher - 32.32±2.30 9.19±0.19 - 53.91±0.57 35.83±0.24 - 3.57±0.11 3.42±0.07

Mixmatch 47.54 ±11.50 11.05±0.86 6.42±0.10 67.61±1.32 39.94±0.37 28.31±0.33 42.55±14.53 3.98±0.23 3.50±0.28

Remixmatch 19.10±9.64 5.44±0.05 4.72±0.13 44.28±2.08 27.43±0.31 23.03±0.56 3.34±0.20 2.92±0.48 2.65±0.08

Fixmatch (RA) 13.81±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12 3.96±2.17 2.48±0.38 2.28±0.11

Fixmatch (CTA) 11.39±3.35 5.07±0.33 4.31±0.15 49.95±3.01 28.64±0.24 23.18±0.11 7.65±7.65 2.64±0.64 2.36±0.19

We investigate that the most important element is the distri-
bution alignment (DA) term. In fact, the DA term encourages
the model predictions to have the same class distribution as
the labeled set. Putting together the fixmatch model with the
DA term obtains a 40.14% error rate with 400 labeled sam-
ples. This is the significant improvement considering 44.28%
achieved by the remixmatch method. As can be seen in Ta-
ble 1, the fixmatch model presents similar performance in
general using the augmentation techniques: CTAugment and
RandAugment. However, this is not the case considering the
setup of four labels per class. The reason may be that these
scores are specifically high-variance. For instance, the vari-
ance over 5 various folds for CIFAR-10 with 4 labels per class
is 3.35%, which is substantially higher than that with 25 la-
bels per class (0.33%).

In general, these results show that the performances of the
most recent SSL methods namely the mixmatch method, the
remixmatch method, and the fixmatch model are very good
in most cases. However, there are still some challenges when
developing and using an SSL method in comparison with a
purely supervised method. For example, one of the most sig-
nificant problems to be addressed in SSL is the potential per-
formance reduction due to the unlabeled data during the train-
ing process [37]. Although researchers have paid little atten-
tion to this in the literature, several SSL methods only present
good results than their supervised counterparts or base meth-
ods in specific scenarios. In other cases, the supervised meth-
ods considered for experimentally assessing the performance
of the SSL methods are relatively weak, presenting a skewed
perspective on the advantages of using unlabelled data. Ad-
ditionally, the potential performance reduction is generally
much more substantial than the potential enhancement, es-
pecially in machine learning problems where strong perfor-
mance is obtained with solely supervised learning.

4. CONCLUSION

In this paper we identify five potential methods in semi-
supervised learning. We describe these methods in details that

effectively leverage unlabeled data for training, and point out
motivating advantages that arise if huge amount of unlabeled
can be combined with limited amount of labeled data. We
make a prospect into potential elements, application scenarios
considering different datasets, and challenges that come along
semi-supervised learning. We hope that this paper can lead to
more attempts in more effective utilization of unlabeled data,
and better learning methods.

In our future work, we aim to extend our experimental anal-
ysis taking into account more SSL methods and more chal-
lenging datasets.

5. REFERENCES

[1] Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song
Wu, and Michael S Lew, “Deep learning for visual understand-
ing: A review,” Neurocomputing, vol. 187, pp. 27–48, 2016.

[2] Mohib Ullah, Mohammed Ahmed Kedir, and Faouzi Alaya
Cheikh, “Hand-crafted vs deep features: A quantitative study
of pedestrian appearance model,” in 2018 Colour and Visual
Computing Symposium (CVCS). IEEE, 2018, pp. 1–6.

[3] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye,
“Object detection in 20 years: A survey,” arXiv preprint
arXiv:1905.05055, 2019.

[4] Habib Ullah, Ahmed B Altamimi, Muhammad Uzair, and Mo-
hib Ullah, “Anomalous entities detection and localization in
pedestrian flows,” Neurocomputing, vol. 290, pp. 74–86, 2018.

