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Abstract

Estimating the photo-response non-uniformity (PRNU) of an
imaging sensor from videos is a challenging task due to compli-
cations created by several processing steps in the camera imaging
pipeline. Among these steps, video coding is one of the most dis-
ruptive to PRNU estimation because of its lossy nature. Since
videos are always stored in a compressed format, the ability to
cope with the disruptive effects of encoding is central to reli-
able attribution. In this work, by focusing on the block-based
operation of widely used video coding standards, we present an
improved approach to PRNU estimation that exploits this behav-
ior. To this purpose, several PRNU weighting schemes that utilize
block-level parameters, such as encoding block type, quantization
strength, and rate-distortion value, are proposed and compared.
Our results show that the use of the coding rate of a block serves
as a better estimator for the strength of PRNU with almost three
times improvement in the matching statistic at low to medium cod-
ing bitrates as compared to the basic estimation method devel-
oped for photos.

Introduction

Videos pose several challenges to estimating the photo-
response non-uniformity (PRNU) of imaging sensors as com-
pared to photos. Capturing a video not only requires handling a
large amount of sensor data but also involves several additional
post processing steps for quality improvement. In this regard,
downsizing, image stabilization, and video compression are three
commonly deployed processing blocks in camera pipelines. In
terms of their impact, however, these operations are very detri-
mental to PRNU estimation and matching as they introduce geo-
metric transformations that distort pixel-to-pixel correspondences
in unknown ways and incur information loss that weakens the un-
derlying PRNU pattern. Several solutions have been proposed to
deal with the adverse effects of these operations; however, PRNU
based attribution of videos remains to be a complex task requiring
further improvements.

During video acquisition cameras downsize the high resolu-
tion imaging sensor readout to create lower dimensional pictures
through a combination of scaling and cropping. Since the number
of resolutions supported by cameras is quite large [1], dimension
mismatches between the reference PRNU pattern and the video
whose source is in question are inevitable. Therefore when at-
tributing a video to its source, downsizing parameters need to be
determined first. Several works have examined in-camera down-
sizing behavior and introduced procedures to identify the neces-
sary parameters [1, [2, 3]. One difficulty in applying these ap-
proaches is that when combined with the effects of other process-
ing, such as image stabilization, correct identification of these
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parameters become computationally challenging, thereby mak-
ing PRNU matching more error prone. Although these parame-
ters can be determined for each camera model in advance from
videos captured under constrained settings, creating a compre-
hensive dictionary of downsizing parameters for potentially thou-
sands of camera models requires a significant effort.

Image stabilization is another intermediate processing that
video frames undergo to eliminate unwanted camera motion.
When performed electronically, stabilization potentially subjects
each frame to a different geometric transformation. There are sev-
eral video stabilization with implementation level specifics typi-
cally unknown. Stabilization creates a significant complication
for PRNU based source attribution as the applied transformations
need to be determined blindly for each frame separately. A num-
ber of approaches have been proposed considering application of
frame-level affine transformations [2} 4, 5] and spatially-variant
transformations [6]. These approaches, in common, perform a
brute search of transformation parameters; therefore, they are
computationally demanding. The main difficulty of dealing with
stabilized videos, however, remains to be the weakened PRNU
pattern in pictures of a video due to overall processing which
makes this search very susceptible to errors.

At the final stage of the camera pipeline, the captured se-
quence of frames are encoded into a compressed video file. Video
compression is much more sophisticated than still image coding
as it is based on motion prediction and defines different types of
frames and blocks in its operation. As a consequence, the weaken-
ing effect of compression on the PRNU pattern in a typical video
frame is much higher than that in a typical photo [7]. Earlier
work in this field mainly focused on combatting effects of a fil-
tering operation, namely, the loop filtering, performed to suppress
blockiness artifact introduced by video encoder by trying to elim-
inate its effects on the PRNU pattern as much as possible [8} 9]
or utilizing only intra-coded frames for PRNU estimation [10].
Later, it has been shown that the adverse effects of the loop filter
can be more effectively compensated at the decoder, rather than
in post-processing, [11].

