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Abstract 

In future manufacturing human-machine interaction will 

evolve towards flexible and smart collaboration. It will meet 

requirements from the optimization of assembly processes as well 

as from motivated and skilled human behavior. Recently, human 

factors engineering has substantially progressed by means of 

detailed task analysis. However, there is still a lack in precise 

measuring cognitive and sensorimotor patterns for the analysis of 

long-term mental and physical strain. This work presents a novel 

methodology that enables real-time measurement of cognitive load 

based on executive function analyses as well as biomechanical 

strain from non-obtrusive wearable sensors. The methodology 

works on 3D information recovery of the working cell using a 

precise stereo measurement device. The worker is equipped with eye 

tracking glasses and a set of wearable accelerometers. Wireless 

connectivity transmits the sensor-based data to a nearby PC for 

monitoring. Data analytics then recovers the 3D geometry of gaze 

and viewing frustum within the working cell and furthermore 

extracts the worker’s task switching rate as well as a skeleton-based 

approximation of worker’s posture associated with an estimation of 

biomechanical strain of muscles and joints. First results enhanced 

by AI-based estimators demonstrate a good match with the results 

of an activity analysis performed by occupational therapists. 

Introduction 

The production industry is currently in a process of continuous 

transition to the Fourth Industrial Revolution fostering ‘smart 

factories’ with modular structured entities and cyber-physical 

systems monitoring physical processes, creating a virtual copy of 

the physical world and make decentralized decisions. Recently, 

human factors engineering has substantially progressed by means of 

detailed task analysis. However, the extraction of task descriptions 

still relies on manual analysis and elaborated, time-consuming 

description of video-based monitoring of the human-machine 

interaction. In this manner, long-term observation and analysis of 

work is too costly which implies that there is still a lack in precise 

measurement of cognitive and sensorimotor patterns for the analysis 

of long-term mental and physical strain.   

From the viewpoint of quality-of-service, caring for attention can 

play a major role for gain or loss of productivity. Attention metrics 

transfer into measurements of concentration, cognitive load, 

situation awareness but also to early indication of fatigue. Quality 

of attention is directly related to quality of decision making and 

therefore the related quality-of-service - in terms of increased 

fatigue for example - indicates less safer decisions due to reduced 

attention spans, decreased reaction time as well as accuracy. It is 

well known that undetected and therefore frequently occurring 

fatigue means more team misunderstanding, decrease of mood and 

motivation and- due to related physical ailments - consequently 

short-term and long-term absence from work and increased medical 

investments. Consequently, quality of attention relates to avoiding 

loss of productivity, due to distractions, errors, inability to 

concentrate and lack of motivation. 

Our work aims at the challenging long-term objective to enable non-

obtrusive long-term analytics of mental, physical, emotional and 

motivational stress of workers at the manufacturing site. We argue 

that pure observation based analysis cannot fully interpret the 

psychophysical processes that reflect psychosomatic stress over 

long time periods. The technical challenge of this work is to measure 

both the local infrastructure that determines geometric and 

functional conditions on the worker’s interaction as well as the 

psychophysiological and biomechanical parameters that describe 

the human state, intention and activity.  

This work presents a novel methodology that enables real-time 

measurement of cognitive load as well as biomechanical strain from 

non-obtrusive wearable sensors. In particular, cognitive load is 

calculated from the analysis of eye movements in reference with the 

semantics of the recovered 3D structure, such as, task-specific areas-

of-interest that are typically viewed at during task execution. From 

these observations we generate some indicative ‘task switching’-

related measures which are characteristic for attention-based 

executive function processes. Finally, these measures enable to 

provide a better approximation of human states, performance and 

strain parameters than just external observation would enable.  

 

Figure 1. Wearable-based data acquisition towards large-scale evaluation 
of mental load and biomechanical strain at a factory workplace. A pick-and-

place workplace demonstrates the challenging requirements on cognitive 
and biomechanical strain. 
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Related Work 

In the field of Human-machine interaction, human-centered 

variables have played a major role since quite a while, parameters -  

such as, situation awareness, workload and the mental model - were 

described by Steinfeld et al. [1] for the example of human-robot 

interaction. These human-related variables are essential for the 

evaluation of human-interaction metrics. Human factors are crucial 

as industrial robots are enabling human and robot workers to work 

side by side as collaborators and to assess the user’s experience with 

a robot, while understanding how humans feel during their 

interaction with it (Figure 1). Attention and gaze provide a means of 

action prediction and intention as outlined by Huang and Mutlu [2], 

i.e., to work seamlessly and efficiently with their human 

counterparts. Machines must similarly rely on predictions of the 

human worker’s behavior, emotions, task specific actions and intent 

to plan their actions, such as, in anticipatory control with human-in-

the-loop architecture [2] to enable robots to proactively perform task 

actions based on observed gaze patterns to anticipate actions of their 

human partners according to its predictions.  