[5] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan,
and Chengqi Zhang, “Disan: Directional self-attention net-
work for rnn/cnn-free language understanding,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2018,
vol. 32.

[6] Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and Ming
Liu, “Neural speech synthesis with transformer network,” in
Proceedings of the AAAI Conference on Artificial Intelligence,
2019, vol. 33, pp. 6706–6713.

[7] Basemah Alshemali and Jugal Kalita, “Improving the relia-
bility of deep neural networks in nlp: A review,” Knowledge-
Based Systems, vol. 191, pp. 105210, 2020.

IS&T International Symposium on Electronic Imaging 2021
Intelligent Robotics and Industrial Applications using Computer Vision 2021 313-5



[8] Claudia Steiner, Anne Elixhauser, and Jenny Schnaier, “The
healthcare cost and utilization project: an overview.,” Effective
Clinical Practice, vol. 5, no. 3, 2002.

[9] Ahmed Kedir, Mohib Ullah, and Jacob Renzo Bauer, “Spec-
tranet: A deep model for skin oxygenation measurement from
multi-spectral data,” Electronic Imaging, vol. 2020, no. 15, pp.
83–1, 2020.

[10] Bernardino Romera-Paredes and Philip Torr, “An embarrass-
ingly simple approach to zero-shot learning,” in International
conference on machine learning. PMLR, 2015, pp. 2152–2161.

[11] Ahmed Mohammed, Congcong Wang, Meng Zhao, Mohib
Ullah, Rabia Naseem, Hao Wang, Marius Pedersen, and
Faouzi Alaya Cheikh, “Weakly-supervised network for detec-
tion of covid-19 in chest ct scans,” IEEE Access, vol. 8, pp.
155987–156000, 2020.

[12] Samuli Matias Laine and Timo Oskari Aila, “Temporal en-
sembling for semi-supervised learning,” 2018, US Patent App.
15/721,433.

[13] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas
Beyer, “S4l: Self-supervised semi-supervised learning,” in
Proceedings of the IEEE international conference on computer
vision, 2019, pp. 1476–1485.

[14] Jisoo Jeong, Seungeui Lee, Jeesoo Kim, and Nojun Kwak,
“Consistency-based semi-supervised learning for object detec-
tion,” in Advances in neural information processing systems,
2019, pp. 10759–10768.

[15] Qingchang Zhu, Zhenghua Chen, and Yeng Chai Soh, “A
novel semisupervised deep learning method for human activ-
ity recognition,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 7, pp. 3821–3830, 2018.

[16] Yanbei Chen, Xiatian Zhu, and Shaogang Gong, “Semi-
supervised deep learning with memory,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp.
268–283.

[17] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri
Valpola, and Tapani Raiko, “Semi-supervised learning with
ladder networks,” in Advances in neural information process-
ing systems, 2015, pp. 3546–3554.

[18] Antti Tarvainen and Harri Valpola, “Mean teachers are bet-
ter role models: Weight-averaged consistency targets improve
semi-supervised deep learning results,” in Advances in neural
information processing systems, 2017, pp. 1195–1204.

[19] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Pa-
pernot, Avital Oliver, and Colin A Raffel, “Mixmatch: A holis-
tic approach to semi-supervised learning,” in Advances in Neu-
ral Information Processing Systems, 2019, pp. 5049–5059.

[20] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex
Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel,
“Remixmatch: Semi-supervised learning with distribution
alignment and augmentation anchoring,” arXiv preprint
arXiv:1911.09785, 2019.

[21] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang,
Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han Zhang,
and Colin Raffel, “Fixmatch: Simplifying semi-supervised
learning with consistency and confidence,” arXiv preprint
arXiv:2001.07685, 2020.

[22] Harri Valpola, “From neural pca to deep unsupervised learn-
ing,” in Advances in independent component analysis and
learning machines, pp. 143–171. Elsevier, 2015.
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