Another characteristic of video coding is that the specifics
of quantization operation applied to prediction error of a block is
decided at a block level with parameters changing from one block
to another to typically achieve a target bitrate. To exploit this
behavior, recent work also focused on treating the contribution of
each block differently. In [12], authors proposed the elimination
of blocks that lack high frequency content in the prediction error
from PRNU estimation. Alternatively, [7] examined the relation
between quantization parameter of a block and the reliability of
the PRNU pattern to introduce a block level weighting scheme
that adjusts the contribution of each block accordingly.
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In this work, we aim at further improving these approaches
by better utilizing block level decoding parameters available at
the decoder and consider different weighting schemes to more re-
liably estimate the PRNU pattern. To this purpose, we expand on
the earlier approach that utilizes quantization parameter as an esti-
mator for the strength of PRNU pattern by incorporating the rate-
distortion cost of coding block data to PRNU estimation. In ad-
dition, we investigate the impact of the so-called skipped blocks,
which refer to minimally coded blocks whose parameters are es-
sentially copied from its spatially preceding non-skipped block.
We must note that block-based PRNU weighting schemes dis-
regard the picture content and only utilize decoding parameters.
Hence, the approaches proposed to enhance the strength of PRNU
by supressing content interference [[13}114}[15] and to improve the
denoising performance [[16} [17| [18] can be further incorporated
with the introduced weighting schemes. Overall, our results show
that the coding rate of a block serves as a much better estimator
for the quality of the PRNU pattern.

The rest of the paper is organized as follows: First, we ex-
amine the H.264 coding standard with a focus on its block level
operation. Then, block-based PRNU estimation approaches are
introduced to mitigate video coding artifacts. This is followed by
a comparison of source camera attribution results and a summary
of key findings.

Block-Level Video Coding

H.264/AVC [19] is one of the most widely used video cod-
ing standard today. At its core, this block-based coding standard
leverages the fact that pictures of a video are highly correlated and
try to minimize the temporal redundancy between the successive
frames. An encoded video essentially comprises a sequence of
frames where a frame is a conceptual structure that contains in-
formation about the compression parameters and the data needed
to reconstruct a picture. The compression of a frame might de-
pend on other frames. In this regard, P type frames depend only
on a past frame whereas B type frames might depend on the past
and future frames. In contrast, / type frames are compressed in-
dependently of others to prevent a possible error propagation in
case of a data transmission error.

During encoding the picture of a frame is split into smaller
blocks, referred to as macro blocks, and each block is compressed
individually. Just as it is with frames, blocks also have different
types. A block that depends on a block of a past frame is defined
as a P block. Similarly, a B block depends on blocks of the past
and future frames, and an / block depends only on neighboring
blocks of the same frame. During encoding each picture block is
predicted either from the neighbouring blocks of the same frame
(intra-prediction) or from the blocks of the past or future frames
(inter-prediction). Therefore, each coded block contains the po-
sition information of the reference picture (motion vector) and
the difference between the current block and the reference pic-
ture block (residual). This residual matrix is first transformed to
the frequency domain and then quantized. This is also the stage
where information loss takes place. The severity of the compres-
sion and correspondingly the amount of distortion incurred by a
block is determined by the choice of the quantization parameter
(QP) which sets the quantization step size. Thus, a higher degra-
dation is expected in blocks coded with higher QP values.

Another type of block used during encoding is the skip block.
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A skip block essentially signals the decoder that a block has the
same motion vectors and parameters (i.e., the quantization param-
eter and the quantized transform coefficients) as its spatially pre-
ceding block. In other words, skipped blocks do not contain any
pixel information, and it takes only a few bits to encode them. As
a consequence, among all types of blocks, skipped blocks intro-
duce the highest distortion to the reconstructed block. Therefore,
they are of more concern for the PRNU estimation.

There is ultimately a trade-off between the amount of data
used for representing a picture (data rate) and the quality of the
reconstructed picture. Finding an optimum balance has been a
research topic for a long time in video coding. The approach taken
by H.264 standard is based on rate-distortion optimization (RDO).
According to the RDO algorithm, the relation between the rate
and distortion is defined as

J=D+ AR, (D

where D is the distortion introduced to a picture block, R is the
number of bits required for its coding, A is a Lagrangian mul-
tiplier computed as a function of the QP (i.e., A = 0.852 o
[19]]), and J is the rate-distortion (RD) value to be minimized. The
value of J obviously depends on several coding parameters such
as block type (I, P or B), intra-prediction mode (samples used
for extrapolation), number of pair of motion vectors, sub-block
size (4x4, 8x4, etc.), and the QP. Each parameter combination is
called coding mode of the block, and the encoder picks the mode
m that yields the minimum J as given in

m = argmin J; 2)
i

where the index i ranges over all possible coding modes. It must
be noted that the selection for the optimum mode in Eq. (2) is
performed on the encoder side. That is, the encoder knows all
variables involved in computation of Eq. (). The decoder, in
contrast, has only the knowledge of the rate (R) and the A value
and oblivious to D and J values.