Measuring and modeling of human attention, concentration and 

situation awareness based on eye movements and accordingly 

triggered information recovery is mandatory for the understanding 

of human action planning, mental workload and, consequently, the 

achieved quality of service. Gaze as input device has proved to be 

beneficial, such as, in shop floor management [3]. Finally, the 

Carnegie Mellon University with Admoni et al. [4] has introduced 

intuitive gaze-based cyber-physical control as additional asset. 

There seems to be a wide spectrum of opportunities for gaze to 

provide information for monitoring, assessment, as interaction 

device and for action prediction. 

The most related work to the presented method is Santner et al. [5] 

on the 3D gaze recovery by use eye tracking glasses and SLAM 

methods for 3D information recovery. The presented method builds 

on the results of that work but extends substantially, applying a more 

developed handheld device for better infrastructure recovery, as 

well as adding a complete methodology to extract information about 

executive functions, and relating to biomechanical strain estimation 

for a comprehensive evaluation of strain in industrial working cells 

with human-machine interaction. 

Human Factors Integrated Measuring System 

Rationale and Data Processing 

Overall the methodology consists of two components, (i) the 

estimation of mental load, and (ii) the estimation of biomechanical 

strain. The estimation of mental load firstly applies the extraction of 

working cell infrastructure in terms of its 3D geometry including a 

computer vision processing stage of 3D information recovery of the 

working cell using a precise stereo measurement device. A next step 

requires attention sampling from the focused interaction of the 

worker with the infrastructure. For this purpose, the worker is 

equipped with eye tracking glasses as well as with a set of wearable 

accelerometers with its sensor data transmitted via wireless 

connectivity to a nearby PC for monitoring.  

Data analytics registers the egocentric video frames from the eye 

tracking glasses with the visual information in the scene (e.g., 

artificial landmarks) and thereby recovers the 3D geometry of gaze 

and viewing frustum towards the working cell. A final step relates 

the semantics of attended areas-of-interest with task references and 

from this is able to conclude about an estimation on the worker’s 

task switching rate and, consequently, mental work load.  

These figures will in the future be part of a more complete spectrum 

of cognitive, in principle, mental parameters (including affective 

states) that together will enable - on the basis of more populated and 

elaborated studies – to develop towards the estimation of long-term 

generated general definition of human mental state, including stress.   

In total, both methods, mental and biomechanical strain, represent 

together the main source of psychophysiological stress in working 

cells and will underlie future studies in real working environments. 

Development of Digital Twin of Work Cell  

An important prerequisite for the computation of mental workload 

is the definition of work zones that represent regions-of-interest 

(ROI) in the work cell environment the worker is interacting with 

during particular tasks. For example, during assembly of a specific 

part of the product interaction is applied towards a specific part of 

the environment, such as, a table. The rationale of computation of 

concentration is that workers are focused while heading towards 

these environments, being occupied with objects of interest that in 

this work are not yet considered, this will be done in later work. 

However, the 3D model serves to define the task interaction zones, 

but also the overall visualization of the work environment together 

with the superimposed interaction and related attention behavior.  

 

Figure 2. Development of a digital twin of the work cell environment and 
deriving eye movements with respect to the environment by application of eye 
tracking glasses, image recognition and matching methodology. 

The concrete first task is to extract a 3D model from the real work 

environment (Figure 2). For this purpose, we applied a mobile, 

practical stereo system that combines highly accurate and robust 

projected texture stereo and efficient volumetric integration and 

allows to easily capture accurate 3D models of indoor scenes [6]. Its 

methodology optimizes a stereo method for random dot projection 

patterns and delivers complete and robust results. The hardware is 

enclosed in a box and contains three Basler dart cameras (2 

monochrome cameras for stereo, one for RGB) and active Kinect 

projector to apply reconstruction via occupancy grid and iterative 

closest points (ICP) based registration [7]. A typical result is 

displayed in Figure 3.  