The reliability of an estimated PRNU pattern from a picture
of a video evidently depends on the amount of distortion intro-
duced to it during coding. Since encoding induced distortion D
varies at the block level, its knowledge might be extremely use-
ful during PRNU estimation in identifying the highly distorted
blocks. That is, unlike in photos where the strength of quantiza-
tion can be used as an estimator for the strength of the PRNU pat-
tern, the D value associated with each block of a picture will serve
as a better estimator for the strength of the PRNU pattern than the
corresponding QP value. The distortion information, however, is
not available during decoding. Therefore, in the lack of this in-
formation, one can alternatively consider using R to more reliably
estimate PRNU.

PRNU Weighting Schemes

Given a video compressed by H.264 (or the newer video cod-
ing standard H.265 [20]), the first step of source attribution is the
elimination of the loop filtering step at the decoder as described in
[7]. The adverse effects of encoding related information loss must
then be countered. Since encoding is performed at the block-level,
its weakening effect on the PRNU pattern must also be compen-
sated at the block-level by essentially weighting the contribution
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of each block in accordance with the level of distortion introduced
to it.

When the video is not stabilized (or very lightly stabi-
lized) this can be incorporated into conventional PRNU estima-
tion method [21]] by introducing a block-wise mask for each pic-
ture as given below

YN L X W x M;

K=
YN ()2 x M;

3)

where K is the sensor specific PRNU factor computed using a set
of video pictures Iy,...,Iy; W; represents the noise residue ob-
tained after denoising picture /;; and M; is a mask to appropriately
weight contribution of each block based on different block-level
parameters. When the video is stabilized, however, Eq. cannot
be utilized directly since each picture would have been subjected
to a different stabilization transformation. Therefore, each frame
has to be the first inverse transformed and Eq. must be evalu-
ated after applying the identified inverse transformation to both /;
and the mask M;.

When creating a mask M, several weighting schemes can be
devised depending on which block-level coding parameters are
used. In this study, we consider four PRNU weighting schemes
that essentially depend on masking out skipped blocks, the quan-
tization strength, a hybrid approach that combines both, and the
rate-distortion value. Developing a formulation that relates such
block-level parameters directly to the strength of the PRNU is in
general analytically intractable. Therefore, we need to rely on
observations obtained by changing coding parameters in a con-
trolled manner and determine how the estimated PRNU pattern
affects the accuracy of the attribution. To this end, we use a set of
very high quality, almost uncompressed videos and encoded them
with different parameters when determining the specifics of each
weighting scheme.

These videos are captured using various Android smartphone
cameras through a custom built camera app that allows capturing
videos at the highest possible bitrate (i.e., corresponding to QP =
1) while turning off stabilization and electronic zoom to correctly
determine the weighting function without interference from other
in-camera post-processing [1]. All videos include indoor scenes
captured under natural light by moving the cameras at the highest
supported frame resolution of the camera by limiting the duration
of each video to 4 seconds. One video from each camera is used to
obtain a reference PRNU pattern of the sensor and another video
is used for tests. In all cases, PRNU patterns are obtained using
the loop-filter compensated versions of the pictures extracted from
each video.

The test videos are re-encoded using H.264 encoder at dif-
ferent bitrates and quantization parameters depending on the re-
quirements of each scheme as described below. When evaluat-
ing the goodness of a block-level weighting scheme, we use the
conventional peak-to-correlation energy (PCE) detection statistic
computed between the reference PRNU pattern and PRNU pat-
terns obtained from pictures of videos using that scheme.

Eliminating Skipped Blocks

Skip blocks do not transmit any block residual information of
their own. Therefore they provide large bitrate savings at the ex-
pense of a much higher distortion when compared to other block
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types as implied by Eq. (I). As a consequence, the PRNU pattern
extracted from skipped blocks will be the least reliable. (It must
be noted that the distortion introduced by substituting a skip block
with a reference block cannot be arbitrarily high as it is bounded
by the RDO algorithm.) This weighting scheme, therefore, de-
ploys a binary mask M where all pixel locations corresponding to
a skipped block are set to zero and those corresponding to coded
blocks are assigned a value of one. A major concern with the use
of this scheme is that at lower bitrates, skip blocks are expected to
be much more frequently encountered than other types of blocks,
thereby potentially leaving very few blocks to reliably estimate a
PRNU pattern.

To examine the behavior at low bitrates, we performed a
measurement using 20 uncompressed (QP = 1) videos captured
by different cameras. These videos are encoded repeatedly at 37
different bitrates from 200 Kbps to 2.3 Mbps. This yielded a total
of 740 videos with different amount of skipped blocks depend-
ing on the frame resolution, video content, and the bitrate. Then,
for all videos skipped block rate (SBR) is determined as the ra-
tio of the number of skipped blocks to the total number of blocks
in each video. The resulting SBR-bitrate relation is presented in
Fig. [1} Accordingly, it is determined that for videos with a bitrate
lower than 1 Mbps, more than 70% of the blocks are skipped dur-
ing coding. This finding overall indicates that unless the video is
extremely short in duration or encoded at a very low bitrate, elim-
ination of skipped blocks will not significantly impair the PRNU
estimation.
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Figure 1. The box plot of SBR measurements from 740 videos created by
re-encoding 20 uncompressed videos at 37 different bitrates.

Quantization Based PRNU Weighting

Quantization of the prediction residue associated with a
block is the main reason behind the weakening of the PRNU pat-
tern during compression. Therefore in [7]], the strength of quanti-
zation is used as the basis of the weighting scheme. Since the QP
associated with each block is available at the decoder, this work
empirically obtained a relation between QP and PCE. The under-
lying relation is obtained by re-encoding 28 high-quality videos
at all possible,i.e., 51, QP levels. Then, average PCE values be-
tween video pictures coded at different QP values and the camera
reference pattern is computed separately for each video. (It must
be noted here that setting a fixed QP value for all the blocks in a
video does not prevent encoder to use skip blocks.) To suppress
the camera dependent variation in PCE values, obtained average
PCE values are normalized with respect to the PCE value obtained
for the QP value of 15. Finally, resulting normalized average PCE
values are further averaged across all videos to obtain a camera
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independent relationship between PCE and QP values.

Translating the obtained QP-PCE relation into a weighting
function requires taking into account the formulation of the PCE
metric. Given a reference and estimated PRNU pattern, PCE is
defined as the ratio between the square of the correlation between
the two patterns and the total energy in the cross-correlation plane
except around a spot around the peak correlation. Essentially,
the term in the denominator of this ratio can be interpreted as
noise due to pixel-wise independent nature of PRNU, regardless
of whether the two estimates match or not. Hence, the ratio of
two PCE values corresponding to PRNU factors estimated from
(two) videos captured the by same source camera can be viewed
as the square of the ratio of the energies of the two PRNU patterns
[7]. Overall, taking the square root of the QP-PCE curve yields
the needed weighting functions as shown in Fig. [2 (red colored
curve). Correspondingly, the mask M in Eq. (3) is obtained by
filling all pixel locations corresponding to a block with a particu-
lar QP value with the respective values using this curve.

Quantization Based PRNU Weighting Without Skipped
Blocks

Since skipped blocks introduce higher distortion, they can be
eliminated from PRNU estimation as discussed above. However,
the contribution of remaining, coded blocks can still be weighted
in accordance with their distortion. Hence, another weighting
scheme that follows the previous two schemes is the quantization
based weighting of non-skipped blocks. This can be simply re-
alized by limiting the above described procedure devised consid-
ering all blocks to only coded blocks and obtaining the QP-PCE
relationship and the corresponding weighting function.

Repeating the same process using videos captured by 20
cameras while eliminating all skipped blocks, the weighting func-
tion given in Fig. [2] (blue colored curve) is obtained. As can
be seen, both curves exhibit similar characteristics; however, the
latter one exhibits a lesser change in weights depending on QP,
which indicates that the variation in the strength of the PRNU
estimated across all coded blocks is less variable. This is mainly
because eliminating skipped blocks yields higher PCE values, and
this increase is more apparent at high QP values where compres-
sion is more severe and skip blocks are more frequent. Therefore,
when the resulting QP-PCE values are normalized with respect to
a fixed PCE value (QP = 19), it yields a more compact weight
function that takes relatively lower weights at low QP levels and
higher weights at high QP levels. This new weight function is
used in a similar way when creating a mask for each video pic-
ture with one difference that for skipped blocks the corresponding
mask values are set to zero regardless of the QP value of the block.