Estimation of Mental Load   

In order to estimate the actual cognitive load from the worker’s 

interaction with the environment we decided to use eye tracking 

glasses that continuously determine the eye movements over time. 

In a previous work we developed a methodology to estimate 

concentration and mental workload from eye tracking glasses-based 

data in a factory-like lab environment [8]. Eye tracking glasses 

generate a continuous video stream of ca. 30 Hz and eye gaze 

positions within the video frames.  
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In order to position the extracted gaze with the 3D environment we 

had firstly to position the video with the environment and then 

estimate the gaze ray and its geometric recovery with respect to the 

3D environment and determine to which ROI it belongs. In order to 

match the video frames with the 3D model we placed ArUco 

markers (OpenCV toolbox [9]) within the work cell where we 

expected human gaze. An alternative method is to base the matching 

process not on fiducial markers but directly on video-based 

measurements from the scene [10]. Eye tracking was applyed to 

record gaze behavior with the purpose to analyze cognitive human 

factors, such as,  

 Gaze behavior in terms of the orientation of the viewing 

axes of both eyes over time (with 60 Hz) relative to the work 

environment, 

 Indicative estimation of mental stress [11], 

 Indicative estimation of concentration and sustained 

attention with regard to the task [8] (executive function), 

 Situation awareness by estimating the reference of gaze to 

important events [12],  

 Task-switching indicating the load of switching attention 

between mental models [8] (executive function).  

Estimation of Biomechanical Strain  

For the estimation of biomechanical strain we first conducted an 

analysis of human posture and from this intended to conclude about 

general aspects of physical strain. We applied non-obtrusive 

wearables to the worker (Figure 5) in order to estimate relative 

positions and further derive the overall worker pose in space, finally, 

to receive a skeleton-based representation for further processing. 

The choice of wearable were Perception Neurons that represent 

small, adaptive, versatile and affordable motion capture technology. 

The modular system is based on the NEURON, an IMU (Inertial 

Measurement Unit) composed of a 3-axis gyroscope, 3-axis 

accelerometer and 3-axis magnetometer. The system applies 

proprietary embedded data fusion, human body dynamics and 

physical engine algorithms that deliver smooth motion with minimal 

latency. The PERCEPTION NEURON 9-Axis sensor units output 

data at 60fps or 120fps. The data stream is channelled to a hub where 

it can then be transmitted to a computer in three different ways: (1) 

via WIFI, (2) via USB or (3) recorded on-board using the built-in 

micro-SD slot. The modular system on a Notebook finally applies a 

skeleton-based representation.  

For the analysis of the skeleton-based representation we applied the 

biomechanical software toolbox BoB (Biomechanics of Bodies). 

BoB represents a software package that contains a musculo-skeletal 

model of a digital human [13].  

During the import task BoB reads the motion, force and skeleton 

files. The skeleton file is applied to construct the mechanism 

containing the joints that are articulated with the joint angles defined 

in the motion file. The forces in the force file are applied to the 

mechanism as external forces. BoB then performs an inverse 

dynamics analysis of the mechanism to calculate the torques at the 

joints that are required to compute the joint motions in the presence 

of the external forces and mass model. On the basis of the skeleton-

based representation BoB is capable to provide personalized 

estimates for characteristic biomechanical strain features, such as, 

muscle forces, joint torques, joint contact forces.  

(a)  

(b)   

Figure 3. Result of the 3D information recovery process. (a) Resulting 3D 

model with regions-of-interest. (b) 3D gaze recovery with the focus of the 
camera (green node) and the estimated view frustum (green pyramid) together 
with the 3D infrastructure. 

 

Figure 4. Data flow from the received motion, force and skeleton-based 
information, via inverse dynamics and optimization processes that finally 
lead to the resulting muscle as well as joint contact forces. 

Figure 4 depicts the data flow from the received motion, force and 

skeleton files, and that an optimization process finally leads to the 

resulting muscle as well as joint contact forces.  