RDO Based PRNU Weighting

Although one can infer the distortion introduced to a block
in terms of its type and/or through the strength of quantization
(QP), the correct evaluation of the reliability of the PRNU ulti-
mately depends on the actual distortion. Therefore incorporating
RDO algorithm into PRNU estimation offers an improved ability
to determine PRNU noise quality; however, the variables D and
J, in Eq. (I), are unknown at the decoder. One way to cope with
this problem is by assuming that the value of the optimum J for
each block does not vary much throughout the video and obtain-
ing the relation between the distortion and the rate experimentally.
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Figure 2. Quantization based weighting functions for PRNU blocks depend-
ing on QP values when skip blocks are included (red curve) and eliminated
(blue curve).

This can be simply performed by computing the mean square er-
ror (MSE) between the original and decoded versions of a block
and determining the number of bits spent for coding that block.
In this way D can be estimated from the known AR and than this
estimated D value can be used to determine the associated weight
for each block. However, since the assumption about stability of
J is not well-founded, the estimation of the distortion D associ-
ated with a block from QP and R values will inevitably introduce
some errors. Therefore, as an alternative, we investigate the feasi-
bility of a PRNU weighting scheme based solely on AR, which is
known at the decoder just like QP. This essentially requires deter-
mining a weighting function that defines the relation between AR
and PCE which can be subsequently used for creating a mask for
weighting PRNU blocks. This relation can be determined empiri-
cally through a number of tests as it was done for the quantization
based weighting scheme. .

With this objective, 20 high-quality videos captured by 20
cameras are re-encoded at 42 different bitrates that vary between
200 Kbps and 32 Mbps. As for obtaining AR-PCE relationship,
AR values are measured at a block-level. However, the same ap-
proach cannot be taken for PCE values because computing PCE
at a block-level is not meaningful. This ideally requires pictures
comprising blocks that are encoded at the same rate. Since this is
not possible, we spliced together new frames in the PRNU domain
from PRNU blocks of original pictures of each video by sorting
them with respect to their AR values while preserving the location
of each block in a frame to not impair the matching process. That
is, blocks with similar AR values in different pictures of a video
are transferred to the same location in the newly generated spliced
frames. Then, for all newly created frames in the PRNU domain
corresponding PCE values are calculated by matching them with
the camera’s reference pattern. To suppress between-cameras
variations in the AR-PCE relation, obtained curves for each cam-
era are normalized with respect to the PCE value at a fixed AR
(AR = 60) value and all curves are averaged together to obtain
a camera-independent AR-PCE relation. Finally, the weighting
function that depends on rate, AR, is obtained by taking its square
root (see page[2) as displayed in Fig.

Performance Comparison

To determine how different block based PRNU weighting
schemes compare against each other, we used another set of 47
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Figure 3. The weighting function based on A x R using pictures of 20 re-
encoded videos at 42 different bitrates.

Videosﬂ captured similarly by the same 20 cameras using the cus-
tom camera app [1]. It must be noted that these videos were not
used in the creation of a reference PRNU pattern or during the
computation of the weighting functions. All videos are captured
indoors under normal camera motion and had a duration of 4 sec-
onds. The videos are captured at their native resolutions that var-
ied between 768 x 432 to 2160 x 2160 pixels at the highest quality
(by setting QP = 1). These were then similarly re-encoded using
H.264 codec at 11 different bitrates, starting from 600 Kbps up to
4 Mbps, creating a total of 517 test videos.

The PRNU pattern estimated from each video using one of
the four weighting schemes, as well as the basic method that treats
each video picture and its loop-filter compensated version as a
photo, are matched to the reference PRNU pattern of the camera
and the PCE values are computed. Figure [4] presents the aver-
age PCE values obtained at low and high bitrates separately for
better visibility. As can be seen from these results, all weight-
ing schemes yield a better estimate of the PRNU as compared to
the conventional method or to just compensating the loop filter-
ing. In line with our expectations, at all bitrates, rate based PRNU
weighting scheme yielded the best results.

It is also observed that at all bitrates the performance of QP
based weighting scheme improves when skipped blocks are elim-
inated from the estimation process. Although at high bitrates, per-
formances for both of the schemes are expected to converge, there
is still a gap at the bitrate of 4 Mbps. This can be explained by the
fact that even at this bitrate 15-20% of all blocks are skipped as
can be seen in Fig. [T} It can further be noticed that at 600 and 700
Kbps bitrates elimination of skipped blocks yields slightly better
PCE values than quantization based weighting scheme. This is
essentially due to incorrect weighting of skipped blocks, which
constitute almost 80% of all blocks at those bitrates, as their QP
values are taken to be those of their reference blocks which are
likely to be low.

Results show that at low bitrates (600 to 1200 Kbps) as com-
pared to the conventional method, average PCE values increased
by 1.33 times when only loop filter is compensated; by 1.62 times
if skipped blocks are eliminated; 1.65 times for QP based PRNU
weighting; 2.16 times for QP based weighting without skipped
blocks; and 3.13 times for R based weighting. At higher bitrates,
average PCE values are observed to increase by a factor of 1.15,
1.24,1.45, 1.60, and 1.76, respectively, for the same methods.

In addition to average improvement in the PCE values, we

IThis set of videos can be obtained at
https://github.com/VideoPRNUExtractor/Block-Based Weighter.
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Figure 4. Average PCE values for 47 high-quality videos encoded at 11
different bitrates ranging from (a) 600 kbps to 1200 kbps and (b) 1500 kbps
to 4000 kbps.

also determined the number of videos that yield a PCE value
above 60, which is the commonly used matching threshold for
photos. The table given below divides videos into 5 groups based
on the level compression applied to each video, measured in terms
of the average number of bits-per-pixel used during encoding.
Similar to results of Fig. ] it can be seen that at low bits-per-pixel
values, PRNU weighting approach yields significant improve-
ment in attribution performance over the basic method with rate
based weighting scheme performing significantly better than all
other schemes. One interesting finding here is that at lower than
0.052 bits-per-pixel compression, elimination of skipped blocks
performs better than QP based weighting schemes. We believe the
main reason for this phenomenon is that QP based PRNU weight-
ing function could not be reliably determined at high QP values,
as indicated by fluctuations in Fig. ] when QP > 35.

Number of Videos that Yielded a PCE Value Higher than 60 for
All Weighting Schemes

Bits Per | Convent. | Lp. Filter | Eliminate| QP |QP w/out| AR Total
Pixel | Method | Comp. | Skip Bl. |Based| Skip Bl. |Based
<0.024 2 3 10 4 7 10 | 103
< 0.052 27 34 42 32 40 55 | 104
< 0.084 40 47 51 46 53 63 | 103
<0.172 65 69 72 74 77 82 | 103
>0.172 92 94 93 97 97 97 | 104
Total 226 247 268 253 274 307 | 517

To ensure that the improvement in the performance due to
PRNU weighting does not come at the expense of an increased
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number of false-positive matches, we performed another exper-
iment by attempting to match each test video to 14 randomly
selected non-matching reference patterns. This in total yielded
7,238 PCE values for each weighting scheme. The PCE values
corresponding matching and non-matching reference PRNU pat-
terns are then used to generate receiver operating characteristic
(ROC) curves for each of the PRNU weighting schemes as dis-

played in Fig.

1

0.9

0.8

— Conventional

—Loop Filter Compensation

0.7 Eliminating Skipped Blocks

—Quantization Based PRNU Weighting
Quantization Based PRNU Weighting

0.6 Without Skipped Blocks
) R Based PRNU Weighting
0 0.2 0.4 0.6 0.8 1
Figure 5. ROC curves corresponding to different PRNU estimation ap-
proaches.
Conclusion

Overall our results show that when estimating a PRNU pat-
tern from a video, block-level PRNU weighting yields much bet-
ter results and that the rate associated with a block is a more re-
liable estimator for the strength of extracted PRNU pattern. It is
also observed that the improvement in PCE values due to PRNU
weighting becomes more visible at bitrates higher than 900 Kbps.
Our findings, however, also demonstrate that it is a challenge to
estimate PRNU pattern from low bitrate videos (600-800 Kbps)
even in the absence of other in-camera processing that may inter-
fere with the estimation process. Considering a typical video that
includes artifacts of other video processing operations, such as
downsizing and stabilization, in addition to those of compression,
the resulting PCE values will be even lower. For those cases, the
improvements provided by the PRNU weighting schemes will be
more critical for reliable source attribution.
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