There is no unique solution for the muscle force distribution that is 

required to generate the joint torques as there are typically 

approximately 40 joint torques to satisfy with over 600 muscles in 

the muscle file. Therefore, an optimization approach of a cost 

function is utilized to identify one of the infinite number of possible 

solutions. By default BoB minimizes the sum of the square of the 
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muscles’ activations where the muscle activations are defined as the 

instantaneous muscle force divided by the muscle maximum 

isometric force. This cost function has been shown to correspond to 

reducing the fatigue of the body. The user can select other cost 

functions.  

Experimental Results 

First results were captured from an assembly-oriented working cell 

where frequent pick-up processes with change of orientation and 

pose characterize the interaction patterns. The Medical University 

of Graz granted Ethical approval (No. 31-243 ex 18/19). A typical 

female worker with 51 years of age was wearing the equipment for 

a duration of 11 minutes, i.e., 660 seconds (Figure 5). During this 

time, 15.840 video frames were captured of which 27% were 

referenced in a fully automated way in association with ROIs of the 

work environment’s infrastructure. The remainder of the video 

frames was manually attributed with the ROIs in sight within the 

egocentric video frames. A heuristic concentration indicator (Paletta 

et al. [8]) was then computed on the basis of the gaze-referenced 

ROI data. This resulted in a mean (standard deviation) of the 

concentration level M=3.79 (SD=1.39) where the level value range 

is between 1 and 5 (Figure 6). Within 11 minutes of work, 153 task 

switches were calculated with a mean (SD) of 4.64 (2.78) switches 

and some maximum value of ca. 10.0 in a 20 seconds interval 

(Figure 7). These results demonstrate a very high task switching rate 

compared to normally reported functioning [14].  

In a final step, we associated muscular forces of predetermined 

cluster of muscles with ‘occupational strain categories’ given 

evaluations of the muscle analysis [15] provided by occupational 

therapists. A support vector machine neural network (Vapnik, 1995) 

is finally trained to map from muscular forces to occupational strain. 

A first neural network implementation resulted in 89% accuracy in 

the prediction for a 1-second time window. 

  

   

Figure 5. Synchronized videos: (left top) raw video surveillance of the 
assembly work with wearables, (top right) skeleton estimation, (bottom left) 
gaze video, (bottom right) visualization of the muscular force (green, yellow, 
red for low, mid and high muscular strain) and correct posture. 

 
Figure 6. Heuristic concentration level (from 1 (low) to 5 (high) according to 
Paletta et al. [8], calculated for the pick-up task and an intermediate view on 
task-irrelevant issues (center). 
 

 
Figure 7. Task switches (calculated according to Paletta et al. [8]), reflecting 
the high cognitive load in phase 2.  
 

Discussion, Conclusions and Future Work 
This experiment demonstrates that a light-weight non-obtrusive 

wearable equipment consisting of eye tracking glasses and motion 

capture sensors can be used to derive mental load and biomechanical 

strain. High concentration and high task switching rates of the 

worker were reflected in the heuristic scores extracted from the gaze 

data. From the extracted quantities one can easily derive cognitive 

workload overcharges, for example, workers are supposed not to 

work more than 20-30 minutes with high concentration in a row, 

otherwise fatigue will increasingly take place which in turn highly 

increases risk factors at work.  

Furthermore, the detailed biomechanical strain information was 

mapped to occupational experts’ scores and reflected as well to a 

high degree the evaluation of the experts. 

Future work will focus on the application of more complex eye 

movement features, studies with larger populations and we are 

already introducing bio-sensing for more fundamental treatment of 

psychophysiological analytics underlying human factors and 

ergonomics in manufacturing environments. 
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Figure 8. Recovery of 3D gaze geometry (left) within the 3D model of the work environment and egocentric video frame from the eye tracking glasses with gaze 
point (orange) superimposed. 

 

Figure 9. Work in a modern factory representing pick-up processes in an assembly working cell (top left). The worker is equipped with eye tracking glasses, wearables 
in terms of gyroscopes/accelerometers/magnetometers in gloves and at extremities as well as with a backpack containing a notebook. From the wearables we 
compute a skeleton-based representation of human pose (right). The force on each muscle is quantified from an estimation model derived from the current pose and 
plotted over time (blue, below). Furthermore, we have a ground truth-like annotation of occupational therapists describing low (green), medium (yellow) and high 
(red) degree of challenging the muscle functions by rating video-recorded sequences using an occupational-based activity analysis [15].  
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